ID Workbench

IBMIDDoc User’s Guide and Reference
Release 3.6

SH21-0783-10

October 30, 2001

Mike Temple

<|lI!

ID Workbench

IBMIDDoc User’s Guide and Reference

Release 36

SH21-0783-10

<|lI!

ID Workbench

IBMIDDoc User’s Guide and Reference

Release 36

SH21-0783-10

Note
Before using this information, be sure to read the general information under

This manual was produced using IBMIDDoc SGML, the Epic editor, and processed for print and online using the ID
Workbench.

Tenth Edition, October 30, 2001

This edition applies to the IBMIDDoc language, version 4.3.6; and to ID Workbench, release 3.6, and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1992, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book. ix
Who Should Read This Book. . ix
What You Should Already Know . ix
How This Book is Organized. . ix
Summary of Changes . Xi
Part 1. Introduction to IBMIDDoc. . . 1
Chapter 1. Introduction to IBMIDDoc . 3
What is IBMIDDoc? . .3
IBMIDDoc Documents . .o .3
IBMIDDoc Terms and Concepts . .4
Documents and Markup .4
Elements and Tags .4
Containment .5
Entities . . .5
Marked sections . .7
Processing instructions . .7
Object Libraries . 8
Attributes . 8
Property and Class Def1n1t10n .9
Separation of Content and Style . .9
IBMIDDoc Markup Considerations and Rules . 10
Ending an Element 10
Omitted Tags and Implied Elements . .11
Markup Rules . . .11
Phrase-Like and Paragraph lee Elements . .12
Element Groupings in IBMIDDoc . .12
IBMIDDoc Input Codepages. .12
Part 2. Using IBMIDDoc Markup 15
Chapter 2. Using basic IBMIDDoc
elements to create a document . . 19
IBMIDDoc Document Structure. . 19
Creating an IBMIDDoc Document . . 20
Creating the body of your document . . 20
Creating divisions (D element) . . 20
Creating paragraphs (P element) .21
Deciding which elements to use .21
Creating a heading h1erarchy .22
Division prologs. .23
Division introductions . .24
Partial table of contents . 24
Using parts to organize your Chapters .24
Starting page number control .25
Chapter number control . . 25
Changing column layouts . . 26
Creating an information architecture . .27
Architected online information and Informat10n
Centers (vs books) . .27

© Copyright IBM Corp. 1992, 2001

Chapter 3. All kinds of lists .

Unordered lists .

Simple lists

Ordered lists .
Checkoff ordered l1sts
Customer setup lists
Continuing ordered lists .

Definition lists

Parameter lists

Compacting lists.

Scaling list dingbats

Grouping list items .

Separating or bridging list 1tems

Message and code lists
Overriding the message list subheadlngs

Chapter 4. Highlighting, C|t|ng, Notlng,

and Quoting

Highlighting .

Simple title citations

Notes

Note lists .

Footnotes .

Quotes and excerpts

Labeled boxes . . .
The perils of processing;: Attentlon cautlon and
danger .

Annotations .

Qualifying 1nf0rmat10n

Trademarks

Using document classes w1th XHTML style sheets

Chapter 5. Examples, figures, artwork,
and multimedia .
Just plain lines .
Examples of computer output .
Literal text data . .
Including artwork in documents
Creating graphic links .
Figures .
Figure captlons and descrlptlons
Multipart figures
Character graphics .
Screens . .
Math formulas

Chapter 6. Cross-referencing .
Referencing a figure

Referencing a table .

Referencing a list item .

Referencing anything at all . .
Controlling the form of cross references .

Chapter 7. Creating IBMIDDoc Tables

. 29
.29
. 30
. 30
.31
.31
. 32
.32
. 34
. 36
. 36
. 37
. 38
. 38
. 40

. 43
.43
. 45
.45
. 46
. 46
.47
.48

. 48
. 49
. 49
. 50

51

. 53
. 53
. 54
. 54
. 55
. 56
. 57
. 57
. 58
. 59
. 59
. 60

. 61
. 62
. 63
. 63
. 64
. 65

67

iii

IBMIDDoc Table Markup Concepts67

Creating simple tables.67
Specifying table column widths.69
Table captions and descriptions.69
Page, column, and line-wide tables71
Splitting tables between pages71
Affecting how a table appears: Rules, Separators,
Shading72
Defining the Column Spec1f1cat1ons75
Defining Rows and Entrys76
Making your tables accessible76
A Few Simple Table Examples77
A Simple Table oL T77
A Simple Table with More Optrons78
A Simple Table with a Table Header and
IBMIDDoc Elements78
A Complex Table with Row and Column Spans 79
A Complex Table Header.80
Adding footnotes toa table80

Chapter 8. The document structure of

an IBMIDDoc document83
About the IBMIDDoc tag.83
Getting in style, the document style that is. . .83
Setting the IBM copyright85
Setting the security classification85
Setting page numbering to sequential or
folio-by-chapter8
Creating multiple Volumes for a book86
Controlling generated chapter, part, and
appendix titles86
Specifying the language of the document N - 74
Bookmarks for PDF tables of contents87
Licensed and restricted materials88
Line justification for DBCS languages. 88
About the prolog88
Document title88
Document number89
Author and Address89
Date.9
Improving the searchmg of PDF books9
Other prolog elements. . . . 90
Adding to the front or back cover (CoverDef) .91
Using CopyRDefs9
Using IBMProdInfo. . . e 2
Using Property Definitions (PropDefs) A
PropDefs and Common Property Values. . . . 92
Using LDescs and Nameloc9
Using GLDefs9
Using BibEntryDefs.9
Front matter (FrontM).98
Notices and Edition notices98
Table of contents99
List of figures . 100
List of tables . 100
The preface . . 100
Summary of changes . 100
Special sections. . 100
IBM Safety text. . 101
About back matter (BackM) . 101
Using appendix . 101

iV ID Workbench: IBMIDDoc User’s Guide and Reference

Using glossary . . 101
Using bibiography (B1blrog) . . 102
Using part number index (PNIndex). . 102
Using Index . . . 102
Using reader’s comment form (RCF) . 103
Chapter 9. Using definition tags . 105
Summarizing the initial setting override hierarchy 107
Chapter 10. Revision Elements and
Marked Notes . 109
Using Revisions . . 109
Defining Revisions in the RevDefs Element . 109
Indicating Revisions in the Document Markup 110
Marking text for deletion . 111
Creating Collections of Marked Notes 111
Using the Mark Element. 112
Defining Marked Actions and Classes 112
Using the MkNote Element. . 112
Generating a Collection with MarkList Element 113
A Marked Notes Markup Example . 113
Chapter 11. Indexing . 115
Structuring a basic index . 116
Basic index tagging . 117
Placement of index tags . . 117
Position method . 117
Cross referencing index entrles . 118
Where to put index entries . . 119
Defining index entries (central 1ndex1ng) . 120
Creating index entries by cross-indexing . 120
Defining See and See-also references 121
Controlling the Index Sorting . . 123
Generating the index . . 123
Helping online reviewers see your 1ndex entr1es 124
Creating a master index . . 125
Chapter 12. All about I|nk|ng . 129
Linking 101 . . 129
Creating links within a document . 129
Linking to another document . . . 131
Citation link to an IBMIDDoc document . 131
Linking to an XHTML, HTML, or web document 132
Linking to items in another IBMIDDoc document 133
Making a graphic a link . . 134
Linking to an IPF document . 134
Chapter 13. Glossaries . 137
Defining Terms. . . . 138
Separating letter groups ina glossary . 138
Defining Classes for Terms . . 138
Chapter 14. Bibliographies and
citations . 141
Identifying books and documents . 141
Using title citations . 142
Citations . . 142
Generating a blbhography . 143
Defining library entries . . 143

Linking BibEntry elements and other documents 144
An example of using BibEntry and BibEntryDefs 144
Chapter 15. Programmmg Syntax
Diagrams . . 147
Defining the syntax d1agram . 147
The Syntax element . 149
The Group element . 150
The KWD (keyword) element . 152
The VAR (variable) element . 153
The OPER (operator) element . . 153
The SEP (separator) element . 153
The Delim (delimiter) element. . . 154
The RepSep (repeat separator) element . . 154
The FRAGMENT and FRAGREF (fragment
reference) element. . . 155
Syntax Notes . 156
Syntax Phrases . . 157
Examples of Syntax Def1n1t1ons and Markup . 158
Example 1: A simple syntax definition . . 158
Example 2: A simple syntax definition that
repeats . . 158
Example 3: A more complex syntax def1n1t1on 159
Example 4: A variation on Example 3 . 159
Example 5: A syntax definition showing a
fragment and significant blanks . 160
Example 6: A syntax definition with automatlc
fragmenting . . 16l
Chapter 16. Developing Programming
Language Reference Materials . . 165
The Structure of a Language Element Reference
Section . 165
Describing Your Reference Sect1on . 166
Describing the language element . . . 168
Example of a Simple Language Element Reference
Section . 169
DISHDEF defmmg a d1sh . . 172
EVALUATE evaluate nutrition, cost, or
preparation time . 173
Chapter 17. Defining Modular
Information .. . 175
Examples of Using Modular Informat1on . . 176
Chapter 18. File, text, and character
entities and reusing information . 179
File and text entities . . 179
Special characters . . 180
Reusing elements from an ob]ect l1brary .. 191
Reusing attributes in the CONLOC reference 193
Cross-referencing items that use CONLOC . 193
Chapter 19. Condltlonally mcludmg
information . 195
Property-Based Retrieval . . 195
Using the Props attribute to set text cond1t1ons 195
Setting the properties to true or false . 197
Specifying boolean properties . . 197

Retrieval alternatives . . 198
Using Marked Sections . . 199
Controlling SGML Del1m1ter Recognrtron . . 200
Chapter 20. Property and Class
Definitions . 201
Defining Element Propert1es . 201
Defining Element Properties D1rectly . 201
Defining Element Properties Using Inheritance =~ 202
Defining Element Classes . 202
Chapter 21. Making some thlngs
bigger or smaller. . 205
Scaling text up or down. . 205
Automatically scaling text for examples and such 205
Making things page-wide . 205
Chapter 22. Creating maintenance
analysis procedures . 207
MAP 0010: Baby Johnny is crying . 208
MAP 0020: The Steak is Frozen . . 209
Using ProcEntry for Entry Requlrements . .. 209
Using ProcStep and ProcCmnd to Describe Each
Step . . 209
Using Dec1s1onPnt for Outcome Dependent Act1on
Descriptions . . 210
Using RefKeys to Refer to Labels ina Graphrc . 210
Using ProcExit to Complete a Procedure or
Sub-Procedure . . . 211
Procedure Markup Examples . .21
Starting the Procedure .21
Describing the Entry Point for the Procedure 211
Entering the Procedure Steps . . 211
Exiting the Procedure. . 212
Controlling Procedure Output Styles . 212
Chapter 23. Creatlng parts catalog
lists . . 215
Assembly 1: B1cycle . 216
Markup source . . 216
Creating the heading for a component l1st . 216
Developing the component list . 217
Including comments in the component l1st . 218
Cross-referencing part assemblies and component
lists . . 218
Assembly 2: Wheel front . . 219
Keeping track of assemblies and parts . . 219
Getting an assembly list . . 219
Getting a part number index . . 220
Part 3. IBMIDDoc Markup
Reference221
Chapter 24. Reference Explanation 225
Element and Attribute Descriptions . . 225
How to Read the Syntax Diagrams . . 225
Common Element Attributes (large set). . 227
Common Element Attributes (small set) . 228

Contents V

Chapter 25. IBMIDDoc Elements
Abbrev (abbreviations)
Abstract (abstract) .
Address (address) .
Annot (annotation)
AnnotBody (annotation body)
APL (APL data) .
Appendix .
Approvers (document approvers)
AreaDef (defines graphic hot spot area)
AsmlList (list of parts assemblies).
Attention (safety notice) .
Author
Authors .
BackCover (back cover)
BackM (back matter) .
BibEntry (bibliographic entry) .
BibEntryDefs (contains bibliographic entrres)
Bibliog (bibliography) .o
BibList (bibliography entry l1st)
Bin (binary data) . .
Body (document body) . .
BOFNum (bill of forms number) .
Bridge (bridge between concepts).
Cap (caption) . .
Caution (caution notlce)

CGraphic (character graphic) .
Char (character data) .
CI (component item) .
Cit (document citation) .
ClassDef (element class defmrtron)
CLE (content list entry) .
Code (message code number) .
ColSpec (column specification)
CompCmt (component comment)
CompL (component list).
Cond (procedure result) .

ContainedDocs (documents in lBMLrbEntry and

LibEntry).

CopyR (copyr1ghts) .
CopyRDefs (copyright defmrtlons)
Corp (enterprise name and address).
CorpName (corporation name)
CoverDef (cover definition). .
CritDate (critical date for a document)
CritDates (set of critical dates).

D (hierarchical division) .

Danger (danger notice) .

Date

DBIk (Division block)

DBody (division body) .

Dec (decimal number)

DecisionPnt (decision point)

Defn (definition of a term) .

DefnHd (definition description headmg)
Delim (syntax delimiter). .o
Desc (element description) .

Dintro (division introduction) .

DL (definition list).

DLBIk (definition list block)

DLDef (Definition list definition) .

. 231
. 231
. 232
. 233
. 233
. 234
. 235
. 235
. 236
. 236
. 237
. 238
. 238
. 239
. 239
. 240
. 241
. 241
. 242
. 243
. 244
. 244
. 245
. 245
. 246
. 247
. 247
. 248
. 248
. 249
. 250
. 251
. 253
. 253
. 254
. 255
. 255

. 257
. 257
. 258
. 259
. 259
. 260
. 260
. 261
. 261
. 263
. 264
. 265
. 266
. 266
. 267
. 268
. 269
. 269
. 270
. 271
. 272
. 273
. 274

Vi ID Workbench: IBMIDDoc User’s Guide and Reference

DLEntry (definition list entry) .

DocTitle (document title)

DProlog (division prolog)

DSum (division summary) .

DVCFObj (DVCF Migration Element)
EdNotices (edition notices) .

Else (other procedure path to follow)
Entry (table entry). .
ExternalFileName .

Fig (figure) .

FigDef (Figure def1n1tlon)

FigList (list of figures)

FigSeg (figure segment) .

FileNum (file number)

Fn (footnote)

FNList (footnote lrst)

Formula (math formula).

Fragment (syntax fragment)

FragRef (syntax fragment reference) .
FrontCover .

FrontM (front matter) .
GendTitle (default title specrfrcatron)
GL (glossary list) . .
GLBIk (glossary list block) .

GLDef (Glossary list definition)

GlDefs (glossary definitions)

GlEntry (glossary list entry)

Glossary . S

Group .

Hex (hexadecrmal) . .
IBMBibEntry (IBM b1bllograph1c entry).
IBMBOFNum (bill of forms number)
IBMDocNum (IBM document number) .
IBMFeatNum (IBM feature number) .
IBMIDDoc (IBM-specific product documentatron)
IBMLibEntry (IBM document library definition)
IBMMail (IBMMail e-mail address) . .
IBMPartNum (IBM part number).
IBMPgmNum (IBM program number) .
IBMProdInfo (IBM product information)
IBMSafety (IBM safety notices) .
IdxDefs (central index entries).

IdxTerm (index term).

Index . .

Internet (internet e-marl address)

IRef (index entry reference).

ISBN (document ISBN number)

I1 (primary index entry).

12 (secondary index entry) .

I3 (tertiary index entry) .

Kwd (syntax keyword) .

L (explicit link) . . .

LDescs (link descrrptrons)

LE (language element)

LeDesc (language element descrrpt1on)
LEDI (language element description item) .
Legend .o .

LEN (language element name) .
LERS (language element reference sectron)
LERSDef (LERS property defmrtron)

LI (list item). .

. 275
. 276
. 276
. 277
. 277
. 278
. 278
. 279
. 280
. 281
. 282
. 283
. 284
. 284
. 285
. 285
. 286
. 287
. 288
. 289
. 289
. 290
. 290
. 292
. 293
. 294
. 294
. 295
. 296
. 296
. 297
. 298
. 298
. 299

299
306

. 307
. 308
. 308
. 309
. 309
. 310
. 311
. 311
. 312
. 313
. 313
. 314
. 315
. 316
. 317
. 318
. 319
. 320
. 321
. 322
. 324
. 325
. 325
. 328
. 330

LibEntry (document library definition) .
LIBIk (list item block) .

Library .

Lines (text with lme boundarles)

Litdata (literal data) .

LQ (excerpt quotation) .

Maintainer (reader comment) .

Mark (marked note definition).

MarkList (marked note list).

MasterIndex (master index). R
MasterIndexInfo (master index information) .
MasterIndexObj (master index object)
MasterIndexPrefix (master index prefix)

MD (marked deletion)

MetaData (information archltecture)
MkAction (marked note action definition) .
MkClass (marked note class definition).
MkDesc (mark description).

MkNote (marked note) . .

MMODbj (multi-media object; artwork)
MMODbjLink (multi-media object link) .

Mod (information module) .

ModDesc (modular content descrlptlon)
ModInfo (modular information) .

ModInfoDef (modular information property
definition) o

ModItemDef (item class defmltlons)
ModlItem (module description item) .

ModLvl (modification level)

ModName (modular information element name)

Msg (message or code description) .
Msgltem (message description item).
MsgltemDef (definition of message descnptlon
items) . .

MsgLDef (Message llst def1n1t10n) .
MsgList (list of message or code descriptions)
MsgNum (message identifier) .

MsgText (message text) .

MYV (message variable) .

Name (person’s name)

NameLoc (named location) .

NItem (notice item)

NMList (named list of IDs or entltles)
Note

NoteBody (note body)

NoteList (ordered note list).

Notices (contains notices)

Notloc (notation-specific locatlon)

Num (number) .

ObjLib (object library)

ObjLibBody (object library body)

ObjRef (object reference). .

Oct (octal number)

OL (ordered list)

OLDef (Ordered list def1n1t10n)

Oper (syntax operator) .

OrderNum (order number) .

OrigIBMDocNum (original IBM document number)

S o386
. 386
. 387

Owners
P (paragraph) .
Parm (parameter list entry).

. 331
. 332
. 333
. 333
. 334
. 335
. 336
. 337
. 338
. 339
. 340
. 341
. 342
. 342
. 343
. 344
. 345
. 347
. 348
. 350
. 352
. 352
. 353
. 354

. 356
. 357
. 358
. 359

359

. 361
. 362

. 363
. 364
. 366
. 368
. 368
. 369
. 370
. 371
. 372
. 373
. 375
. 375
. 376
. 376
. 377
. 378
. 378
. 379
. 380
. 381
. 382
. 383
. 384

. 385
385

ParmBIlk (parameter list block)
ParmL (parameter list)

Part (major document part).
PartAsm (part assembly)
PartAsmSeg (part assembly segment)
PBIk (paragraph block) . .
Person (person’s name and address)
Ph (Phrase) . .

Phone (telephone number) .

PK (programming keyword)
PNIndex (part number index) .
PostalCode (postal or zip code)
Preface

Proc (procedure)

ProcCmnd (procedure command)
ProcEntry (procedure entry point)
ProcExit (procedure exit point)
ProcIntro (procedure introduction)
ProcStep (procedure step)
ProcSumm (procedure summary).

ProcSummlItem (procedure summary 1tem)

ProdInfo (product information)
ProdName (product name) .

Prolog (document metamformatlon)
PropDef (property set definition) .
PropDefs (property definitions)
PropDesc (property description) .
PropGroup (property group)
PrtLoc (country where printed)
PublicID (public identifier) .
Publisher (document publisher)

PV (parameter variable) .

Q (quotation phrase) .

Qualif (qualification) . .o
QualifDefs (qualification deflnltlons)
RCF (reader comment form)
RefKey (reference key)

Release (product release 1dent1f1er)
RepSep (syntax repeat separator) .
RetKey (retrieval key)

Rev (revision)

RevDefs (revision trackmg 1nformat10n)

Row (table row)

Safety (safety notices)

Screen (display screen) .
ScreenDef (Screen definition) .
Sem (semantic meaning).

Sep (syntactic separator).

SOA (summary of amendments)
SpanSpec (span specification) .

SpecDProlog (special section division prolog)

StepNotes (step notes)

StepRef (procedure step reference)
STitle (shortened title) .
SubTitle (descriptive subtitle) .
SynBIk (syntax block).

SynNote (syntax note)

SynPh (syntax phrase)

Syntax (syntax diagram).
SyntaxDef (Syntax deﬁmtlon)
Table . .

Contents

. 388
. 388
. 390
. 391
. 392
. 392
. 393
. 393
. 395
. 395
. 396
. 397
. 397
. 398
. 400
. 400
. 401
. 402
. 402
. 403
. 403
. 403
. 404
. 404
. 405
. 406
. 406
. 407
. 408
. 408
. 409
. 409
. 410
. 411
. 412
. 412
. 413
. 414
. 414
. 415
. 415
. 416
. 417
. 418
. 419
. 420
. 421
. 421
. 422
. 423
. 424
. 425
. 425
. 425
. 426
. 426
. 427
. 428
. 428
. 430
. 431

vii

TBody (table body)434

Term . . 2
TermHd (term headmg)43
TextAlt (text alternative).436
TFoot (table footer)436
TGroup (table group).437
THead (table heading)438
Then (procedure action to take) .o 439
Title . S 440
TitleBlk (title 1nformat10n) S ... 440
TList (list of tables)441
TM (Trademark) . . " .)
TOC (table of contents) P i i
UL (unordered list) . . . S 444
ULDef (Unordered list deflrutlon) 445
Var (syntax variable) P 7 1)
Version (product version number) R % V4
VNet (IBM VNet mail address) 447
Volid (volume identifier) 448
Warning (warning notice)448
WebPage44
Xmp (example). . . e 2
XmpDef (Example deflmtlon) co. 450
viii ID Workbench: IBMIDDoc User’s Guide and Reference

XPh (example phrase) . 451
XRef (cross reference). . 451
Part 4. Appendixes . . 455
Appendix A. IBMIDDoc Supported
Notations . . 457
Appendix B. Proposed IBM Standard

for Formal Public Identifiers . . 459
Owner Identifier . 459
Public Text Class and Pubhc Text Descr1pt1on . 460
Public Text Language. . 465
Appendix C. Notices . 467
Trademarks . . 469
Part Number Index . . 47
Index . . 473

About This Book

This book describes how to use IBMIDDoc, which is a document markup language
based on Standard Generalized Markup Language (SGML).

Who Should Read This Book

Anyone who wants to create documents with IBMIDDoc markup or design a
library of documents that have IBMIDDoc markup should read this book.

If you are new to SGML and to the ID Workbench, please first get and read the
IDWB Getting Started and User’s Guide. Access the latest versions of these books
from the ID Workbench Documents page:

What You Should Already Know

You should be familiar with the process of creating a document and the general
concepts of document markup. You should also know how to use an SGML editor.

Although IBMIDDoc markup can be entered using a text editor, an SGML editor
such as the Arbortext Epiceditor or Frame2000 is strongly recommended. The
SGML-aware editors ensure your markup is correct before you do any formatting;
thus saving you time and money in extra formatting and debugging runs.

How This Book is Organized

This book is organized into the following parts:

¢ [Part 1, “Introduction to IBMIDDoc” on page 1 describes basic IBMIDDoc terms
and concepts and IBMIDDoc markup rules.

* [Part 2, “Using IBMIDDoc Markup” on page 15 describes how to use IBMIDDoc
markup to create the different parts of a document.

e [Part 3. “IBMIDDac Marknp Reference” on page 221 describes the markup for
IBMIDDoc elements and attributes.

If you are planning or designing libraries or information, you should be generally
familiar with IBMIDDoc and be very familiar with the following information,
which is essential to planning and designing information:

© Copyright IBM Corp. 1992, 2001 ix

http://w3.rchland.ibm.com/projects/IDWB/documents/idwbdocs.htm

X ID Workbench: IBMIDDoc User’s Guide and Reference

Summary of Changes

Changes for IBMIDDoc version 4.3.6 and IDWB release 3.6:

You have more flexibility on setting page, column, or text wide items; see the
PGWIDE attribute on l”Pio (figure)” on page 7R1I FScreen (display screen)” ord

bag,em I'Suntax (syntax diagram)” on page A')d I’_X_m_P_‘exa_‘m_P]g_)_Qn_pagew
and LCGLa.pr.c_@b.aJ:a.cter_gxa.me.a)_an_pa.ge_Md

You can more easily create architected information, using the metadata tag; see

” 77

The XHTML output transform includes a way of passing classes of elements
through to style sheets. This allows a setting in the document to be reflected as a

stile sheet setting. See ‘Using dacument classes with XHTMI style sheets” onl

You have an improved way of specifying simple lists, see [!Simple lists” orl

You can better control the highlighting of terms and headings on definition and

Earameter lists; see ['Definition lists” an page 34 and [Parameter lists” on
You can control the size of list item dingbats; see I!Scaling list dinghats” orl

There’s a new explanation of how to create multi-part figures; see m

”

You can control the shading for tables, table rows, or table cells; see m

There’s a new explanatlon of how to make your XHTML tables accessible to
screen readers; see z

You can override or change the number of columns (the layout) of your
document, chapters, or chapter-like divisions; see f’Cpf’ring in style_thd

7

You can use the new def1n1t10r1 tags to create defaults for corresponding tags; see

a“ : ”

You can set more levels of active revisions in Xyvision PostScript or PDF
documents.

The “See” and “See also” index entries now work in Xyvision PostScript or PDF
documents; see [‘Defini - ”

There is a new description of index sorting; see EContralling the Index Sorting’]

You can have index entries appear as part of an online review; see m

7

There is an improved explanation of cross-book linking; see tb.n.lgn.g_to_tems_l.d

77

You can scale text larger or smaller; see IChapter 21, “Making some things bigged
You can control the starting page number and chapter number for divisions; see

” . . o e e 7

You can now show syntax diagrams without intervening spaces; the “composite”

value was added; see 'The Group element” on page 150.

© Copyright IBM Corp. 1992, 2001 xi

xii

A list of IBMIDDoc input codepages is now included; see 'IBMIDDoc Inpud

Codepages” on page 12.

Changes for IBMIDDoc version 4.3.5 and IDWB release 3.4:

Updates after October 12th:

~ New symbols for the e(logo)server logos; see [!Special characters” on page 180.

- New BRAND and NEWBRAND attrlbutes added to the IBMIDDOC tag; see

Add MMOB] to the content model for Screen. Requirement R004878.

Line justification for DBCS languages: ibmiddoc style="xpp:(justify)”. This is
used only for DBCS languages. Requirement R005448.

RETKEY=None | First | Last | FirstLast | NoDup on LERS, MSGLIST, and GL.
Used to enable or disable the automatic running heads for the LERS, Msglist, GL
in a document. Cannot set at the individual element level. All explicitly coded
Retkey elements are honored. If you nest elements that can generate a running
head (for example: msglist in lers), only the outer active generated head is used.
That is, if you have specified automated retkey generation for LERS and
MSGLIST, then a MsgNo inside LERs would not be used in the retkey area. But
if you had an explicit retkey inside the msg, then the retkey is honored as an
explicit override. The Xyvision transform will only use one style of retrieval per
retkey type First for Lers; NoDup for MsgList and GL. Requirement
RALMARO04.1997a.

IBMIDDoc MAXTOC=number to enable you to specify the highest level head to
go in the Table of Contents. MAXTOC was picked to distinguish it slightly from
the Bookie :docprof toc=123 which actually let authors skip some heads
altogether but still get lower level heads. Requirement R004769.

D toc=toc I notoc also for special D type elements. Controls whether this
particular heading is included in the TOC if the TOC includes those levels of
headings.

Change PGWIDE values for TABLE: pgwide=01112. The new value 2 on the
pgwide is to indicate width=textline behavior.

Add FRAME attribute to Fig Frame: Fig frame=NONE | BOX | RULES.
Requirement R004763.

Add SynStyle to syntax: SynStyle= Space| Box| Rulel LblBox. Requirement
R004763

Add one and two character termwidth settings to DL and PARML. The defined
attribute values for termwidth are now small | medium | large | 1 | 2.
Requirement R005298.

Change processing of DVCFOB]J to error message.

Add DBLK to support including multiple divisions from an object library. It is
allowed wherever D is allowed.

Add PBLK to content model for FrontCover, to allow for multiple paragraphs
and label boxes on cover. Requirement R005266

Add LAYOUT to TOC, FIGLIST, TLIST, and Index. This is to support using less
columns than defined in the default style to provide room for long terms. The
values will be onecol, twocol, threecol, and default-layout. Requirements
R005530 and R005509

Provide support for index folio prefix used for multiple volumes: Added
MULTIVOL=0OneVol | Index-Folio to IBMIDDOC , which will add X- as a prefix

for the page numbers in the index and start the numbering from 1. Requirement
R004964.

ID Workbench: IBMIDDoc User’s Guide and Reference

¢ Added comments to DTDs with Language and DocStyle values currently
supported.

+ Allow compact lists: LINESPACE=SPACE | COMPACT on all lists (ol ul gl
msglist codel parml dl notel), sublists automatically inherit the linespace but
can override. We chose this attribute rather than
COMPACT=COMPACT INOCOMPACT to allow for future growth like
doublespace. Requirement R005298

* With patch IDWXF036, the CONLOC attribute passes the attributes from the

elements contained in an OBJLIB. See I‘Reusingelements from an object library’]

for more information.

Summary of Changes Xiii

Xiv ID Workbench: IBMIDDoc User’s Guide and Reference

Part 1. Introduction to IBMIDDoc

Chapter 1. Introduction to IBMIDDoc
What is IBMIDDoc? .
IBMIDDoc Documents . .o
IBMIDDoc Terms and Concepts .
Documents and Markup
Elements and Tags
Containment
Entities . .
Marked sections .
Processing instructions .
Object Libraries
Attributes
Property and Class Def1n1t1on
Separation of Content and Style . S
IBMIDDoc Markup Considerations and Rules .. .10
Ending an Element.10
Omitted Tags and Implied Elements i |
Markup Rules . . . oo 11
Phrase-Like and Paragraph L1ke Elements N Vi
Element Groupings in IBMIDDoc12
| IBMIDDoc Input Codepages.12

O O 00 0 NI N U1 U= W WwWww

© Copyright IBM Corp. 1992, 2001

2 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 1. Introduction to IBMIDDoc

This chapter introduces IBMIDDoc and describes IBMIDDoc terms and concepts. It
also includes considerations and rules for IBMIDDoc markup.

What is IBMIDDoc?

IBMIDDoc is a document markup language based on Standard Generalized
Markup Language (SGML). SGML is an international standard for representing the
elements and structure of electronically stored information so that a person or
computer program can understand and use those elements and structure. The
electronically stored information can be one or more files that make up a
document.

IBMIDDoc Documents

An IBMIDDoc document is a valid SGML document. A valid SGML document is
comprised of:

* A document type declaration that contains or references a document type
definition (DTD)

¢ A document instance (your text) which conforms to the DTD contained in or
referenced in the document type declaration

The IBMIDDoc DTD must be referenced by all IBMIDDoc documents. w
illustrates a valid IBMIDDoc document type reference.

<!DOCTYPE IBMIDDOC PUBLIC "+//ISBN 0-933186::IBM//DTD IBMIDDoc//EN" >

Figure 1. Document Type Declaration for an IBMIDDoc Document

w shows the document type declaration, which names the document type
(IBMIDDoc). It also references the PUBLIC identifier for the DTD. The public
identifier is a name that uses a format defined by the SGML standard. This name
format allows us to point to information in a system-independent way. The SGML
application that is processing the SGML data uses the identifier to transform the
data being read to an identifier that works on the SGML system being used.

The document instance must conform to the document type definition. For
IBMIDDoc documents, this is the IBMIDDoc DTD. shows the absolute
minimum IBMIDDoc document.

<!DOCTYPE IBMIDDoc public "+//ISBN 0-933186::IBM//DTD IBMIDDoc//EN">
<IBMIDDOC>
<body>

Figure 2. Minimum IBMIDDoc Document Markup

Eigure 3 on page 4 shows a more complete, but still small, IBMIDDoc document:

© Copyright IBM Corp. 1992, 2001 3

<!DOCTYPE IBMIDDoc public "+//ISBN 0-933186::1BM//DTD IBMIDDoc//EN">
<ibmiddoc>

<body>

<d>

<dprolog><titleblk>

<title>My Little Document</title>
</titleblk></dprolog>

<dbody>

<p>This is my first sample document. Thank-you for
reading it.</p>

</dbody></d>

</body>

</ibmiddoc>

Figure 3. IBMIDDoc Document

When you save your document, give it a meaningful file name. The file extension
needs to be IDD (or idd), to ensure the ID Workbench processes properly recognize
the file. Use only letters and numbers in the file name; we recommend starting the
file name with a letter. Do not include special characters in the file name (such as
spaces, +, —, %, and so forth).

IBMIDDoc Terms and Concepts

4

This section introduces IBMIDDoc terms and concepts, including markup and tags,
containment, entities, object libraries, attributes, property and class definition, and
separation of content and style.

Documents and Markup

A document is a collection of information that is processed as a unit. An IBMIDDoc
document consists of information (text and graphics) and IBMIDDoc markup that
defines and identifies the structure and the elements of the document.

The IBMIDDoc document type definition (DTD, not "DDT") defines the document
type and the valid elements or tags you can use. Your document that contains the
information (text and graphics) and corresponding markup is called the document
instance.

Markup is information in a source document that enables a person or system to
process the document. The kinds of markup you can use in IBMIDDoc are:
descriptive markup (tags), markup declarations, entity references, marked sections,
and processing instructions.

Elements and Tags

An element is a component of a document such as a paragraph, an unordered list,
or a figure. Tags (or descriptive markup) are used to identify elements. A tag is
composed of a tag open delimiter (< for a start tag), an element identifier (for
example, p for a paragraph), and a tag close delimiter (>). Ending tags begin with
</, an element identifier, and >.

In the following example of a paragraph, <P> marks the start of the paragraph
element and </P> marks the end of the paragraph element:
<P>This is the content

of a paragraph element.
</P>

ID Workbench: IBMIDDoc User’s Guide and Reference

The content of an element is whatever is between the start and end tags for the
element. An element can contain information (text or multimedia objects), other
elements, or a mixture of information and elements. Elements that have no content
do not have end tags, such as the XRef element.

Containment

One element can contain another element either directly or indirectly, known as
direct containment or indirect containment, respectively.

In the following example, the first paragraph directly contains an ordered list, the
ordered list directly contains two list items, and the first list item directly contains
a paragraph. The first paragraph indirectly contains the list items and the
paragraph contained by the first list item.

<p>This is a list:

First list item

<p>This is a paragraph within the

first 1ist item.</p>

</1i>

<1i>Second list item</1i>

</p>

This next example, the first paragraph does not contain the ordered list, because
the first paragraph is closed before the list is opened.
<p>This is a list:

</p>

<0]>

First list item

<p>This is a paragraph within the

first 1ist item.</p>

</1i>

<1i>Second list item</1i>

The containment structure also determines the inheritance of properties from an
element to the elements it directly contains (its children). This structure also
determines the properties of elements that are indirectly contained by other
elements.

Containment also determines a hierarchical structure. Divisions within divisions
determine headings and subordinate headings. Several SGML editors can display a
tree view of a document. This view lets you see these containment and hierarchical
relationships. You can tell which elements are peers, parents, or children by this
kind of view.

Entities

An entity is any information that is referred to as a unit from a document. It can
be a character string, a file, a graphic, or a collection of files. It can even be an
entire document. Entities enable the reuse of information, and organization of that
information into separate files.

An entity must be defined by a markup declaration, which is a kind of markup

that controls the interpretation of other markup. Entities are not dynamic; the
definition of an entity cannot be changed after it is defined. In addition, all entities

Chapter 1. Introduction to IBMIDDoc 5

6

must be defined at the beginning of a document. Entity declarations are part of the
DTD. The declarations are usually put in the DTD subset, which is the part of the
DTD that is specific to a given document.

An entity reference requests that entity data replace the entity reference at the place
where the reference occurs. Entity references are delimited by the entity reference
open delimiter (&) and the entity reference close delimiter (;).

Entities are either internal or external. An internal entity is an entity whose
declaration includes the replacement text (the text that is to replace the entity
reference). In the following example, which shows how to define and refer to an
internal entity, IBMIDDoc is the replacement text and &product; the entity reference.

<!ENTITY product "IBMIDDoc">

This book teaches you how to use &product;.

Internal entities that are defined by IBMIDDoc include special characters such as
the em-dash or backslash, which are referred to with the entity references &emdash;
and &bslash;, respectively.

These entities are contained in the IDDBKSYM.ENT file. Many of these character entity
declarations use the same names as the character entities that are defined by
BookMaster®.

An external entity is an entity whose declaration defines where the replacement
text can be found but does not include the replacement text in the declaration.
These are more commonly called symbols (replacement words or phrases) or
imbeds (files such as a chapter).

In the following example, which shows how to define and refer to an external
entity, the XXXLOINT.IDE file is the external entity and &introfile; is the entity
reference:

<IENTITY introfile SYSTEM "xxx10int.ide">
&introfile;

The ENTITY line defines "introfile” as the name of the entity; "system” indicates
the following string "xxxl0int.ide"” is a file name.

The example that follows shows the entity declarations for several IBMIDDoc files
that are included in a master file document. This is like using the .im Bookmaster
macro to imbed SCRIPT files in a master document.

<lEntity RKTLIEDN SYSTEM 'RKTL1EDN.IDE'>
<!Entity RKTLINOT SYSTEM 'RKTLINOT.IDE'>
<lEntity RKTLIPRE SYSTEM 'RKTL1PRE.IDE'>

<l-- Edition notice This includes the entity containing Edition Info-->
&RKTL1EDN;

<TOC><GENDTITLE>

<l-- Notices This includes the entity containing the Notices -->
&RKTLINOT;

<l-- Preface This includes the entity containing the EdNotices -->
&RKTL1PRE;

</FRONTM>

ID Workbench: IBMIDDoc User’s Guide and Reference

In the first line of the example, RKTL1EDN is the entity name, SYSTEM declares where
the entity is stored on the local system, and 'RKTL1EDN.IDE' is the actual file name.
In the front-matter portion of the document, the entities are referenced where they
should appear during processing.

For more information about using entities and entity references, see m

G ”

Epic Editor Note
For information about creating, declaring, and referencing internal and
external entities using Epic, see the chapter “Editing SGML Documents with
Epic” in the ID Workbench Getting Started and User’s Guide. If you're not using
Epic, see the user guide for the SGML editor that you are using.

Migration Note
Internal entities are "symbols” in BookMaster*, and external entities are
"embedded files” in BookMaster.

You will often see entities referred to in the following ways:

Character Entity
Contains values for a special character set, as in the IDDBKSYM.ENT file.

Text Entity
Contains the replacement text in the markup declaration.

File Entity
Contains a reference to the name of another file that you want to reference
within your document.

Marked sections

Marked sections are a special way of controlling a part of a document for
processing. You can indicate, in the source, a part to include or ignore. IBMIDDoc
has a better way of doing this at run time; using properties; see m

7 .

To use a marked section to condition text (maybe to hide text and SGML source
you want to save but not have in the document), You use a marked section
parameter to surround the text. For example, this is hiding a paragraph; notice the
brackets and the %comment — these cause the tagged content to be ignored.

<![%comment; [<p>Here's a little paragraph I want to hide.</p>]]>

The %comment needs to be declared,and set to ignore:
<!ENTITY % comment "IGNORE">

Processing instructions

These are special instructions that you add to your source. They are allowed
almost anywhere. You use them within IBMIDDoc documents to include special
formatting controls such as page breaks.

For example, the following processing instruction tells the Xyvision formatter to
start a new page:

Chapter 1. Introduction to IBMIDDoc 7

8

<?IDD:page>

You can force new pages, which should be used as little as possible. Place this
processing instruction outside of elements if possible. The syntax is:
<?1DD:page>

<?1DD:page odd>

<?IDD:page even>

<?IDD:page x.x>

where “page” forces a page eject; “page odd” forces a page eject to an
odd-numbered page; and “page even” forces a page eject to an even-numbered
page. “page x.x” specifies a measurement up from the bottom of the current page
(above the running foot). Supported measurements are: in (inches), pi (picas), and
cm (centimeters). Just specifying a number indicates the number of lines in the
current font. For example, this indicates that a new page should start if less than
4.5 centimeters remain in the current page:

<?IDD:page 4.5cm>

This specifies 3 picas and 6 points:
<?IDD:page 3.6pi>

You can also force new lines, which should be used as little as possible. The syntax
is:

<?IDD:break>

For example:

<p>Here is some text
<?IDD:break>that should start on a new line.

Object Libraries

An object library is a collection of elements that can be used elsewhere in a
document. Object libraries, like entities, also enable reuse of information. Elements
in an object library can be used only within the document that contains the object
library. Object libraries can also be used for conditional processing. Conditional
processing allows you to turn text on or off as you process your document.

For more information about using the elements in an object library, see m

[‘File, text, and character entities and reusing information” on page 179 and

77 IPE) . n n . 77

Migration Note
Object libraries provide the function of BookMaster document version control
facility (DVCF) side files.

Attributes

An attribute is a characteristic of an element (other than type or content) that is
included with a start tag to further describe the element. Many attributes defined
by IBMIDDoc are common to all elements.

In IBMIDDoc, an attribute name must:
* begin with an alphabetic character, A-Z or a-z
* contain only A-Z, a-z, 0-9, - (hyphen), . (period), and _ (underscore)

ID Workbench: IBMIDDoc User’s Guide and Reference

* be no more than 64 characters in length

IBMIDDoc attributes are divided into the following classes:

* Identifying attributes identify a given element. The ID attribute, which is a
common attribute, is an identifying attribute.

<p id="fred">This paragraph has an identifier.</p>

* Property attributes define the properties of an element, such as its owner or
class, and control which elements are to be processed. Language and Props are
property attributes.
<p props="v2r3">This paragraph is used only for V2R3.</p>

* Link attributes define the link relationships between elements. Linkend and
Refid are link attributes for the L and XRef elements, respectively.

<P>A <L LINKEND="parahead">paragraph</L> is a chunk of information.
<P>See <XREF REFID="parahead"> for more information about paragraphs.</P>

<D ID="parahead">

 Style attributes define presentation characteristics of an element. In this next
example, the OLTYPE attribute says this list should format as a step list.
<ol oltype="step">
<1i>Do this.</1i>
then that.</1i>

Property and Class Definition

Properties such as language, status, or classification can be associated with
elements and are defined by using property attributes. Also, elements can inherit
properties from other elements.

The PropDef element allows you to define one set of properties that can apply to
several elements.

The ClassDef element allows you to define element classes that enable processing
functions such as creating a detailed glossary or bibliography, generating precise

associative links, or automatically indexing certain kinds of information. Element
classes can also be used to control the inheritance of element properties.

In many cases, element classes are defined for an entire collection of documents by
someone responsible for designing the information in the collection, such as an
information designer or planner. If you are working on information for which
element classes have been defined, you need to know the class names, the affected
elements, and their intended use.

For more information about defining properties, see Chapter 20 “Property and

”

Separation of Content and Style

The main intent with IBMIDDoc SGML markup is to separate the content from
how it appears. The output styles are determined by style “gurus” so that all our
documents look alike.

We need to write clearly and consisely; the formatters take care of how the

information appears. We don’t need to worry that a second-level heading is in the
proper type face and highlighting.

Chapter 1. Introduction to IBMIDDoc 9

IBMIDDoc Markup Considerations and Rules

This section describes markup considerations for ending elements and omitting
tags. It also lists IBMIDDoc markup rules.

— Markup and SGML Editors
All discussions in this book about entering tags and other markup are in the
context of using a non-SGML text editor to create IBMIDDoc files. With a text
editor, minimizing typing is useful, and IBMIDDoc does what it can to keep
typing to a minimum. However, you should create and edit IBMIDDoc files
with editors that support SGML, like Epic or Frame+SGML.

With an SGML editor, you make selections from menus rather than typing in
tags. Thus, minimizing typing is not an issue with SGML editors.

The markup shown in this book is usually the minimum markup required.
However, SGML editors often insert omissible tags for elements. Also, SGML
editors often insert an optional attribute name when you enter a value for the
attribute. Thus, when you request a view that shows the markup in an SGML
editor, you can see tags that you did not select or, if you use a text editor,
that you do not need to type.

Ending an Element

In SGML markup, an element is ended either by an end tag or by another element
that cannot be directly contained by the first element. Elements that contain
nothing have no end tags, and some elements have optional end tags.

The paragraph element has an optional end tag. Because a paragraph cannot
directly contain another paragraph, one paragraph automatically ends when
another paragraph begins, regardless of whether a paragraph end tag is used.

It is almost never wrong to use an end tag. The exceptions are:

* When an element may never have content. Such elements are called Empty
elements. XRef is an example of an empty element.

* When attributes which force the element to be empty are specified on the
element. All elements have several possible such attributes. CONLOC is an
example of such a special attribute. LitData’s OB]J attribute is another example of
a special attribute.

In both of these examples, the attributes are content references. They point to
other elements by ID, or to other entities by name. The content of the elements
or entities that are the target of the content reference are used at the point where
the content reference is made.

Migration Note
Bookmaster’s Artwork tag has a name attribute which behaves the same
way as described for these special attribute content references.

To determine whether an end tag is required or optional for a particular element,
check the description for that element.

10 1D Workbench: IBMIDDoc User’s Guide and Reference

Omitted Tags and Implied Elements

In SGML, some start and end tags can be omitted and the corresponding elements
can be implied. The omission makes it easier to create IBMIDDoc documents if you
are using a text editor. Remember, however, that you may see error messages
about the implied elements. The following division element markup demonstrates
how omitted tags work. D contains two main elements, DProlog and DBody.
DProlog contains TitleBlk and Title which contain the title of the division, and
DBody contains the content of the division. You can type the following markup, in
which DProlog, Title, and DBody are all automatically implied:

<d>Using IBMIDDoc

<p>IBMIDDoc is IBM Information Development's
implementation of the SGML standard for IBM documentation.

If you typed the complete markup, it would look like this:
<d>

<dprolog><titleblk>

<title>Using IBMIDDoc</title>

</titleblk></dprolog>

<dbody>

<p>IBMIDDoc is IBM Information Development's implementation
of the SGML standard for IBM documentation.</p>
</dbody></d>

Start tags can be omitted only for required elements. Because TitleBlk, Title,
DProlog, and DBody are required elements on the D element, you can omit the
start and end tags. For each element with an optional title, you must explicitly
enter the TitleBlk start and end tags. To determine whether an element is required
in a particular context, check the description for the parent element.

Markup Rules

General markup rules for IBMIDDoc are as follows. This first set are good general
rules:

* Always use the appropriate markup to identify a document element. For
example, do not use a paragraph tag to create a blank line. If you use markup
incorrectly, the output might appear satisfactory when processed; however, if the
document is processed with a different processing program from the one you are
using, the results may be unsatisfactory.

* Use an SGML comment to indicate strange or interesting markup. This not only
helps you when you wonder why your did something, it also helps the poor
soul that has to take over your document when you get promoted and move to
other assignments. You can also include a comment in a declaration; it is
delimited by double hyphens (--), as follows:
<IENTITY product "IBMIDDoc" --This comment describes the entity.-->

<IENTITY introfile SYSTEM "xxx10int.ide" --This comment describes
the entity and is too long to fit on one line.-->

<!--This is a comment by itself.-->

Do not use double hyphens within a comment because they end the comment.

* To “comment out” a section (so it’s hidden but not deleted), use the
marked-section keyword IGNORE. See I‘Marked sections” on page 7 for an
example.

These rules are automagically enforced by any SGML editor; you typically do not
have to worry about them:

Chapter 1. Introduction to IBMIDDoc 11

* Specify elements in the right order. Elements that occur only once in a document
must be coded in the order shown in the syntax descriptions.

¢ Define all entities at the beginning of your document.

* For a multiple-word attribute value or for an attribute value that contains blanks
or special characters, enclose the value within single or double quotation marks,
as shown here:

<PH STYLE="bold italic">
This should be bold and italic
</PH>

If an attribute value contains apostrophes, use double quotation marks, as
follows:

<P XREFTEXT="operator's tasks">tasks

If an attribute value contains one kind of quotation marks (single or double), use
the other kind of quotation marks, as follows:

style='color="cyan white" bold monospace'

style="color="'cyan white' bold monospace"

If a single-word attribute value does not contain special characters, quotation
marks can be used but are not required.

* Do not hyphenate words at the end of an input line.
* You can omit the start tag only for a required element.

* You can use empty end tags as a shorthand way of ending the last element
started, as shown for the Phrase element in this example:

<P>Phyto-daemon is a example of <PH>Generation-X-speak</>.
<P>This is another paragraph.

Phrase-Like and Paragraph-Like Elements

In IBMIDDoc, Phrase-Like (%PhLike) is used to refer to all phrase-like elements.
Most %PhLike elements are valid anywhere that plain text is valid. There are a few
exceptions to this rule where a few elements have very specific content rules.

Paragraph-Like (%PLike) Elements include the IBMIDDoc elements that are
directly containable by division elements.

%DivLike Elements include the IBMIDDoc elements that can be contained (in most
cases) at the same hierarchical level as a Division element.

Element Groupings in IBMIDDoc

There are several groups of elements that are referred to using generic names as a
shorthand technique in this book. These are called parameter entities.

| IBMIDDoc Input Codepages

12

IBMIDDoc documents have expected input codepage for each language. This
ensures the ID Workbench transforms do the proper character conversions and
sortings. The codepages are listed for each language as follows:

ENGLISH IBM-850
UKENGLISH IBM-850
DUTCH IBM-850
GERMAN IBM-850
ITALIAN IBM-850

ID Workbench: IBMIDDoc User’s Guide and Reference

FRENCH
SPANISH
PORTUGUESE
DANISH
FINNISH
NORWEGIAN
SWEDISH
CFRENCH
BFRENCH
BDUTCH
BPORTUGUESE
CENGLISH
ICELANDIC
SGERMAN
SFRENCH
SITALIAN
KOREAN
TCHINESE
SCHINESE
JAPANESE
CATALAN
TURKISH
GREEK
POLISH
CZECH
SLOVAK
HUNGARIAN
CROATIAN
SLOVENIAN
RUSSIAN
ROMANIAN
BULGARIAN
ESTONIAN
LATVIAN
LITHUANIAN
MACEDONTIAN
SERBIAN
THAI
ARABIC
HEBREW

IBM-850
IBM-850
IBM-850
IBM-850
IBM-850
IBM-850
IBM-850
IBM-850
IBM-850
IBM-850
IBM-850
IBM-850
IBM-850
IBM-850
IBM-850
IBM-850
IBM-1363
IBM-950
IBM-1386
IBM-943
IBM-850
IBM-857
IBM-813
IBM-852
IBM-852
IBM-852
IBM-852
IBM-852
IBM-852
IBM-866
IBM-852
IBM-915
IBM-922
IBM-921
IBM-921
IBM-855
IBM-855
IBM-874
1BM-864
IBM-1255

Chapter 1. Introduction to IBMIDDoc

13

14 1D Workbench: IBMIDDoc User’s Guide and Reference

Part 2. Using IBMIDDoc Markup

Chapter 2. Using basic IBMIDDoc elements to
create a document Coe e
IBMIDDoc Document Structure
Creating an IBMIDDoc Document .
Creating the body of your document .
Creating divisions (D element) .
Creating paragraphs (P element)
Deciding which elements to use
Creating a heading hlerarchy
Division prologs.
Division introductions .
Partial table of contents
Using parts to organize your chapters
Starting page number control
Chapter number control .
Changing column layouts .
Creating an information architecture .
Architected online information and Informatron
Centers (vs books) .

Chapter 3. All kinds of lists

Unordered lists .

Simple lists

Ordered lists .
Checkoff ordered llsts .
Customer setup lists
Continuing ordered lists .

Definition lists

Parameter lists

Compacting lists.

Scaling list dingbats

Grouping list items .

Separating or bridging list 1tems

Message and code lists
Overriding the message list subheadmgs

Chapter 4. Highlighting, Cltlng, Notlng, and
Quoting

Highlighting .

Simple title citations

Notes

Note lists .

Footnotes .

Quotes and excerpts

Labeled boxes . .
The perils of processing: Attent1on caut1on and
danger .

Annotations .

Qualifying mformatron

Trademarks .

Using document classes w1th XHTML style sheets

Chapter 5. Examples, figures, artwork, and

multimedia .
Just plain lines

© Copyright IBM Corp. 1992, 2001

.19
. 19
. 20
. 20
. 20
.21
.21
.22
.23
. 24
. 24
.24
. 25
. 25
. 26
. 27

. 27

. 29
. 29
. 30
. 30
.31
.31
. 32
.32
. 34
. 36
. 36
. 37
. 38
. 38
. 40

. 43
. 43
. 45
. 45
. 46
. 46
. 47
. 48

. 48
.49
. 49
. 50

51

. 53
. 53

Examples of computer output .

Literal text data . .

Including artwork in documents
Creating graphic links .

Figures .
Figure captlons and descrrptlons
Multipart figures

Character graphics .

Screens . .

Math formulas

Chapter 6. Cross-referencing .
Referencing a figure

Referencing a table .

Referencing a list item .

Referencing anything at all . .
Controlling the form of cross references .

Chapter 7. Creating IBMIDDoc Tables .
IBMIDDoc Table Markup Concepts
Creating simple tables . .
Specifying table column widths.
Table captions and descriptions.
Page, column, and line-wide tables
Splitting tables between pages .
Affecting how a table appears: Rules, Separators
Shading . .o .
Defining the Column Spec1f1cat1ons
Defining Rows and Entrys
Making your tables accessible
A Few Simple Table Examples .
A Simple Table . .
A Simple Table with More Optrons
A Simple Table with a Table Header and
IBMIDDoc Elements .
A Complex Table with Row and Column Spans
A Complex Table Header . S .
Adding footnotes to a table .

Chapter 8. The document structure of an
IBMIDDoc document .
About the IBMIDDoc tag . .
Getting in style, the document style, that is.
Setting the IBM copyright
Setting the security classification
Setting page numbering to sequential or
folio-by-chapter .
Creating multiple Volumes for a book
Controlling generated chapter, part, and
appendix titles
Specifying the language of the document
Bookmarks for PDF tables of contents
Licensed and restricted materials .
Line justification for DBCS languages.
About the prolog

. 54
. 54
. 55
. 56
. 57
. 57
. 58
. 59
. 59
. 60

. 61
. 62
. 63
. 63
. 64
. 65

. 67
. 67
. 67
. 69
. 69
.71
.71

.72
.75
. 76
. 76
.77
.77
. 78

. 78

79

. 80
. 80

. 83
. 83
. 83
. 85
. 85

. 85
. 86

. 86
. 87
. 87
. 88
. 88
. 88

15

Document title

Document number .

Author and Address

Date. .

Improving the searchmg of PDF books .

Other prolog elements.

Adding to the front or back cover (CoverDef)

Using CopyRDefs

Using IBMProdInfo.

Using Property Definitions (PropDefs)

PropDefs and Common Property Values.
Limiting the Scope of PropDef Definitions .
Using PropDefs for Conditional Processing .

Using LDescs and Nameloc .

Using GLDefs

Using BibEntryDefs.

Front matter (FrontM) .

Notices and Edition notices .
Other notices .

Table of contents

List of figures

List of tables

The preface . .

Summary of changes .

Special sections.

IBM Safety text.

About back matter (BackM)

Using appendix

Using glossary .

Using bibiography (B1bl1og) .

Using part number index (PNIndex).

Using Index .

Using reader’s comment form (RCF)

Chapter 9. Using definition tags
Summarizing the initial setting override hrerarchy

Chapter 10. Revision Elements and Marked
Notes.
Using Revisions
Defining Revisions in the ReVDefs Element
Indicating Revisions in the Document Markup
Marking text for deletion
Creating Collections of Marked Notes
Using the Mark Element.
Defining Marked Actions and Classes
Using the MkNote Element. .
Generating a Collection with MarkList Element
A Marked Notes Markup Example

Chapter 11. Indexing
Structuring a basic index
Basic index tagging
Placement of index tags .

Position method

Cross referencing index entrres
Where to put index entries .
Defining index entries (central 1ndex1ng)
Creating index entries by cross-indexing
Defining See and See-also references
Controlling the Index Sorting .

. 88
. 89
. 89
.90
.90
.90
.91
.91
.92
.92
.92
.92
. 94
. 95
. 96
. 96
. 98
. 98
. 99
.99
. 100
. 100
. 100
. 100
. 100
. 101
. 101
. 101
. 101
. 102
. 102
. 102
. 103

. 105

107

. 109
. 109
. 109

110

11
. 111
. 112
. 112
. 112

113

. 113

. 115
. 116
. 117
. 117
. 117
. 118
. 119
. 120
. 120
. 121
. 123

16 1D Workbench: IBMIDDoc User’s Guide and Reference

Generating the index .
Helping online reviewers see your 1ndex entrres
Creating a master index .

Chapter 12. All about linking

Linking 101 .

Creating links within a document

Linking to another document .

Citation link to an IBMIDDoc document

Linking to an XHTML, HTML, or web document
Linking to items in another IBMIDDoc document
Making a graphic a link .

Linking to an IPF document

Chapter 13. Glossaries

Defining Terms. . .
Separating letter groups ina glossary
Defining Classes for Terms .

Chapter 14. Bibliographies and citations
Identifying books and documents

Using title citations

Citations .

Generating a b1bhography

Defining library entries .

Linking BibEntry elements and other documents
An example of using BibEntry and BibEntryDefs

Chapter 15. Programming Syntax Diagrams .
Defining the syntax diagram .
The Syntax element
The Group element
The KWD (keyword) element
The VAR (variable) element
The OPER (operator) element .
The SEP (separator) element
The Delim (delimiter) element. .
The RepSep (repeat separator) element .
The FRAGMENT and FRAGREF (fragment
reference) elemento

Syntax Notes

Syntax Phrases .

Examples of Syntax Def1n1t10ns and Markup
Example 1: A simple syntax definition .
Example 2: A simple syntax definition that
repeats
Example 3: A more complex syntax def1n1t1on
Example 4: A variation on Example 3
Example 5: A syntax definition showing a
fragment and significant blanks .
Example 6: A syntax definition with automat1c
fragmenting .

Chapter 16. Developing Programming Language
Reference Materials

The Structure of a Language Element Reference
Section

Describing Your Reference Sectlon

Describing the language element . .
Example of a Simple Language Element Reference
Section

. 123

124

. 125

. 129
. 129
. 129
. 131
. 131

132
133

. 134
. 134

. 137
. 138
. 138
. 138

.14
. 141
. 142
. 142
. 143
. 143

144
144

. 147
. 147
. 149
. 150
. 152
. 153
. 153
. 153
. 154
. 154

. 155
. 156
. 157
. 158
. 158

. 158

159

. 159

. 160

. 161

. 165
. 165
. 166
. 168

. 169

DISHDEEF defining a dish .
EVALUATE evaluate nutrition, cost, or
preparatron time

Chapter 17. Defining Modular Information .
Examples of Using Modular Information .

Chapter 18. File, text, and character entities and

reusing information.

File and text entities .

Special characters .

Reusing elements from an ob]ect l1brary
Reusing attributes in the CONLOC reference
Cross-referencing items that use CONLOC

Chapter 19. Conditionally including information
Property-Based Retrieval .o
Using the Props attribute to set text cond1t10ns
Setting the properties to true or false
Specifying boolean properties .
Retrieval alternatives .
Using Marked Sections . .
Controlling SGML Delrrnrter Recognmon .

Chapter 20. Property and Class Definitions
Defining Element Properties .
Defining Element Properties Drrectly
Defining Element Properties Using Inheritance
Defining Element Classes

Chapter 21. Making some thlngs blgger or
smaller . .

Scaling text up or down

Automatically scaling text for exarnples and such
Making things page-wide

Chapter 22. Creating maintenance analysis
procedures.
MAP 0010: Baby]ohnny is crymg
MAP 0020: The Steak is Frozen .
Using ProcEntry for Entry Requirements . .
Using ProcStep and ProcCmnd to Describe Each
Step
Using Dec1s1onPnt for Outcorne—Dependent Act1on
Descriptions.
Using RefKeys to Refer to Labels ina Graphlc
Using ProcExit to Complete a Procedure or
Sub-Procedure . .
Procedure Markup Examples .
Starting the Procedure
Describing the Entry Point for the Procedure
Entering the Procedure Steps .
Exiting the Procedure.
Controlling Procedure Output Styles

Chapter 23. Creating parts catalog lists.
Assembly 1: Bicycle o
Markup source .

Creating the heading for a component lrst
Developing the component list

. 172

. 173

. 175
. 176

. 179
. 179
. 180
. 191

193

. 193

195

. 195

195

. 197
. 197
. 198
. 199
. 200

. 201
. 201
. 201

202

. 202

. 205
. 205

205

. 205

. 207
. 208
. 209
. 209

. 209

. 210
. 210

. 211
. 211
. 211

211

. 211
. 212
. 212

. 215
. 216
. 216
. 216
. 217

Including comments in the component list . . . 218

Cross-referencing part assemblies and component

lists . . T £

Assembly 2: Wheel front Lo ... 219

Keeping track of assemblies and parts oo 219
Getting an assembly list.219
Getting a part number index 220

Part 2. Using IBMIDDoc Markup 17

18 1D Workbench: IBMIDDoc User’s Guide and Reference

Chapter 2. Using basic IBMIDDoc elements to create a
document

This section describes the placement and use of divisions and other division-like
elements in your document. The elements discussed in this chapter include the
following:

* Body

e D, division

e P, paragraph

o Title

o TitleBIk, title block
* Part

IBMIDDoc Document Structure

The IBMIDDoc DTD defines the rules of structure and containment for all
IBMIDDoc elements, and the attributes that can be used on these elements.

At the document level, IBMIDDoc documents can contain the following:
* Prolog element

* FrontM (front matter) element

* Body element

* BackM (back matter) element

IBMIDDoc

Prolog
Title
Properties

Front matter

Table of contents
Preface

Body
Chapters

Back matter

Glossary
Index

Not all of these elements are required in an IBMIDDoc document. When you use
an SGML editor, the editor interprets the DTD rules for the correct structure and
containment rules for IBMIDDoc, and enforces these rules when you are authoring.

As long as the rules (sometimes called context checking) are active, an SGML
editor will only present the IBMIDDoc elements that are valid in the context in
which you are editing. An SGML editor will not, for example, allow you to insert a
P element directly within another P element.

© Copyright IBM Corp. 1992, 2001 19

While there are many aspects to creating an IBMIDDoc document, let’s first focus
on creating a simple one.

Creating an IBMIDDoc Document

20

Within the IBMIDDoc element, a IBMIDDoc document must have a Body element,
which must contain a division or division-like element. We’ll look at these basic
elements now, and look at other IBMIDDoc elements in the chapters that follow.

Creating the body of your document

The Body element contains the body of the document. This is where you put the
chapters for your document. The body can contain any number of D, LERS,
MSGList, Proc, and Part elements. In the example that follows, the Body element
contains two division (D) elements. Because the divisions are all contained at the
same level, each is a chapter (so this is a simple document with two chapters).

<ibmiddoc>

<body>

<d>

<dprolog><titleblk>

<title>My Little Chapter</title>
</titleblk></dprolog>

<dbody>

<p>Here's the beginning of my chapter.</p>
</dbody></d>

<d>

<dprolog><titleblk>

<title>Another Tittle chapter</title>
</titleblk></dprolog>

<dbody>

<p>It was a dark and stormy night...</p>
</dbody></d>

</body>

</ibmiddoc>

Creating divisions (D element)

Most often, you will insert a D element after the Body element in your document.
The first division in the document body is the first chapter. This is analogous to an
<H1> tag in HTML. When you insert a D element, most SGML editors
automatically insert the required sub-elements for the division. In IBMIDDoc, the
elements that must be included in a D element are:

DProlog
The DProlog can contain a number of elements, but the only required
elements are TitleBlk and Title, which contain the heading text for that
division. Stitle is an optional element that indicates a shorted title. For
first-level headings, use this Stitle to shorten the running foot. Subtitle is
another optional element that does nothing in a book; it’s element is
defined, but it is not used.

DBody
The DBody element contains the text elements that comprise the content of
the division; that is, the paragraphs, lists, and your golden prose.

When you create a first-level division in the document hierarchy, the text contained
in the Title element is displayed as the chapter title. For example, this shows a
sample chapter, first-level division:

<ibmiddoc>

<body>
<d>

ID Workbench: IBMIDDoc User’s Guide and Reference

<dprolog><titleblk>

<title>My Little Chapter</title>
</titleblk></dprolog>

<dbody>

<p>Here's the beginning of my chapter.</p>
</dbody></d>

</body>

</ibmiddoc>

Creating paragraphs (P element)

The element you will use most often is P for Paragraph. The P element contains a
paragraph, that is, a block of text representing a single idea. A paragraph can
contain other elements such as lists. Paragraphs should contain a single idea, and
can contain many other elements. In IBMIDDoc, paragraphs cannot directly contain
other paragraphs, but they can contain other elements that contain paragraphs.

Here’s a sample of a paragraph, in case you mised the examples shown in
previous topics:

<ibmiddoc>

<body>

<d>

<dprolog><titleblk>

<title>My Little Chapter</title>
</titleblk></dprolog>

<dbody>

<p>Here's the beginning of my chapter.</p>
</dbody></d>

</body>

</ibmiddoc>

When creating paragraphs, keep in mind that each paragraph (like many
IBMIDDoc elements) is a container. If you do not wish another element (a list or
figure for example) to be contained by the current paragraph, you must enter that
element after the end tag for the paragraph.

Deciding which elements to use

There is often more than one permissible way to markup the document content.
However, with IBMIDDoc, the intent of the markup is important. For example, you
could mark up a list as an unordered list:

¢ LI elements

List items contain individual list items.
 LIBIk elements

List item blocks contain logical groupings of list items.
* Bridge elements

Bridge elements bridge two concepts.

Here’s its markup:

<1i>LI elements

<p>List items contain individual
list items.</p></1i>

<1i>LIB1k elements

<p>List item blocks contain logical
groupings of Tist items.</p></1i>
<1i>Bridge elements

<p>Bridge elements bridge two
concepts.</p></1i>

Chapter 2. Using basic IBMIDDoc elements to create a document 21

22

On the other hand, you could markup up the same information using a definition
list:

LI elements
List items contain individual list items.

LIBLK elements
List item blocks contain logical groupings of list items.

BRIDGE elements
BRIDGE elements bridge two concepts.

Here’s its markup:

<d1>

<dlentry><term>LI elementS</term>

<defn>List items contain individual Tist items.</defn>
</dlentry>

<dlentry><term>LIBLK elements</term>

<defn>List item blocks contain logical groupings of
1ist items.</defn>

</dlentry>

<dTentry><term>BRIDGE elements</term>

<defn>BRIDGE elements bridge two concepts.</defn>
</dlentry>

</d1>

While either way is acceptable and valid IBMIDDoc markup, consistency in
deciding how to mark up your information is important to the successful
exploitation of IBMIDDoc markup. You need to mark up information according to
its intent. Decide which IBMIDDoc markup best describes the type of information
you are containing, and use that markup consistently in your information.

IBMIDDoc allows you to separate the markup from the final presentation. You
should not mark up information so that it will “look good” a certain way in:

* a PostScript or PDF file
* an XHTML or HTML set of files
* an IPF panel

If you are consistent in how you mark up your information, the resulting
formatted output, for any target medium, will be treated consistently in that
medium. This consistency contributes to our customer’s satisfaction with the
information.

Creating a heading hierarchy

You create subheadings in your document by creating a heading hierarchy. For
example, a division may be a chapter title (1st-level heading), a topic (2nd-level
heading), a subtopic (3rd-level heading), and so forth. Nested divisions define this
division hierarchy. Nested divisions are divisions that are contained within a
division. The level of the headings produced is determined by the nesting. At this
point in the book, the previous division is a third-level division.

Here’s the markup for two nested divisions; the bold shows the second-level
division:

<d>

<dprolog><titleblk>

<title>My Little Chapter</title>

</titleblk></dprolog>

<dbody>

<p>Here's the beginning of my chapter.</p>

ID Workbench: IBMIDDoc User’s Guide and Reference

<d>

<dprolog><titleblk>

<title>My teeny topic</title>
</titleblk></dprolog>

<dbody>

<p>Here's the beginning of a topic.</p>
</dbody></d>

</dbody></d>

If you need more the 6 levels of divisions, an editor might say you have
“heading-itis”.

Migration Note: All other contained divisions will be treated like subheadings are
treated in BookMaster. However, unlike headings in BookMaster, IBMIDDoc

divisions are automatically arranged according to their hierarchical position in the
markup. Each contained division is handled at a lower heading level, so to speak.

Division prologs
After you enter the title, you can enter a number of optional elements in the
division prolog, including;:
* Approvers
* Authors
* BibEntryDefs, bibliography entry definitions
* CopyrDefs, copyright definitions
e CritDates, critical dates
* GlDefs, glossary definitions
+ IBMProdInfo, IBM® product information
e IdxDefs, Index definitions
* LDescs, Link descriptions
* Owners
* ProdInfo, product informaiton
* PropDefs, property definitions
* QualifDefs, qualification definitions
e RevDefs, revision definitions

When you use these items in a division prolog; they take effect on that division
and any nested divisions. To have these items affect the whole document, put them
in the prolog. Here’s a sample of a revision definition that affects this division; not

the whole document:

<d>

<dprolog><titleblk>

<title>My Little Chapter</title>
</titleblk>

<revdefs>

<rev id="v3r4" ident="use">

<date>June 5th</date>

<desc>Something happened...</desc>

</rev>

</revdefs></dprolog>

<dbody>

<p>Here's the beginning of my chapter.</p>
<p rev="v3r4">Something that changed on June 5th.
</p>

</dbody></d>

Chapter 2. Using basic IBMIDDoc elements to create a document 23

Division introductions

You can introduce the division’s content with the DIntro element. This element is
optional; you should usually have your first paragraph of the DBody introduce the
division’s content. Anyway, Dintro follows the DProlog element. The next example
shows the DIntro element.

<d>

<dprolog><titleblk>

<title>My Little Chapter</title>

</titleblk></dprolog>

<dintro>

<p>My little division introductory sentence.</p>

</dintro>

<dbody>

<p>Here's the beginning of my chapter.</p>

Partial table of contents

Division introductions can also create a partial table of contents for their
corresponding chapter or part. In the part or division’s introduction (DINTRO) tag,
you code a table of contents (TOC) tag. This causes a partial table of contents to be
generated at that point.

Here’s the sample coding for a PTOC for a chapter:
<d>

<dprolog><titleblk>

<title>Sample chapter heading</title>
</titleblk></dprolog>

<dintro>

<toc><gendtitle></toc>
</dintro><dbody>

<d>

<dprolog><titleblk>

<title>Next heading</title>
</titleblk></dprolog>
<dbody></dbody></d>

<d>

<dprolog><titleblk>

<title>Another heading</title>
</titleblk></dprolog>
<dbody></dbody></d>

</dbody></d>

The partial table of contents lists the subordinate headings for the corresponding
part or chapter.

Using parts to organize your chapters

IBMIDDoc includes the Part element, which you can use to divide your document
into logical parts. This book has many divisions, but contains three parts (plus the
appendixes). Parts do not affect the hierarchical ordering and numbering of
divisions.

This example shows a sample book with 2 parts and 4 chapters:

<ibmiddoc>

<body>

<part>

<dprolog><titleblk>
<title>Introduction</title>
</titleblk></dprolog>
<dbody>

<d>

24 1D Workbench: IBMIDDoc User’s Guide and Reference

<dprolog><titleblk>
<title>Salads of our neighborhood</title>
</titleblk></dprolog>
<dbody></dbody></d>

<d>

<dprolog><titleblk>
<title>Salads of the world</title>
</titleblk></dprolog>
<dbody></dbody></d>
</dbody></part>

<part>

<dprolog><titleblk>
<title>Recipies</title>
</titleblk></dprolog>

<dbody>

<d>

<dprolog><titleblk>

<title>Egg salad</title>
</titleblk></dprolog>
<dbody></dbody></d>

<d>

<dprolog><titleblk>
<title>Tuna fish salad</title>
</titleblk></dprolog>
<dbody></dbody></d>
</dbody></part></body>
</ibmiddoc>

| Starting page number control

The STARTPAGE (starting page) attribute allows you to assign the beginning page
number to a section. You use that attribute on a division tag. It can be used with
all first-level division tags. The STARTPAGE attribute value can be any positive
integer, starting with 1. For example, if you use the following markup:

<d startpage="101"><dprolog><titleblk><title>Help information

<d startpage="201"><dprolog><titleblk><title>Safety information

the first chapter “Help information” starts on page 101, and the next chapter
“Safety information” starts on page 201. Do not use the STARTPAGE attribute on
the tags to create duplicate page numbers. Doing so can cause the wrong retrieval
subject text to be associated with the page.

This can be used with the CHAPTERNUM attribute. For example, you could start
formatting a document at chapter 21, page 83 with the following:

<d chapternum=21 startpage=83>

Chapter number control

You can use the CHAPTERNUM attribute on any first-level division tag to assign
the chapter number. For example, this markup:

<d chapternum="13"><dprolog><titleblk><title>End of the line

would cause the chapter number for the “End of the line” chapter to be thirteen. In
an appendix, the number becomes the corresponding letter. A ChapterNum of 4
would be appendix D.

This can be used with the STARTPAGE attribute. For example, you could start
formatting a document at chapter 21, page 83 with the following;:

<d chapternum=21 startpage=83>

Chapter 2. Using basic IBMIDDoc elements to create a document 25

For Options-by-IBM use: For example, if the French section needed to start on
1-37, the translator would create his section as follows:

<d chapternum=1 startpage=35>

<dprolog><titleblk>

<title>The title for this section -- goes in running foot</title>
</titleblk></dprolog>

<dbody>

<l-- The following bit skips two pages to start on page 37 -->
<p>&rb1;</p>

<?idd:page>

<p>&rb1;</p>

<?idd:page>

<!-- End of page skipping -->

<d>

<dprolog><titleblk>

<title>Translated title</title>

</titleblk></dprolog>

<dbody>

<p>Translated information</p>

</dbody></d>
</dbody></d>

If the translated section is supposed to start on an even page, the STARTPAGE
would be one less than the first desired page, and just one blank page added
before the level-2 heading section. When composing, you can specify /SHEET:2
(for starting on an even page) or /SHEET:3 (for starting on an odd page) to create
the PostScript file without the dummy starting page. The dummy page could also
be stripped when combining the files.

Changing column layouts

26

Normally, your document’s style determines the number of columns, also called
the layout, of your document. You can, if you want, change from one column
layout to another.

You can override this layout for your document by using the layout attribute on
the IBMIDDoc tag.

You can also use the layout attribute on Division tags (and other major headings
such as Preface) to override the layout style for that chapter, appendix, or magor
heading.

You can pick from the following values; not all tags support all these values:

LAYOUT=Default-Layout | OneCol | TwoCol | ThreeCol
Specifies the column-style for this portion of the book.

Default-Layout
The section uses the default layout for the document style.

OneCol
The entries format across the entire page.

TwoCol
The entries format in two columns.

ThreeCol
The entries format in three columns.

ID Workbench: IBMIDDoc User’s Guide and Reference

Creating an information architecture

You can use the Metadata tag to classify the type, audience, and task information
for a topic. This helps search programs and other programs find, filter, or select
information. This is passed through to the XHTML output as metadata keywords.

For example, here is an example of a division that has a Metadata tag; the tag
classifies the information:
<d id="feederinst">
<dprolog><titleblk>
<title>Installing your Fruit-Bat Feeder</title>
</titleblk>
<metadata type="task" job="installing"
audience="user" experiencelevel="general">
</dprolog>

Subordinate topics inherit the metadata classifications from their parent topics.

See 'MetaData (information architecture)” on page 343 for a description of the tag

and the attributes allowed.

See [“Architected online information and Infarmation Centers (vs hooks) for tips

on creating architected information.

Architected online information and Information Centers (vs

books)

Notes from an XML workgroup conference call; presented Sept. 4/2001 by Leigh
Davidson

Here are tips for creating architected online information; these are not books. The
information here was usde by several sites that create Information Centers.

* The basic unit of information is a topic, not chapter or section. A topic is a
division in IBMIDDoc.

* Organization: The information is a hyperlinked web, not a linear presentation.
* Entry points to the information includes the following:
— Search hit list

Links from other topics

Hierarchical navigation frame

Any combination/permutation of these techniques

What is a topic?
* Granular piece of information
* Probably “information-typed” (more on this below)

* Some examples:

One or two paragraphs to explain a concept

A procedure consisting of a half-dozen steps

The syntax of a single command

Description of a single user interfacecontrol
* Should usually fit into one screen with no scrolling

Information types:

Chapter 2. Using basic IBMIDDoc elements to create a document 27

28

Refer to UA Central: http://ua raleigh.ibm.com/ud

Categories of information
Examples:

— Task information provides procedural details such as step-by-step
instructions.

— Concept information provides background information that users need to
know before they can successfully work with a product or interface.

— Reference information provides quick access to facts, but no explanation of
concepts or procedures. It is usually assumed that users already understand
the base technology.

Other possible types or subtypes: context-sensitive help, sample, tutorial,

troubleshooting, and so forth.

Fundamental principle: separate information according to type

Recommended approach:

Write task-oriented information; not function-oriented information
Use task analysis to organize your task list
Write task topics

As you go, identify prerequisite concepts and other supporting information
(reference, tutorials, samples, glossary entries, etc.)

Design the linking structure
Never stop thinking about your users:
— What tasks will they want or need to perform?

— What does “completeness” mean to them? Value their time; don’t bog them
down with too much information.

— What might they want or need to know next? Don’t add your list of related
links as an afterthought.

Challenges:

Write less.
Retrievability

Consistency - organization, linking techniques, and chunking should all follow
recognizable patterns (as well as style and tone)

ID Workbench: IBMIDDoc User’s Guide and Reference

http://ua.raleigh.ibm.com/ua

Chapter 3. All kinds of lists

Several types of list elements are explained in this chapter, including:

* UL, unordered (see (‘Unaordered lists) and simple (see [Simple lists” on page 30)
* OL, ordered (see !Ordered lists” on page 30)

» DL, definition (see I‘Definition lists” on page 32)

* ParmL, parameter (see I‘Parameter lists” on page 3d)

* MsglList, message (see ‘Message and code lists” on page 38)

In addition, we discuss other things that are often used in lists:

1. List items can be compacted (see tc ompacting lists” 34)

2. LiBIk, list item block; these allow you to group related list items into

information blocks (see EGrauping list items” on page 37)

3. Bridges; these are for transitions between list items (see I‘Separating or bridging]
Il' t l ” 33)

Unordered lists

Unordered lists are used when the items in the list are fairly long, maybe even
many paragraphs, but you don’t want to imply any particular sequence (as you
would with an ordered list). The default appearance for an unordered list is as a
bulleted list. Here’s an example of an unordered list:

 This is an item in an unordered list. To separate it from other items in the list,
the formatter puts a bullet beside it.

¢ The paragraph that is contained in the LI element is part of the list item which
contains it.

This is the contained paragraph.

* This is a separate list item in our unordered list.

Here is the IBMIDDoc markup for the unordered list in the previous example.

<1i>This is an item in an unordered Tist. To separate
it from other items in the 1ist, the formatter puts

a bullet beside it.</1i>

<1i>The paragraph that is contained in the LI element
is part of the list item which contains it. <p>This
is the contained paragraph.</p></1i>

<1i>This is a separate Tist item in our unordered
Tist.</1i>

Many IBMIDDoc elements can contain lists. If you do not want the list to be
contained in the element that precedes it, be sure to end the preceding element
before starting the list element.

The example that follows illustrates an unordered list that is not contained by the
paragraph element that immediately precedes it.

<p>

Text of paragraph.

</p>

<1i>Abbrev</1i>

© Copyright IBM Corp. 1992, 2001 29

Abstract</1i>
<1i>Bibliog</1i>
<1i>Appendix</1i>
Glossary</1i>

You can also use ULTYPE=CHECKOFF on an unordered list to create an
unordered checkoff list. For example, here’s an unordered, checkoff list:

__* Abbrev
__* Abstract
__* Bibliog
__* Appendix
__* Glossary

Simple lists

Simple lists are just what you’d think they are; they have no dingbat." For
example, here’s a simple list:

bread
butter
cheese

bananas

A simple list starts with an unordered list, then you set the style attribute to
"simple”:

<ul ultype="simple">

bread</1i>

butter</T1i>

cheese</1i>

bananas</11i>

You can also use ULTYPE=SimpleCheckoff on an unordered list to create a simple
checkoff list. For example, here’s a simple, checkoff list:

bread
butter
cheese

bananas

Ordered lists

An ordered list contains information that must be listed in a specific sequence. This
is often a list of steps which must be performed in a certain order, such as a recipe
or tearing apart a PC. An ordered list looks like this:

1. Cream butter and sugar together until fluffy.
2. Beat in egg yolks one at a time.

3. Add nutmeg, cinnamon, and vanilla, and mix thoroughly. The batter should be
smooth and glossy and stream off the spoon in ribbons.

4. Fold in beaten egg whites.

1. dingbat. (1) In printing: Any typographical ornament not further specified. (2) In old TV Shows: What Archie Bunker would call

his wife, Edith.

30 ID Workbench: IBMIDDoc User’s Guide and Reference

Do not overmix; the batter should be light and fluffy.

(I'm getting hungry.) The corresponding IBMIDDoc markup is as follows:

Cream butter and sugar together until fluffy.</1i>

Beat in egg yolks one at a time.</1i>

<1i>Add nutmeg, cinnamon, and vanilla, and mix thoroughly.

The batter should be smooth and glossy and stream

off the spoon in ribbons.</1i>

Fold in beaten egg whites.

<p>Do not overmix; the batter should be light and fluffy.</p></1i>

</o1>

Checkoff ordered lists

Sometimes when describing procedures, you need to give your reader a checkoff
space as an aid to ensure that they perform every step. The checkoff list is an
ordered list; you get it adding the OLTYPE=CHECKOFF attribute to your OL tag.
For example:

__ 1. Verify that air pressure is in normal range.
__ 2. Verify that fuel level is in safe zone.

__ 3. Verify that water valve is in open position.

Here’s the coding:

<ol oltype="checkoff">

Verify that air pressure is in normal range.</1i>
Verify that fuel Tevel is in safe zone.</1i>
Verify that water valve is in open position.</1i>

Customer setup lists

Customer setup lists use the word “Step” in the list item, together with the
number. These lists also use the OLTYPE attribute on the ordered list tag (OL),
with a value of STEP. For example:

Step 1. Open the carton.
Step 2. Remove the top layer of packing material.
Step 3. Take the stuff out of the box.

Step 4. Give the box to the kids to play with, while you proceed with the next
step.

Here’s its coding:

<ol oltype="step">

<1i>0pen the carton.</1i>

Remove the top Tayer of packing material.</1i>
Take the stuff out of the box.</1i>

Give the box to the kids to play with,

while you proceed with the next step.</1i>

</ol1>

You can also have checkoff-setup lists. These lists also use the OLTYPE attribute
with a value of CHECKOFFSTEP. For example:

__Step 1. Fold along dotted line C.
__Step 2. Insert tab B into slot A.

__ Step 3. Throw these instructions out the window.
Here’s its coding:

Chapter 3. All kinds of lists 31

<ol oltype="checkoffstep">

Fold along dotted line C.</1i>

Insert tab B into slot A.</1i>

<1i>Throw these instructions out the window.</1i>

Continuing ordered lists

Sometimes, you may have lists that need to continue around table cells or even
from division to division. The ordered list (OL) tag has the attributes SEQ, ID, and
SEQID to allow you to have an ordered list continue from where a previous list

left off.

For example, here’s a continued checkoff list :

Formatted Example

__ 1. Open the carton.

__ 2. Remove the top layer of packing material.
__ 3. Take the stuff out of the box.

The first list is ended — honest, this is not a bridge. The list then continues:
__ 4. Fold along dotted line C.
__ 5. Insert tab B into slot A.

End of Formatted Example

Here’s its markup:

<ol seq="start" oltype="checkoff" id="swingsets">
<1i>0pen the carton.</1i>

Remove the top layer of packing material.</1i>
Take the stuff out of the box.</1i>

<p>The first list is ended — honest, this is

not a bridge. The list then continues:</p>

<ol seqid="swingsets" seq="end" oltype="checkoff">
<1i>Fold along dotted Tline C.</1i>

Insert tab B into slot A.</1i>

Definition lists

Definition lists are a particular kind of list you can use when you want to pair a
term or phrase with a description of it.

Here’s a formatted example of a definition list:

gopher

lawn

A burrowing rodent that feeds on roots of plants.
Gopher highway.

Can be identified by dinner-plate-sized mounds of dirt where grass used to
be.

agapanthus

Lovely flowering plant, the roots of which are the preferred food of
gophers.

If your flourishing agapanthus suddenly keels over, it means a gopher has
had a feast.

32 D Workbench: IBMIDDoc User’s Guide and Reference

Here’s its coding:

<d1>

<dlentry><term>gopher</term>

<defn>A burrowing rodent that feeds on roots of plants.
</defn>

</dlentry>

<dlentry><term>lawn</term>

<defn>Gopher highway. <p>Can be identified by dinner-plate-sized
mounds of dirt where grass used to be.</p></defn>
</dlentry>

<dlentry><term>agapanthus</term>

<defn>Lovely flowering plant, the roots of which are
the preferred food of gophers. <p>If your flourishing
agapanthus suddenly keels over, it means a gopher

has had a feast.</p></defn>

</dlentry>

</d1>

You can use the TERMWIDTH attribute to determine the indentation size of the
definition list. The valid choices are: small (.5 inch, the default), medium (1 inch),
large (2 inches), and 1 (1-character) and 2 (2-characters).

Small Here’s a sample of the small setting.

Medium Here’s a sample of the medium setting.

Large Here’s a sample of the large setting.
1 Here’s a sample of the 1-character setting.

2 Here’s a sample of the 2-character setting.

Definition lists can also have headings; for example:
Setting Description
Low A good setting for simmering soups.

Medium
After the water has boiled, use this setting for cooking the spaghetti.

High Use this setting to get water boiling fast.

This is done with the TermHd and DefnHd tags. Here’s the source:

<d1><termhd>Setting</termhd>
<defnhd>Description</defnhd>
<dlentry><term>Low</term>

<defn>A good setting for simmering soups.</defn>
</dlentry>

<dlentry><term>Medium</term>

<defn>After the water has boiled, use this setting
for cooking the spaghetti.</defn>

</dlentry>

<dlentry><term>High</term>

<defn>Use this setting to get water boiling fast.
</defn>

</dlentry>

</d1>

If you want to change your list heading and term style, you can use the
TERMSTYLE and HEADSTYLE attributes to set a different highlight. For example:

Animal
Description

Cat A house pet that purrs when happy.

Chapter 3. All kinds of lists 33

Dog A house pet that wags its tail when happy.

Here’s the source:

<d1 termstyle="bold-italic-underlined" headstyle="bold-italic-h">
<termhd>Animal</termhd>

<defnhd>Description</defnhd>

<dlentry><term>Cat</term>

<defn>A house pet that purrs when happy.</defn>

</dlentry>

<dlentry><term>Dog</term>

<defn>A house pet that wags its tail when happy.</defn>
</dlentry>

</d1>

You can also group terms together using the DLBIk (definition block) tag. You can
use DLBIk to create logical groups within a long definition list, or use two DLBlks
with a Bridge between them to highlight some relationship between groups of
entries. For example:

Cat A house pet that purrs when happy.
Dog A house pet that wags its tail when happy.
Fish A house pet with scales that swims.

Turtle A house pet with scales that swims and walks slowly.

Here’s the source:

<d1>

<d1blk>

<dlentry><term>Cat</term>

<defn>A house pet

that purrs when happy.</defn></dlentry>
<dlentry><term>Dog</term>

<defn>A house pet that wags

its tail when happy.</defn></dlentry>
</d1b1k>

<d1bTk>

<dlentry><term>Fish</term>

<defn>A house pet

with scales that swims.</defn></dlentry>
<dlentry><term>Turtle</term>

<defn>A house pet with

scales that swims and walks slowly.</defn></dlentry>
</d1bTk>

</d1>

Parameter lists

Parameter lists are used in programming documentation when you have to explain
the elements of the programming syntax. Here’s an example of a parameter list:

KEYWORD = DEFAULT | VALUE
This is the description of the parameter above. It could go on for many pages,
if necessary. (Of course, that means we have a very complicated parameter to
describe.)

KEYWORD?2 = {ABCIXYZ}

[KEYWORD3 = GGG]
This description applies to the two parameters above. Often in examples of
programming syntax, it is necessary to use symbols for the brackets and
braces.

34 1D Workbench: IBMIDDoc User’s Guide and Reference

KEYWORD3
Here’s a term that uses the syntax phrase (SYNPH); it allows you to use the
same items as a syntax diagram.

Parameter lists are similar to definition lists. They involve three elements: ParmL
(parameter list), Term, and Defn (definition). Term and Defn are used with other
elements for the same function, including glossary and definition lists, among
others. When doing parameter lists for programming syntax, you will also need to
use these elements:

* PK (programming keyword)
* PV (programming variable)

* SYNPH (syntax phrase), with KWD (keyword), VAR (variable), and DELIM
(delimiter)

The Term elements assume that what you are entering is a required or optional
programming keyword. For a default programming keyword or programming
variable, edit the attributes for these PK or PV elements, and set the OPTREQ
attribute value to DEF.

The IBMIDDoc markup for the example parameter list is shown in the example
that follows.

<parml>

<parm><term>KEYWORD = <pk optreq="DEF">DEFAULT</pk>|VALUE
</term>

<defn>This is the description of the parameter above.

It could go on for many pages, if necessary. (Of course,
that means we have a very complicated parameter to
describe.)</defn>

</parm>
<parm><term>KEYWORD2 = &1br‘c;ABC|XYZ&rbrc;</term>
<term>&1brk;KEYWORD3 = GGG&rbrk;</term>

<defn>This description applies to the two parameters
above. Often in examples of programming syntax, it

is necessary to use symbols for the brackets and braces.
</defn>

</parm>
<parm><term><synph><kwd>KEYWORD3</kwd></synph></term>
<defn>Here's a term that uses the syntax phrase (SYNPH);
it allows you to use the same items as a syntax diagram.
</defn>

</parm>

</parml>

You can use the TERMWIDTH attribute to determine the indentation size of the
parameter list. The valid choices are: small, medium, and large. You can use the
TERMWIDTH attribute to determine the indentation size of the definition list. The
valid choices are: small (.25 inch, the default), medium (.5 inch), large (1 inch), and
1 (1-character), and 2 (2-character).

Small
Here’s a sample of the small setting.

Medium
Here’s a sample of the medium setting.

Large Here’s a sample of the large setting.
1 Here’s a sample of the 1-character setting.

2 Here’s a sample of the 2-character setting.

Chapter 3. All kinds of lists 35

If you want to change your list heading and term styles , you can use the
TERMSTYLE and HEADSTYLE attributes to set a different highlight. For example:

Animal

Description

Cat
A house pet that purrs when happy.

Dog
A house pet that wags its tail when happy.

Here’s the source:

<parml termstyle="bold-italic" headstyle="bold-italic-underlined-h">
<termhd>Animal</termhd>

<defnhd>Description</defnhd>

<parm><term>Cat</term>

<defn>A house pet that purrs when happy.</defn>

</parm>

<parm><term>Dog</term>

<defn>A house pet that wags its tail when happy.</defn>

</parm>

</parml>

Compacting lists

Compact specifies that you do not want a blank line between each list item.
Compact applies only to the space between list items and not to any space
between paragraphs within a list item. Compact lists are only available in
Xyvision, BookMaster, HTML, and IPE. Documents written in Xyvision
automatically have a half a line space.

To specify a list as compact, use the LineSpace attribute. For example:
<ul linespace="compact">

The lists you can compact are: DL, OL, UL, GL, Msglist, Parml, and Notelist.

Scaling list dingbats

36

dingbat. (1) A small object, such as a stick or stone, suitable for hurling at
another object. (2) Any unspecified gadget or other article. (3) Printing Any
typographical ornament not further specified. (4) Archie Bunker’s “pet” name
for his wife, the lovable Edith Bunker, from the 1970s TV series All in the
Family.

We are, of course, interested only in the third of these definitions, fascinating as the
others are to contemplate.

For our purposes, given an unordered list
* that looks
e like this

the dingbat is the ¢ that signals each list item. In an ordered list
1. that looks
2. like this

our dingbats are “1” and “2” — the numbers.

ID Workbench: IBMIDDoc User’s Guide and Reference

For unordered and ordered lists, you can specify a scaling factor (with DBSCALE).
With the scaling factor, you can make the dingbat bigger or smaller. We can make
each list fancier:

1 . that looks

2 « like this

The dbscale is 200 — twice the size of normal:

<ol dbscalepct="200">
that Tooks</1i>
<1li>1like this </1i>

And for the unordered list:
. that looks
. like this

The dbscale is 50 — half the size of normal:

<ul dbscalepct="50">
that looks </1i>
like this</1i>

The dbscale only applies to the list on which is it specified. It does not apply or
inherit from outer lists to inner lists.

Grouping list items

You can use list item block (LIBlk, DLBIk, and ParmBIk) elements to contain
groups of similar items. LIBlk is for list items, DLBIk is definition list items, and
ParmBIk is for parameter list items. In the example that follows, hardware and
software are grouped into blocks of list items.

For example:

1 GIG SCSI-2 Hard Disk
32 MB RAM

128-Bit 8MB VRAM Video
21-Inch Monitor

Great Word Processor
Best Multimedia App
Voice Mail

No o~ =

Here’s its markup:

<0]>

<liblk>

<1i>1 GIG SCSI-2 Hard Disk</1i>
<1i>32 MB RAM</1i>

<1i>128-Bit 8MB VRAM Video</1i>
<1i>21-Inch Monitor</1i>
</1iblk>

<liblk>

Great Word Processor</1i>
Best Multimedia App</1i>
<1li>Voice Mail</1i>

</1iblk>

</o1>

Chapter 3. All kinds of lists 37

Processing Note
For Xyvision processing, if you want to have all the text in the LIBLK kept on
the same page, use the attribute style="xpp: (keep)". Be cautious when using
this feature. If the text does not fit on a page, you may get a formatting error.
Remove the style or shorten the content to have the pages print correctly.

Separating or bridging list items

Sometimes in an ordered list you want to break the list for some explanatory
material and then resume the numbering where you left off. You do this with the
Bridge element.

Suppose you wanted to do this:

1. Saute the shallots and chopped mushrooms until the shallots are tender and the
liquid from the mushrooms has cooked away.

2. Brown the sausage and add to the mushroom mixture.

The above may be prepared several hours in advance and refrigerated. Then, 30
minutes before serving time, finish the dish

3. Mix one can of tomato sauce with the mushroom and sausage mixture and
bring to a slow simmer.

4. Add the heavy cream and immediately pour into a casserole.
5. Pop into 350-degree oven for 15 minutes.

Here’s its markup:

<0]>

Saute the shallots and chopped mushrooms until

the shallots are tender and the liquid from the mushrooms
has cooked away.</1i>

<1i>Brown the sausage and add to the mushroom mixture.
</1i>

<bridge><p>The above may be prepared several hours in
advance and refrigerated. Then, 30 minutes before
serving time, finish the dish</p></bridge>

<1i>Mix one can of tomato sauce with the mushroom

and sausage mixture and bring to a slow simmer.

</1i>

<1i>Add the heavy cream and immediately pour into

a casserole.</1i>

<1i>Pop into 350-degree oven for 15 minutes.</1i>

Message and code lists

38

If you don’t have any messages or codes to worry about, just skip this section and
go on.

Both message and code lists use the MsgList element. A code list documents
numeric values that have specific meaning, for example error codes. A message list
documents text messages, which may each have a message number. Each entry in
a message or code list is contained in a MSG element.

For the code list, use the Code element for the numeric value. For the message list,
use a MsgNum and MsgText element. If the message has no number, use just the

ID Workbench: IBMIDDoc User’s Guide and Reference

MsgText element. If the message text has a variable in it, you use the MV element
for the message variable. Use the MV element in both the message text and in any
descriptive text.

After you have entered the code or the message number and the text, you use the
Msgltem element to contain the information about the message, according to the
class of the information. IBMIDDoc has a number of predefined classes of message
item information. These pre-defined classes have a generated message subheading.
These classes are:

Class Default subheading text
author-defined Author defined class using the MsgltemDef element (currently not
supported by the output formatters).

DEST Destination
XPL or EXPLANATION
Explanation

MODULE Module
NUMBYTES Number of Error Bytes

ORESP Operator Response

PRESP Programmer Response
PROBD Problem Determination
SEVERITY Severity

SPRESP System Programmer Response
SYSACT System Action

URESP User Response

This is a sample message list:

DJI17832E This message is issued when no data set
of the name file-name is found.

Explanation: The processor could not locate the data

set named file-name.

Severity: 8

User Response: Search high and low for the data set.

This message has no number

Explanation: This message has no message number;
only text. These are really insidious because it makes
finding the message very hard.

Problem Determination: You would appear to have a

problem.

Here is the markup:

<msglist>
<msg>

<msgnum>DJ17832E</msgnum>
<msgtext>This message is issued when no data set of
the name <mv>file-name</mv> is found.</msgtext>

<msgitem class="xp1">

<p>The processor could not Tocate the data set named <mv>

file-name</mv>.</p>
</msgitem>

<msgitem class="severity">

<p>8</p>
</msgitem>

<msgitem class="probd">
<p>You would appear to have a problem.</p>

</msgitem>

<msgitem class="uresp">
<p>Search high and Tow for the data set.</p>

</msgitem>
</msg>
<msg>

<msgtext>This message has no number</msgtext>

<msgitem class="xp1">

Chapter 3. All kinds of lists 39

<p>This message has no message number; only text.
These are really insidious because it makes finding
the message very hard.</p>

</msgitem>

</msg>

</msglist>

Code lists are just the same, except that you use the Code element instead of MsgNum and MsgText.
Code lists still use Msgltem elements. Here is a short code list:

123

Explanation: This is a simple code.

Here’s its coding:

<msglist>
<msg><code>123</code>
<msgitem class="xp1">

<p>This is a simple code.</p>
</msgitem>

</msg>

</msglist>

Overriding the message list subheadings

The text generated in association with Msgltem classes (XPL, URESP, and the rest)
is not always suitable to every type of document containing these lists. For
instance, you might want to use the subheading “Cause” or “Reason” instead of
“Explanation”, and “Recovery” instead of “User Response”. Some people prefer
“Severity Code” to “Severity”. Some places don’t have system programmers, but
do have administrators or supervisors.

To meet all of these requirements and still preserve some order in the chaos, the
MsgltemDef element can be used to override the default text that corresponds to
the Msgltem classes. With these attributes you can specify the text that you want
printed when the tag is used.

Here is a sample message list with changed headings. The heading are overridden
for this list only; because the MsgltemDef tags are within the message list.

A12 Closet full: Insufficient storage to
proceed.

Why: There are too many clothes in the closet.

What to do: Remove some clothes from the closet and
restart.

Here is its coding:

<msglist>

<msgitemdef classname="xpl1"><title>Why</title></msgitemdef>
<msgitemdef classname="uresp"><title>What to do</title>
</msgitemdef>

<msg>

<msgnum>A12</msgnum>

<msgtext>Closet full: Insufficient storage to proceed.
</msgtext>

<msgitem class="xp1">

<p>There are too many clothes in the closet.</p>
</msgitem>

<msgitem class="uresp">

<p>Remove some clothes from the closet and restart.

40 1D Workbench: IBMIDDoc User’s Guide and Reference

</p>
</msgitem>
</msg>
</msglist>

Note that when you use the class attribute, you should pick a value that is close in intent to the original
meaning of the tag. That is, if you want to print “Reason”, use the XPL class; don’t use one — for
instance, NUMBYTES — that is totally unrelated to the text you are printing. Do this because you may
have future applications for this text, such as extracting from a text data base all messages and their
explanations. If you don’t preserve the meaning of these tags, these future applications won’t be possible.

To globally override the message headings, use the MsgltemDef tags in the document prolog. For
example:

<prolog>

<propdefs>

<msgitemdef classname="xpl1"><title>Why</title></msgitemdef>
<msgitemdef classname="uresp"><title>What to do</title>
</msgitemdef>

</propdefs>

</prolog>

<msglist>

<msg>

<msgnum>A12</msgnum>

<msgtext>Closet full: Insufficient storage to proceed.
</msgtext>

<msgitem class="xpl">

<p>There are too many clothes in the closet.</p>
</msgitem>

<msgitem class="uresp">

<p>Remove some clothes from the closet and restart.
</p>

</msgitem>

</msg>

</msglist>

Chapter 3. All kinds of lists 41

42 1D Workbench: IBMIDDoc User’s Guide and Reference

Chapter 4. Highlighting, Citing, Noting, and Quoting

IBMIDDoc provides several different ways to highlight text and contains many
ways to create notes, annotations, and footnotes. This chapter introduces each of
these.

These element types include:
« Phrases (see 'Highlighting’l)

» Citations (see I'Simple title citations” on page 45)

* Notes (see 'Notes” on page 45)

* Note lists (see 'Note lists” on page 4d)

+ Footnotes (see I‘Ecatnates” on page 44)

* Quotes and long quotes (see Quates and excerpts” on page 47)

* The Perils of Processing (see I'The perils of pracessing: Attention caution_and
danger” on page 44)

* Labeled boxes (see 'Laheled haxes” on page 48)

« Author notes (see I’Annatations” on page 49)

* Trademarks (see [‘Trademarks” on page 50)

* Qualifications (see LQ.ualLf;un.g_m.EoLm.ah.nn_nn_pa.gMQ)

This chapter also describes how to create style classes for elements that can be

passed through to XHTML documents. See [llsing_ document classes with XHTMII
ktyle sheets” on page 51l for that information.

Highlighting

You've already seen many examples in this book of things that are highlighted. By
highlighting, we mean emphasizing the text by setting it in a different font or
perhaps underscoring it. Many phrase styles are supported. They are mapped as
<PH style=attribute>. The style attribute values include:

* base
* bold
* italic
* bold italic
* underlined

o superscript

subscript

* monospaced

* smaLLcaps. Note that YOU need to do the uppercase conversion yourself. This is
because not all languages do proper uppercase conversion of lowercase letters.

¢ underlined bold
e underlined italic

* underlined bold italic

® UNDERLINED SMALLCAPS

These values are only valid on the PH tag’s style attribute. Here’s a sample:

© Copyright IBM Corp. 1992, 2001 43

44

| Formatted Example |

Hey there! This is very important! Don’t go out in the rain without your galoshes!

| End of Formatted Example |

Here’s its markup:

<ph style="Bold Italic">Hey there!</ph>

This is <ph style="Underlined Bold">very</ph>

<ph style="Bold">important</ph>! Don't go out in the
<ph style="Italic">rain</ph> <ph style="Underlined Bold Italic">
without your galoshes</ph>!

Other elements included for denoting values and phrases are shown in Cable 1l

Table 1. Phrase types

Description Markup Result

APL <ap1>APL</ap1> APL

binary (bin) <bin>0101</bin> B010T

character (char) <char>character</char> "character”
decimal (dec) <dec>123</dec> 123

example phrase (xph) <xph>example</xph> example
hexadecimal (hex) <hex>10FE</hex> X'10FE'

marked deletion (md) <pd rev="rev1">marked marked-deletion

message variable (mv)

deletion</md>

<mv>message variable</mv>

message variable

number with specified < un pase="3">120</num> 120

base (num)

octal (oct) <oct>013 736</oct> 0'013 736'

programming keyword <pyskeyword</pk> keyword

programming keyword <y optreq="def">default</pk> default

default

programming variable <pv>keyword</pv> keyword

reference key (refkey) <pefkey>reference
key</refkey>

term <term>term</term> term

You can also nest highlighted phrases — that is, put one kind inside another. The

formatter causes the nested highlighting to inherit the highlighting of the previous
style. In the following example, the italic and underlined text are also bold because
the whole sentence is marked bold:

Speak softly and carry a BIG stick.

Here’s its markup:

<ph style="Bold">Speak <ph style="Italic">softly</ph>

and carry a <ph style="Underlined">BIG stick

</ph></ph>.

ID Workbench: IBMIDDoc User’s Guide and Reference

Simple title citations

While IBMIDDoc provides extensive bibliographic markup (see Chapter 14]
‘Bibli i itations”), sometimes you just need a simple
inline title citation. For this you use the CIT element (and some others). For
example, here’s a reference to a non-IBM book:

| Formatted Example

Huckleberry Finn, by Mark Twain, is a most excellent book.

| End of Formatted Example

Here’s its markup:

<cit><bibentry><doctitle><titleblk><title>Huckleberry
Finn</title></titleblk></doctitle></bibentry></cit>,
by Mark Twain, is a most excellent book.

Here’s a reference to an IBM book:

| Formatted Example

The BookMaster User’s Guide is the book to emulate.

| End of Formatted Example

Here’s its markup:

The <cit><ibmbibentry><doctitle><titleblk><title>
BookMaster User's Guide</title></titleblk></doctitle>
</ibmbibentry></cit> is the book to emulate.

Notes

The Note element contains a single note. For example:

Note: Thinking of a seashore, green meadow, or cool mountain overlook can help

you to relax and be more patient.

Here’s its coding:

<note><notebody>Thinking of a seashore, green meadow,
or cool mountain overlook can help you to relax and
be more patient.</notebody></note>

If you want the word “Note” to be something else, use the TITLE element; for
example:

Tip: Don’t sit under the apple tree with anyone else but me.

Here is its coding:

<note><title>Tip</title>

<notebody>Don't sit under the apple tree with anyone else but me.
</notebody>

</note>

Chapter 4. Highlighting, Citing, Noting, and Quoting

45

Note lists

The NoteList element contains an ordered list of notes. The list is ordered because
there is usually a priority to the notes. For example:

Notes:

Make a To Do list

Prioritize sensibly

Avoid interruptions where possible

Check on your progress toward monthly goals

Plan for the next work week

Do something for the fun of it

N o~

Spend some quality time with your pet

Here’s its coding:

<notelist>

Make a To Do Tlist</1i>

Prioritize sensibly</1i>

Avoid interruptions where possible</1i>
Check on your progress toward monthly goals</1i>
Plan for the next work week</1i>

<1i>Do something for the fun of it</1i>

<1i>Spend some quality time with your pet</1i>
</notelist>

Groups of notes can be organized into blocks using the LIBlk element.

You can also use your own title instead of “Notes” by adding a Title. For example:

Watch out for these:
1. things that go bump in the night
2. green eggs and ham

Here’s its markup:

<notelist><title>Watch out for these</title>
things that go bump in the night</1i>
green eggs and ham</1i>

</notelist>

You can compact, bridge, and group list items together. This is done in the same
way as ordered lists; see Chapter 3, “All kinds of lists” on page 29

Footnotes

The FN element is used to annotate text with notes that are part of the narrative
content of the document, but that are not appropriate for inclusion inline with the
document text. The information contained in the FN element is associated with its
containing element.

46 1D Workbench: IBMIDDoc User’s Guide and Reference

| Formatted Example |

Here’s a footnote? around here somewhere.

| End of Formatted Example |

Here’s its coding:

<p>There's a footnote<fn>While some folks do not Tike
footnotes; they sometimes contain a nugget of priceless
lore. Did you know IBMIDDoc's grandmother was named
ISIL?</fn> around here somewhere.</p>

You can also define a footnote and use it in multiple places. First, define the
footnote (FN tag) and give it an ID attribute. Then, use the FN tag with a REFID
attribute to refer to that footnote.

| Formatted Example |

Here's a sentence® that uses several footnotes®.

| End of Formatted Example |

Here’s its coding:

<p>

<fn id="multiple">Here's another Tittle footnote.</fn>Here's
a sentence<fn refid="multiple"> that uses several
footnotes<fn refid="multiple">.</p>

Quotes and excerpts

IBMIDDoc provides for two different kinds of quotations — inline quotations and
excerpts (which we call “long quotations” although it really has nothing to do with
the length). For simple inline quotations, use the Q element. These can be nested.
For example, this contains two quotes, one inside the other. The formatter knows
to automatically switch from double quotes to single quotes (in hardcopy anyway).

| Formatted Example |

George said; “She said “Yes!” to me.”

| End of Formatted Example |

Here’s its coding:
George said; <g>She said <g>Yes!</q> to me.</q>

For long quotations or excerpts, use the LQ element. Who remembers this quote
from History class:

The only thing we have to fear is fear itself.

Here’s its coding:

2. While some folks do not like footnotes; they sometimes contain a nugget of priceless lore. Did you know IBMIDDoc’s
grandmother was named ISIL?

3. Here’s another little footnote.

Chapter 4. Highlighting, Citing, Noting, and Quoting 47

<1g>The only thing we have to fear is fear itself.
</1g>

Labeled boxes

Labeled boxes are a special style of paragraph block. For example:

Here’s my cute little box
FHere’s something that I'm really proud of.

Here’s its coding:

<pblk style="1bTbox">

<title>Here's my cute little box</title>
<p>Here's something that I'm really proud of.</p>
</pbhlk>

Beware of over-using these; and of trying to put too much information into them.

The perils of processing: Attention, caution, and danger

48

These elements are used to contain information about situations that can
dangerous to people, equipment, or data.

Attention
Use an Attention notice to indicate the possibility of damage to a program,
device, system, or data.

Warning
Use a Warning notice to indicate the possibility of damage to a program,
device, system, or data.

Caution
Use a Caution notice to call attention to a situation that is potentially
hazardous to people because of some existing condition. For example, you
might use a Caution notice to warn about the hazard of paper cuts when
someone opens a fresh ream of paper.

Danger
Use a Danger notice to call attention to a situation that is potentially lethal
or extremely hazardous to people. For example, after a computer side
panel is removed, exposed high-voltage wires might be lethal.

Attention: Here’s a way to get someone’s attention.

CAUTION:
Watch out for these!

DANGER

Really watch out for these!

Here are their codings:

<attention>Here's a way to get someone's attention.</attention>
<caution>Watch out for these!</caution>
<danger>Really watch out for these!</danger>

ID Workbench: IBMIDDoc User’s Guide and Reference

Annotations

The Annot element is used to contain comments about the content of its containing
element. These comments can be notes to reviewers, other writers, editors,
vendors, and so forth. Annotations do not contain comments you want to appear
in a final draft of your document. Annotation content is not part of the narrative
text of your document.

Annot has NO formatting associated with it. All formatting comes from the
markup within the annotation body.

— Processing Note
The Xyvision formatter does not print annotations under any circumstances.
BookMaster hides the content by default, unless you specify this runtime
option:
sysvar(A yes)

— Migration Note
Do not use the Annot element to comment out information. Because Annot is
an element in the document hierarchy, it cannot span structures in the
document.

If you want to selectively print annotations, each Annot element should be
contained in a marked section or use a PROPS value as shown below.

<P>Remove the cover from the system unit by unscrewing the tabs on the
rear of the unit.

<ANNOT PROPS="hide">

<TITLE>>System Test Note</TITLE>

<ANNOTBODY>

<p>

Please advise us of any discrepancies in the installation
instructions in this section.

</P>

</ANNOTBODY>

</ANNOT>

</P>

Migration Note
Any ANNOT tags used to comment out information in Bookmaster will be
presented within a labeled box. You can delete these or convert them to
SGML comments.

Qualifying information

When you have to qualify information as applying to a particular product or
system in a book about multiple products or systems, there are several techniques
you can use. One, of course, is simply to say, “If you are using Model 9, then....”.
Another method, for major differences, is to put some qualification in the section
heading. Still another method is to use a formatting convention such as the one
provided by the QualifDef (quilifying information definition) element and the

QUALIF (qualifying information) attribute. This is suitable only for qualification at

Chapter 4. Highlighting, Citing, Noting, and Quoting 49

the level of a paragraph or list item or greater. It is not suitable for single-phrase
qualifications, or for qualifications of many pages.

You begin by defining your qualification in the document’s prolog, using the
QualifDef and Qualif elements. For example, this specifies two qualifications, one
for Windows® 99 and another for OS/2.5:

<qualifdefs>

<qualif id="win99" ident="use">
<title>Windows/99</title>
<desc>Windows/99 information</desc>
</qualif>

<qualif id="o0s25" ident="use">
<title>0S/2.5</title>
<desc>0S/2.5 information</desc>
</qualif>

</qualifdefs>

Here are sample paragraphs for each type of qualification:

| Windows/99 |

This operating system is great for home use.

| End of Windows/99 |

| 0S/2.5 |

This operating system is the business-oriented, industrial-strength operating
system.

| End of 0S/2.5 |

Here is their markup:

<p qualif="win99">This operating system is great for

home use.</p>

<p qualif="0s25">This operating system

is the business-oriented, industrial-strength operating system.</p>

QUALIFs cannot be nested. Also, the text must be short enough to fit within the
column along with the words “end of,” plus the blanks, corners, and at least a
little of the line. This can be a tight fit in a double-column layout. If you use the
Qualif inside a boxed figure or a ruled table, the corners may overlay the rules.

Trademarks

The TM tag identifies the trademark terms in your source by surrounding the
trademark term or phrase. This tag has attributes that are not translated; they
contain no “MRI”. The TM attributes contain information for the author. The
TMType attribute creates the appropriate trademarking character after the term or
phrase.

The ID Workbench files IDDIRTM.LST or IDTMSCAN.LST list the trademarks and
the attributes needed for the TM tag. Use the Epic or Frame2000 editor to insert

these tags and attributes. For more information about how to mark trademarks, see
the D Warkhench Cpffing Started and Lser’s Guidd

50 ID Workbench: IBMIDDoc User’s Guide and Reference

| Using document classes with XHTML style sheets

This topic is sort of related to highlighting, so we placed it here.

Cascading style sheets (CSS files) are powerful feature of XHTML.* CSS files allow
you to define the style used for the XHTML outside of your XHTML content itself.
This separation of style and content allows you as a writer to concentrate on the
content; without always being concerned about the style. You can make changes in
the CSS file; without affecting the content of hundreds (or thousands) of web

pages.

The ID Workbench XHTML output transform includes a way of passing style
elements through to the XHTML. The IBMIDDoc ClassDef tag defines an output
class. The Class attribute in a tag indirectly specifies the style for that tag. The
setting in the document is reflected as a style sheet setting.

Here’s a simple example. Follow the steps here to see how this works for you:

1.

We want some chapter headings to look a certain way: 18pt bold. Here’s a
simple CSS file named MYSTYLE.CSS that has that setting; the style is named
“fred”.

hl.fred { font-size: 18pt; font-weight: bold }

To have this style used in our XHTML; we need to first define a ClassDef tag
in our document prolog, in a PropDesc section; like this:

<classdef classname="fredthing" eletypes="d" outputclass="fred">

You can make the classname and the output class the same; we just wanted to
show you that they can be different. The classname specifies the class for an
SGML tag; the outputclass specifies the class style in the CSS file.

To have a heading have that style; you use the class attribute on the D tag as
follows:

<d class="fredthing">

<dprolog>

<titleblk><title>Flintstone</title></titleblk>...

When you format using ID Workbench; and specify the MYSTYLE.CSS style
sheet on the XHTML-3 processing options page; your output will contain a link
to your style sheet; and the heading will have a class to point at that style
sheet:

<hl class="fred">Flintstone

4. We won't describe cascading style sheets (CSS files) here; there is plenty of discussion of them on the web.

Chapter 4. Highlighting, Citing, Noting, and Quoting 51

52 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 5. Examples, figures, artwork, and multimedia

In IBMIDDoc, all non-text objects are considered multimedia objects, including
graphics. This chapter explains how to use these objects in IBMIDDoc. The
elements discussed in this chapter include:

* Lines (see t]ust.plain.lin&d)

* Xmp (see UExamples of computer output” on page 54)

+ LitData (see I'Literal text data” on page 54)

+ MMObj (see Including artwork in documents” on page 59)
* TFig (see I'Figures” on page 57)

» CGraphic (see !‘Character graphics” on page 59)

* Screen (see !Screens” on page 5d).

Just plain lines

Use the Lines element to contain text that has record ends, or boundaries, that
need to be preserved when presented to the document user.

The LINES element allows you to control where lines break. That is, within the
content of the LINES element, IBMIDDoc will end each output line at the same
point where you ended the input line in the markup. In SGML terms, the record
ends must be respected. This occurs whether you include text characters within the
Lines element, or if you reference an entity that contains text characters or a
graphic.

You can include information within LINES by either of the following:
* The Lines tag contains text characters that should be presented “as-is”.

* Using the OBJ attribute to name an entity containing the text or other character
data to be presented

The next example illustrates using a Lines element to contain unflowed text:

a partridge in a pear tree
two turtledoves

three French hens

four calling birds

five golden rings

six geese a-laying

seven swans a-swimming
eight maids a-milking
nine ladies dancing

ten lords a-leaping

eleven pipers piping
twelve drummers drumming

Here’s its markup:

<LINES>

a partridge in a pear tree
two turtledoves

three French hens

four calling birds

© Copyright IBM Corp. 1992, 2001 53

five golden rings

six geese a-laying

seven swans a-swimming
eight maids a-milking
nine ladies dancing

ten Tords a-Teaping
eleven pipers piping
twelve drummers drumming
</LINES>

This next example shows how you would code the Lines tag to use the OB]J
attribute to insert a file named “lines.txt”:

<lines obj="samplelines">

Here’s the declaration:
<IENTITY Tinestext SYSTEM "lines.txt" ndata linespec>

The lines typically have a space before and after them, except at the start of a page,
column, or table entry.

Examples of computer output

The Xmp element typically contains an example of computer input or output.
Sometimes you may have a very long example — possibly running for several
pages. In this case, you have to tell IBMIDDoc that it is okay to break the example
at any point after a specified number of lines have printed. You do this with the
KEEP attribute. This is illustrated in the example that follows.

<XMP STYLE='BKM: (KEEP="10")'>

10 LET A =B

20 IF A GT C THEN GO 40

30 LETA=C

40 PRINT A, C
</XMP>

You can use the LINELENGTH attribute to automatically scale down the example
to fit the line length you specify. You can use the PGWIDE attribute to make your
examples page-wide (pgwide=1). The default is pgwide=2; the example is as wide
as the current textline.

As with Lines, you can also use the OB]J attribute to include the example. In the
example that follows, the OBJ attribute is the entity name sampcprg. This entity is a
small sample C program named sampcprg.c. The XMPs element uses the content of
this entity as its content.

<IENTITY sampcprog SYSTEM "sampcprg.c" NDATA C>
<XMP 0BJ="sampcprg">

The example typically has a space before and after, except at the start of a page,
column, or table entry.

Literal text data

54

Literal data can be used to contain special information or code in which SGML
markup is not recognized. It may also refer to the content of other files whose
content will not be processed as SGML markup. Examples of this type of data
include character translation, special code pages, and samples of programming
code.

ID Workbench: IBMIDDoc User’s Guide and Reference

For example, a sample C++ program could be contained in the LitData element:
<xmp>

<LITDATA>

// testprog.cpp

#include <iostream.h>

int main(void)

{

}...
</LITDATA>

</xmp>

This same program could be referenced using the OBJ attribute that refers to an
entity that contains the program, as shown in the next example.

<IENTITY testprg SYSTEM "testprg.c" ndata c>

<FIG>

<CAP>A basic C++ program.
<LITDATA 0BJ="TESTPRG">
</FIG>

Including artwork in documents

In most cases, the artwork you include will be constructed using a graphic/image
tool such as CorelDraw or Photoshop. It will be merged with the text during
processing for the output device. All you have to do is specify the file type of the
artwork that you want to include in your document; the formatter does the rest.

You use the MMODbj and ObjRef elements to contain artwork such as images,
vector graphics, encapsulated PostScript, or video clips. The processing and
presentation systems in use determine the types of multimedia objects that are
supported.

In order to use graphic objects in your SGML markup, you must declare them as
entities using an entity declaration. Use the notation “graphics” on the declaration.

<IENTITY bike system "bike.gif" ndata graphics>

In some cases, certain graphic formats are supported for in-line viewing during
your editor session. Use the file extension GIF, JPG, TIF, or EPS (if your EPS file
has a TIFF header) when you declare your graphic, and the editor will display the
artwork.

In the example that follows, the entity is defined first, and it is referred to later in
the document by the OB]J attribute on the ObjRef element contained in the MMODbj
element. Here’s the declaration and the markup for an illustration of a bike:

<IENTITY bike system "bike.gif" ndata graphics>
<MMOBJ>
<O0BJREF OBJ="bike">

<TEXTALT>This is a two-wheeled bicycle.</TEXTALT>
</MMOBJ>

Chapter 5. Examples, figures, artwork, and multimedia 55

And here’s the bike:

S~

%
AL

=

]

——

The MMODj element also contains a TextAlt element. The TextAlt element contains
a text description that is presented as an alternative to the artwork.” The text
appears in HTML when the user’s mouse hovers over the artwork. So be sure to
type something meaningful in the TextAlt; don’t be embarrassed by entering
something like “Fred, is this really true?” and then having that go out the door
and on to a website.

Normally a single space preceeds the artwork. You can use the setting
placement=runin to have the artwork put inline in a sentence. You can also use
placement=runin to have the artwork appear in the margin.

Creating graphic links

To create a graphic link for RTE, IPF, or HTML, you need to use the MMObjLnk
tag. The Linkend attribute specifies the link ID. The AreaDef element is not used
(that is, you cannot create hotspots with it; the entire graphic becomes a link).

Here is an example that will make the graphic partl link to the ID “newdiv”:

<mmobj><objref obj="partl">
<mmobjlink Tinkend="newdiv">
<areadef coords="1 100">
</areadef></mmobj1ink>
<textalt></textalt>

</mmobj>

5.Some say a picture is worth a thousand words; well, this is where you put the thousand words to express your picture to those
that cannot view pictures.

56 ID Workbench: IBMIDDoc User’s Guide and Reference

Figures

Figures typically contain examples, text, or artwork; so it makes sense to talk about
them here.

You can choose to have the figure formatted within the column or formatted the
full width of the page. You can choose to have it set off with rules across the page,
put in a box, or formatted with no frame at all. You can give it an identifier, which
will allow you to make cross references to it (which we’ll cover in a later chapter).
You can give the figure a caption, which will also cause it to be listed in the figure
list, if you have one. You can extend the figure caption with a figure description,
too (only the caption itself goes in the figure list). And, if you have a very large
figure, you can have it split into pieces with a caption that says “Part x of y” on
each piece.

Here’s a sample, column-wide figure:

Here are some lines
in the sample, simple figure.

Here’s its markup:

<fig pgwide="0">

<lines>Here are some lines

in the sample, simple figure.</lines>

</fig>

The pgwide attribute sets the figure as column-wide.

Your figure can also have a kaption or description.

To have a full-page figure, you specify this PgWide attribute:

<fig pgwide="1">
<lines>Here are some lines in a page-wide figure.</Tines>
</fig>

You can choose to add a box around your figure, or to have lines or rules appear
before and after your figure. You add these with the FRAME attribute. For
example:

<fig frame="rules">

Or:
<fig frame="box">

Figure captions and descriptions

Your figures can have a short caption and an optional longer description. The
caption can appear in a figure list at the beginning of your book. A good place for
the figure list is after your table of contents. If your figure has a caption, you
should also give it an ID; some processes (like BookMaster) complain about figures
that have captions but are missing the ID. Put the ID on the fig tag, not on the
caption. The caption should be entered like a heading, without ending
punctuation.

Here’s another sample figure. This one is page-wide and includes a caption:

Chapter 5. Examples, figures, artwork, and multimedia 57

Here are some lines

in the sample, simple figure.

Figure 4. Here’s a sample, page-wide figure

Here’s its markup; note the FIG tag has an identifier:

<fig id="samplefig" style="bkm:(place=inline width=page)">
<cap>Here's a sample, page-wide figure</cap>

<lines>Here are some Tines

in the sample, simple figure.</lines>

</fig>

Here’s another sample figure with both a caption and a description. You enter a
description like a sentence, with punctuation. Note that the caption source has no
punctuation; if any is needed, it is added by the formatter.

Here are some lines
in the sample, simple figure.

Figure 5. Here’s a sample figure with a caption and description. This figure has a description.
Note that descriptions have punctuations like sentences.

Here’s its markup:

<fig id="samplefigdesc" style="bkm:(place=inline width=column)">
<cap>Here's a sample figure with a caption and description
</cap>

<desc>This figure has a description. Note that descriptions

have punctuations like sentences.</desc>

<lines>Here are some lines

in the sample, simple figure.</Tines>

</fig>

Multipart figures

There are times when your figure is too big to fit on a single page. Sorry, there’s no
way to automatically split a figure. The FIGSEG (figure segment) tag is used to
specify the points at which the figure can be broken into parts. The formatter takes
care of printing the figure caption with the “Part x of y” on each part for you.
w?shows a sample two-part figure.

In Xyvision PostScript output, the figures are split at the FIGSEG tag. For HTML,
the figure segments are ignored; the output appears as if it were one figure.

First part of the figure,) o
Figure 6. My little caption (Part 1 of 2). My little description.

Last part of the figure.
Figure 6. My little caption (Part 2 of 2). My little description.

Here’s its source:

<fig id="idgifsegxmp"><cap>My little caption</cap>
<desc>My little description.</desc>

<figseg>

<p>First part of the figure.</p>

</figseg>

<figseg>

<p>Last part of the figure.</p>

</figseg>

</fig>

58 D Workbench: IBMIDDoc User’s Guide and Reference

Character graphics

Use the CGraphic element to contain a graphic created using character graphics,
such as box and line characters.

Note: Ensure the cgraphics are external file entities. Having them inline increases
the chances of data corruption.

CGraphic will often use the OBJ attribute to reference an entity that contains the
actual cgraphic markup characters. The NOTATION attribute value is always
LINESPEC.

<IENTITY ILLUSO1 SYSTEM "ILLSO1.CHG" ndata linespec>
<CGRAPHIC 0BJ="ILLUSO1">

You can use the LINELENGTH attribute to automatically scale down the character
graphic to fit the line length you specify.

Screens

Use the Screen element to contain or refer to a representation of a computer
display or panel. There are several different ways to use this element in IBMIDDoc.

The Screen element is designed to hold “green” screen images which use fixed
pitch fonts. The Screen element can reference an entity using the OBJ attribute.

<SCREEN 0BJ="scr1">

It can also just contain the content:

<screen>
EDFUSCRN SCRIPT Al V 132 TRUNC=132 SIZE=69 LINE=45 COL=1 ALT=4

This is what

===== the screen looked Tike
</screen>

The resulting output from a typical screen display would look similar to the
display illustrated below.

Chapter 5. Examples, figures, artwork, and multimedia 59

EDFUSCRN SCRIPT Al V 132 TRUNC=132 SIZE=69 LINE=45 COL=1 ALT=4

This is what
the screen Tooked Tike
when I was writing
this section on screens.
ALL LINES IN THE SCREEN MUST BE ACCOUNTED FOR

IN THE SOURCE FILE

XEDIT 1 FILE
- v

You can use the LINELENGTH attribute to automatically scale down the screen to
fit the line length you specify. You can use the PGWIDE attribute to make your
screens page-wide (pgwide=1). The default is pgwide=2; the screen is as wide as
the current textline.

Math formulas

Mathematical formulas are contained by the Formula element. Only formulas
created using the Script Mathematical Formula Formatter (SMFF) are supported at
this time. This is only supported for BookMaster hardcopy output.

<FORMULA NOTATION="smff">

integral from 0 to infinity of d x
</FORMULA>

60 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 6. Cross-referencing

At last we're going to tell you what all those ID attributes are for!

IBMIDDoc manages cross references to headings, figures, tables, items in ordered
lists, and footnotes, indeed, to any spot in a document. Each of these types of cross
references is done with the ID (identification) and REFID (reference identification)
attributes — ID on the thing pointed to, and REFID on the thing doing the
pointing.

Also, when you take your BookMaster source and create an online document,
IBMIDDoc uses the REFID and ID attributes to set up hypertext links between
cross references within and between documents. See Chapter 12_“All ahou
linking” on page 129 for more information about interdocument cross-reference
linking.

The ID (identification) attribute is a way of giving something a name that
IBMIDDoc can use in providing a reference to that thing. You've already seen cases
in this book of cross references to headings, although you may not have realized it
at the time. For example, this is a cross reference to a heading;:

| Formatted Example |

See Phapfpr 3 “All kinds of lists” on page 2q

| End of Formatted Example |

To get the cross reference, two things have to be done. First of all, the heading that
we referred to was entered like this:

<d id="1sts">

<dprolog><titleblk>

<title>A11 kinds of lists</title>

</titleblk></dprolog>

The “Ists” is a name we made up. It can be any combination of letters and
numbers as long as it is no more than 64 letters and numbers. The first character
must be a letter; and the other characters can be a period (.) or a dash (-). You can
use uppercase or lowercase letters. Each ID in the document must be unique. The
other thing you have to do is enter the cross reference itself, using the XREF tag
with a REFID attribute. It would look like this:

See <xref refid="lsts">.

Because we used the same value for the REFID attribute as for the ID attribute of
the heading we are referring to, IBMIDDoc knows which one we want. Because it
also knows what page it is on, it supplies that, too. If the heading had been on the
same page as the reference, IBMIDDoc would know that also, and it would not
give the page number.

The target of a cross-reference should be to an ID on the outer container (for
example, D, MSG, LE, FIG, TABLE) and not the title text or caption text.

© Copyright IBM Corp. 1992, 2001 61

Since online BookManager® books don’t have actual pages, cross references will
refer to topic numbers. For online HTML and other information, the references just
contains the heading.

Cross references can go in either direction; that is, the thing being referred to can
come before or after the cross reference.

It is a good idea to pick descriptive names for your ID attributes; if you name
things “chapl”, “chap2”, and so on, you will find that when you update the source
file and insert, delete, and rearrange material, your names will be more confusing
than useful in trying to keep track of what is going on.

There are times when you want to control the form of cross references using the

FORM attribute, as described in LCm.tm]b.ng.the.ﬁam.nf.cmss.neﬁemnces_od

You can use XREF to reference any heading level and to reference anything. These
next topics show cross references to common elements:

MRt fio]

Referencing a figure

To reference a figure, ensure the figure has a caption. Here’s a sample figure that
we're going to reference in a bit:

| Formatted Example |

A figure that is going to have a cross reference must also have a caption.
Figure 7. Captiohed figure for cross reference

| End of Formatted Example

Here’s the markup for our little figure above:

<fig id="1ittlefig">

<cap>Captioned figure for cross reference</cap>
<p>A figure that is going to have a cross reference
must also have a caption.</p>

</fig>

Now we can code and XREF like this:

See <xref refid="1ittlefig"> for a sample of a figure
reference.

and the result is this:

| Formatted Example |

See w for a sample of a figure reference.

| End of Formatted Example |

62 1D Workbench: IBMIDDoc User’s Guide and Reference

Referencing a table

Cross referencing a table is just like referencing a figure. The table must have a
caption. Here’s a sample table:

| Formatted Example

Table 2. Captioned table for cross reference

A table that is going to have a cross
reference...

... must also have a caption.

| End of Formatted Example

Here’s the markup for our little table above:

<table pgwide="0" id="sampletable">

<cap>Captioned table for cross reference</cap>
<tgroup cols="2">

<colspec colname="coll">

<colspec colname="col2">

<tbody><row>

<entry colname="col1">A table that is going to have
a cross reference...</entry>

<entry colname="col2"></entry>

</row><row>

<entry colname="coll"></entry>

<entry colname="col12">... must also have a caption.
</entry></row></thody></tgroup></table>

Now we can code and XREF like this:

See <xref refid="sampletable"> for a sample of a table
reference.

and the result is this:

| Formatted Example

See for a sample of a table reference.

| End of Formatted Example

Referencing a list item

Another common phenomenon in the books we produce is the cross reference to
an item in an ordered list. To do this, we put an ID attribute on the LI (list item)
tag for the item we want to point to, and use an XREF tag with a REFID attribute
to do the pointing. Here’s a sample of some new tax instructions from the U.S
Department of Treasury:

Formatted Example
1. If the amount on line 37 is greater than the lesser of lines 5 and 6, go to step B

2. Enter the sum of line 5 and line 37. If this exceeds your total annual income
before deductions, go to step

Chapter 6. Cross-referencing 63

3. If line 32 less the difference of lines 73 and 74 on Schedule C is greater than
line 36 plus line 17 of Schedule A and you are under 65 years of age, go to step
m, where you will be in a loop until you are 65.

4. Use table 30-C to compute the number of bathrooms in your house and enter
on line 56.

5. Enter the root-mean-square of line 14.
6. Sign form and mail with remittance.

| End of Formatted Example

Here’s its markup:

<0]>

<1i id="ageloop">If the amount on line 37 is greater
than the Tesser of Tines 5 and 6, go to

step <xref refid="squareit">.</1i>

Enter the sum of line 5 and Tine 37. If this exceeds
your total annual income before deductions, go to
step <xref refid="mailit">.</1i>

<1i>If line 32 less the difference of lines 73 and

74 on Schedule C is greater than Tine 36 plus line

17 of Schedule A and you are under 65 years of age,
go to step <xref refid="ageloop">, where you will

be in a loop until you are 65.</1i>

Use table 30-C to compute the number of bathrooms
in your house and enter on line 56.</1i>

<1li id="squareit">Enter the root-mean-square of line
14.</1i>

<1i id="mailit">Sign form and mail with remittance.
</1i>

Referencing anything at all

64

Although we’ve given you a lot of ways to create cross references, there are times
when none of those ways exactly meets your requirements. So IBMIDDoc has IDs
on all its tags, which allow you to identify any spot in your document, by page
number, and to refer to it from another place.

A tag with an ID attribute has no effect on the formatting of the text around it, but
to get the result you want, it should be placed in the same places that are good for
index entries. These are described in I ' ies” . You
can also specify some text that is associated with this tag, using the XREFTEXT
(cross-reference text) attribute on that tag. If there was no XREFTEXT, then the
XREF gives you just the page number of the tag. If there was XREFTEXT, then
XREF prints that text, followed by “on page” and the page number.

For example, here’s a paragraph we want to reference:
Here’s my little paragraph that I want to reference.

Here’s its markup, including xreftext:

<p id="samplepara" xreftext="My 1itle paragraph">
Here's my little paragraph that I want to reference.
</p>

Then, to reference that, we would code the following:
See <xref refid="samplepara"> for a small bit of information.

ID Workbench: IBMIDDoc User’s Guide and Reference

And we would get this result:

See ['My litle paragraph” on page 64 for a small bit of information.

Controlling the form of cross references

Table 3. XREF forms for hardcopy output

The “normal” form of a cross reference, as shown in the examples in the preceding
sections, is not always exactly suitable to your needs. IBMIDDoc has a FORM
attribute on the XREF tag that allows you to control what is generated.

shows the supported values of the FORM attribute for hardcopy output, for the

typical things you cross-reference.

Referenced |Form=

item Normal® Full Text Location Number

Heading Chapter 6 Chapter 6 Chapter 6) Ed t'.ha.p.te.r_d
a _- . ' g r” Il‘ I

Figure EJ.g.Lu:e.Zgn_page.&i ELngeLma_pa.ge_é.’i w kd]

Table [Lable 2 on page 63 [[able 2 on page 63 Cable d %] A

Listitem | Lo pagedd = |

Anything 4 2 4 P Whatarethd [kl [l

(first Fagesl bage 61 EDs ford

paragraph in

this chapter

with xreftext)

! The “on page pagenumber” only appears if the referenced item is on a different page.

Note that punctuation after a quoted reference remains outside the quote. It does
not “move inside” the quote as the IBM style guidelines recommend. This is
currently a Xyvision formatter and Frame2000 formatter restriction; it may be

removed in the future.

Chapter 6. Cross-referencing 65

66 1D Workbench: IBMIDDoc User’s Guide and Reference

Chapter 7. Creating IBMIDDoc Tables

IBMIDDoc supports the CALS table elements, with a few modifications for
IBM-specific usage. This section describes fundamental IBMIDDoc table concepts,
and gives examples of markup for several tables.

Migration Note
For BookMaster tables that include DVCEF text that will be reused across a
number of documents, or will be output in many different formats, use the
IBMIDDoc modular information elements instead of table elements.

IBMIDDoc Table Markup Concepts

You can use IBMIDDoc to create a wide variety of tables. From simple tables:
Table 4. Simple table
A

D E F

To complex tables:

Table 5. Complex table
A

=]

You can select several different combinations of rules and framing. You can have a
table heading and a table caption. You can specify the alighment and formatting of
text in your table. You can combine several table definitions within a single table.
But you don’t have to use all of the power of table markup every time you want to
create a table. You can get handsome tables with fairly simple markup. So we'll
take things one step at a time, beginning with simple table markup and moving on
to the more advanced stuff later.

IBMIDDoc tables are contained in a Table element. The Table element then can
contain TGroup elements. In most cases, you'll assign values to the TGroup’s
attributes that define the structure and layout of the table.

Creating simple tables

Tables consist of cells, arranged in rows. Here is a simple example:

Table 6. A simple example

Header 1 Header 2 Header 3

Row 1, Cell 1 Row 1, Cell 2 Row 1, Cell 3; here’s a little
more text than the other cells
have

© Copyright IBM Corp. 1992, 2001 67

68

Table 6. A simple example (continued)

Header 1 Header 2 Header 3

Row 2, Cell 1 Row 2, Cell 2 Row 2, Cell 3
Table footer

Each little box in this table is a cell. This table consists of two rows, with three cells
in each. You can, of course, have more or fewer rows and cells, so this basic form
can take care of a lot of your table requirements. A table must have at least one
row (in addition to any headings, footings, and captions) to produce any output,
and each row must have at least one cell.

The markup for this table is as follows:

<table><cap>A simple example</cap>

<tgroup cols="3">

<colspec colname="col1l">

<colspec colname="col2">

<colspec colname="col13">

<thead>

<row>

<entry colname="coll" valign="top">Header 1</entry>
<entry colname="col12" valign="top">Header 2</entry>
<entry colname="co13" valign="top">Header 3</entry>
</row>

</thead>

<tfoot>

<row>

<entry namest="coll" nameend="col13" valign="top" align="center">
Table footer</entry>

</row>

</tfoot>

<tbody>

<row>

<entry colname="coll1">Row 1, Cell 1</entry>

<entry colname="col12">Row 1, Cell 2</entry>

<entry colname="col13">Row 1, Cell 3; here's a little
more text than the other cells have</entry>

</row>

<row>

<entry colname="col1">Row 2, Cell 1</entry>

<entry colname="col12">Row 2, Cell 2</entry>

<entry colname="col13">Row 2, Cell 3</entry>

</row>

</thody>

</tgroup>

</table>

We began the table with the TABLE tag and put in a caption with CAP. Next
comes TGROUP with the number of columns in the table, and COLSPECs
indicating the column names. The table header, THEAD, contains the column
headings. Some tables have table footers, contained in the TFOOT element. The
table content starts with the TBODY tag. We then started specifying rows and cells
with the ROW and ENTRY tags. The text within each cell is formatted the same
way regular body text is formatted (we'll look later at how to redefine this.)
Finally, we ended the table with the proper ending tags.

Table headers repeat at the top of each table part for multi-part tables. The
Xyvision formatter places a table footer once, at the end of the table, for each part
of a multi-part figure. Frame2000 currently always repeats the table foot at the
bottom of each page of a multi-part table.

ID Workbench: IBMIDDoc User’s Guide and Reference

Specifying table column widths

If you want your columns to have different widths, like this:

Table 7. Simple table with different column widths
2 E E

You use the COLSPEC tag and the COLWIDTH attribute, like this:
<table><cap>Simple table with different column widths
</cap>

<tgroup cols="3">

<colspec colnum="1" colname="coll" colwidth="1%">
<colspec colnum="2" colname="col12" colwidth="1%">
<colspec colnum="3" colname="co13" colwidth="2%">
<tbody>

<row>

<entry colname="coll">a</entry>

<entry colname="col2">b</entry>

<entry colname="col3">c</entry>

</row>

</thody>

</tgroup>

</table>

In simple table markup, cell widths are the same as the corresponding column
widths, so COLWIDTH really specifies the cell widths. Omitting the COLWIDTH
from all the COLSPECS causes each column to have the same width. In our
example, the Xyvision formatter makes the whole table as wide as the text column
(this is the initial setting) and calculates the table columns based on that.

Of course, you won't always want all your table columns to be the same width.
The COLWIDTH attribute and the asterisks tell the formatter that we want the
table divided porportionally; we don’t care what the exact width turns out to be.
So the formatter decides for us. You can specify 1%, 1%, and 2* if you want the first
and second columns to have the same width, and to have last column be twice as
wide as the first or second column.

When text is too big for a table cell, the Xyvision formatter continues to flow the
text into the next column or off the edge of the page; it currently issues no
message. You should check your output to ensure formatting is as you desire.

Table captions and descriptions

Your tables can have a short caption and an optional longer description. The
caption can appear in a table list at the beginning of your book. A good place for
the table list is after your table of contents. If your table has a caption, you should
also give it an ID; some processes (like BookMaster) complain about tables that
have captions but are missing the ID. Put the ID on the table tag, not on the
caption. The caption should be entered like a heading, without ending
punctuation.

Here’s a sample table with a small caption:

Table 8. Sample table caption

my little

sample table

Chapter 7. Creating IBMIDDoc Tables 69

Here’s its markup:

<table pgwide="0" id="tablesample">
<cap>Sample table caption</cap>

<tgroup cols="1">

<colspec colname="col1l">

<tbody>

<row>

<entry colname="coll">my little</entry>
</row>

<row>

<entry colname="coll">sample table</entry>
</row>

</tbhody>

</tgroup>

</table>

Here’s another sample table with both a caption and a description. You enter a
description like a sentence, with punctuation. Note that the caption source has no
punctuation; if any is needed, it is added by the formatter.

Table 9. Sample table caption. This table shows little remarkable information. You need to
read between the lines.

my little

sample table

Here’s its markup:

<table pgwide="0" id="tablesampledesc">
<cap>Sample table caption</cap>

<desc>This table shows Tittle remarkable information.
You need to read between the Tines.</desc>
<tgroup cols="1">

<colspec colname="col1l">

<tbody>

<row>

<entry colname="coll">my little</entry>
</row>

<row>

<entry colname="coll">sample table</entry>
</row>

</tbody>

</tgroup>

</table>

If you want a table to have a description, but no caption, you can do that too:

Fred’s little table that he doesn’t want numbered

Here’s something Fred likes to talk about.

The secret to good ice fishing is keeping
your worms warm.

Here’s its markup:

<table><desc>Fred's Tittle table that he doesn't want
numbered</desc>

<tgroup cols="2">

<colspec colname="col1l">

<colspec colname="col2">

<tbody>

<row>

<entry colname="coll">Here's something Fred likes

70 ID Workbench: IBMIDDoc User’s Guide and Reference

to talk about.</entry>

<entry colname="col2"></entry>
</row>

<row>

<entry colname="coll"></entry>
<entry colname="col12">The secret to good ice fishing
is keeping your worms warm.</entry>
</row>

</tbody>

</tgroup>

</table>

Page, column, and line-wide tables
You use the PGWIDE attribute on the TABLE tag to control the width of a table.

PGWIDE=0
(zero) makes the table column-wide

pgwide=0

PGWIDE=1
(one) makes the table page-wide.

pgwide=1

PGWIDE=2
(two) makes the table as wide as the current text line.

pgwide=2

In BookMaster, tables default to page wide. In Xyvision, tables default to column
wide.

If you need to have wide tables in BookManager BOOKSs, use the DWIDTH
attribute to specify a wide display width. The normal setting is 75:

style=bkm: (dwidth=100)

Complex tables are NOT supported in RTF nor IPF. Complex tables are tables
whose contents include lists, definition lists, etc. or tables with complex
column/row spanning. If you are creating RTF or IPF output, you should avoid
making use of the complex features that the Epic table editor enables for you.

Splitting tables between pages

In BookMaster hardcopy, tables do not split. This may cause a BookMaster error
and the second part of the table will not have a caption. Use this override on your
large tables so they split in BookMaster without errors:

bkm: (split=yes)

In Xyvision, tables always split. You should accept this default due to possible
translation center impacts (expansion space in rows). If you can’t bear to split your
table, you can use this override:

bkm: (split=no)

Chapter 7. Creating IBMIDDoc Tables 71

If you have a table row that contains a lot of information, more information than
will fit on a hardcopy page for your document’s style, you will get an error during
Xyvision PostScript formatting. You will need to split the large row into two or
more smaller rows.

Affecting how a table appears: Rules, Separators, Shading

The Table tag allows several attributes and settings to control how your table
appears. These are all available in the Xyvision PostScript formatter. The other
transforms support some of these settings, but not all of them. Experiment with
your desired output formats to determine what you can use.

* To make the table have a frame, rules, or nothing, the FRAME attribute can be

set to:
all Rules appear on all four sides; the table is boxed.

frame=all
bottom

frame=bottom
none

frame=none
sides

| frame=sides
top

frame=top
topbot

frame=topbot

e To control the vertical rules in the table, use the COLSEP attribute.

0 (zero) makes the table have no column separators

colsep=0

No vertical rules appear

1 (one) makes the table have column separators

| colsep=1

72 1D Workbench: IBMIDDoc User’s Guide and Reference

| The vertical rules appear

¢ To control the horizontal rules in the table, use the ROWSEP attribute.

0 (zero) makes the table have no row separators

rowsep=0

No horizontal rules appear

1 (one) makes the table have row separators

rowsep=1

The horizontal rules appear

* To shade an entire table, a row, or a cell, use the SHADE attribute:

Shade=NOShade | XLight | Light | Meduim | Dark | XDark
Use the Shade attribute to specify the shading. This table example shows the
shading values used in table cells:

Table 10. Cell entry shading. In the editor, use the modify attributes icon or Ctrl-A to set the
Shade attribute for the cell’s Entry tag.

noshade (0%) |xlight (5%) light (26%) medium dark (74%) xdark (100%)
(50%)

the quick brown | fox

e To rotate a table, set the ORIENT attribute to LAND.

port Use this for normal, portrait-oriented tables.

orient=port

land Use this to turn your table on it’s side (landscape) for hardcopy.
PGWIDE is ignored (it is assumed to be full-page).

Chapter 7. Creating IBMIDDoc Tables 73

=land

orient

74 1D Workbench: IBMIDDoc User’s Guide and Reference

Defining the Column Specifications

A typical set of ColSpec attributes for a simple table is shown in the example that

follows.

Migration Note
At this time, the graphical table editor does not handle a mixture of
proportional and fixed COLWIDTH values in the same table. You should use
proportional COLWIDTHs until this issue is resolved.

<TABLE FRAME="ALL">
<TGROUP COLS="4" COLSEP="1" ROWSEP="1" ORIENT="PORT" PGWIDE="0">
<COLSPEC COLWIDTH="68+">
<COLSPEC COLWIDTH="127+*">
<COLSPEC COLWIDTH="195*">
<COLSPEC COLWIDTH="66+">

The ColSpec attributes include:

COLNUM-=col_number
This value indicates the number of the column.

COLNAME=col_name
Specifies the column name. This name is referenced by other table elements.

ALIGN=LEFT | RIGHT | CENTER | JUSTIFY | CHAR
This attribute specifies the horizontal positioning of text in the column.

LEFT
specifies left alignment (the default).

RIGHT
specifies right alignment.

CENTER
specifies center alignment.

JUSTIFY
specifies that the text should be justified.

CHAR
specifies the character that is used for alignment.

CHAROFF=number
Specifies the character offset for Entry elements in a column.

COLWIDTH=measure
Specifies a fixed, proportional, or mixed measure for the column width.

Migration Note
At this time, mixed measures are not supported. You should use
proportional measures.

COLSEP=0 | 1
This attribute’s value specifies that the internal column rules should be:

* to the right of each cell’s content (1)
* not displayed at all (0)

Chapter 7. Creating IBMIDDoc Tables

75

76

Note that BookMaster does not allow rules on only one side of a column.

ROWSEP O | 1
This attribute’s value specifies that the internal row rules should be:
* below each Entry element that ends a row (1)
* not displayed at all (0)

Note that BookMaster does not allow rules on only one side of a row.

Defining Rows and Entrys

Rows are defined using the Row element. Each Entry element contained in a Row
element occupies the consecutive column, from left to right. The two Row
attributes you will use are VALIGN (vertical alignment) ALIGN (horizontal
alignment). Unless the ROWSEP attribute is specified, the Row inherits the
ROWSEP value specified on the Table or TGroup element.

<TABLE FRAME="ALL">
<TGROUP COLS="3" COLSEP="1" ROWSEP="1">
<COLSPEC COLWIDTH="152%">
<COLSPEC COLWIDTH="152%">
<COLSPEC COLWIDTH="152x">
<TBODY>
<ROW>
<ENTRY VALIGN="TOP" ALIGN="LEFT">ROW 1, CELL 1</ENTRY>
<ENTRY VALIGN="TOP" ALIGN="LEFT">ROW 1, CELL 2</ENTRY>
<ENTRY VALIGN="TOP" ALIGN="LEFT">ROW 1, CELL 3;
HERE'S A LITTLE MORE TEXT THAN THE OTHER CELLS HAVE.</ENTRY>
</ROW>

To have unformatted text in a table, insert the LINES tag, then insert your cell
content within the lines.

Making your tables accessible

The requirement to make your documents accessible to screen readers is very
important. Tables are one of the more challenging items. IBMIDDoc has items to
help your tables be accessible.

First, ensure you have marked your table headers as a header row, so that the
THEAD tags are used. Ensure you are not just using a ROW tag and have made
the headings bold with a style. This allows the XHTML, when read by a screen
reader, to indicate your proper intention to the reader.

Second, if your table uses the first column as a row header; indicate that by using
the RowHeader attribute:

RowHeader=FirstCol | NoRowHeader
This specifies whether the first column is a row header. If your table’s first
column is really a row-header, specify the RowHeader=FirstCol setting. In the
same way that a column header introduces a table column; the row header
introduces the table row. This is to help make tables, whose first column is a
row-header, to be more accessible when the output is for XHTML. The default
is NoRowHeader. Here’s an example of a table where the FirstCol attribute
should be used:

Switch Location Setting

Hallway On

ID Workbench: IBMIDDoc User’s Guide and Reference

Switch Location Setting

Kitchen Off

Bedroom On

And the markup:

<table pgwide="2" rowheader="firstcol">
<tgroup cols="2">

<colspec colname="col1l">

<colspec colname="col2">

<thead>

<row>

<entry colname="coll" valign="top">Switch Setting
</entry>

<entry colname="col12" valign="top">Value</entry>
</row>

</thead>

<tbody>

<row>

<entry colname="col1">Hall switch</entry>
<entry colname="co12">0n</entry>

</row>

<row>

<entry colname="col1">Kitchen switch</entry>
<entry colname="col12">0ff</entry>

</row>

<row>

<entry colname="col1">Bedroom switch</entry>
<entry colname="col12">0n</entry>

</row>

</tbody>

</tgroup>

</table>

A Few Simple Table Examples

Let’s look at a couple of simple tables. This section includes the IBMIDDoc
markup, and an approximation of the resulting formatted output.

A Simple Table
Let’s look at a simple IBMIDDoc table

Table 11. A simple example

Row 1, Cell 1 Row 1, Cell 2 Row 1, Cell 3; here’s a little
more text than the other cells
have

Row 2, Cell 1 Row 2, Cell 2 Row 2, Cell 3

Here’s its markup:

<table frame="all" pgwide="0">

<cap>A simple example</cap>

<tgroup cols="3" colsep="1" rowsep="1">
<colspec colname="coll" colwidth="1%">
<colspec colname="col2" colwidth="1%">
<colspec colname="col13" colwidth="1*">
<tbody>

<row>

<entry valign="top">Row 1, Cell I</entry>
<entry valign="top">Row 1, Cell 2</entry>
<entry valign="top">Row 1, Cell 3; here's a little

Chapter 7. Creating IBMIDDoc Tables 77

78

more text than the other cells have</entry>

</row>
<row>

<entry valign="top">Row 2, Cell 1</entry>
<entry valign="top">Row 2, Cell 2</entry>
<entry valign="top">Row 2, Cell 3</entry>

</row>
</thody>
</tgroup>
</table>

A Simple Table with More Options

Now let’s take a similar table and add another column.

Table 12. Another simple table

Row 1, Cell [Row 1, Cell 2 Row 1, Cell 3; here’s a little more Row 1, Cell
1 text than the other cells have 4
Row 2, Cell |Row 2, Cell 2 Row 2, Cell 3 Row 2, Cell
1 4

Here’s its markup:

<table frame="all" pgwide="0">
<cap>Another simple table</cap>

<tgroup cols="4" colsep="1" rowsep="1" style="BKM:(cols='1% 2% 3% 1x')">

<colspec colname="coll"
<colspec colname="col2"
<colspec colname="col3"
<colspec colname="col4"

colwidth="1%">
colwidth="2%">
colwidth="3%">
colwidth="1%">

<tbody>
<row>

<entry valign="top">Row 1,
<entry valign="top">Row 1,
<entry valign="top">Row 1, Cell 3; here's a little
more text than the other cells have</entry>

<entry valign="top">Row 1, Cell 4</entry>

</row>
<row>

<entry valign="top">Row 2,
<entry valign="top">Row 2,
<entry valign="top">Row 2,
<entry valign="top">Row 2,

</row>
</thody>
</tgroup>
</table>

Cell 1</entry>
Cell 2</entry>

Cell 1</entry>
Cell 2</entry>
Cell 3</entry>
Cell 4</entry>

A Simple Table with a Table Header and IBMIDDoc Elements

Now let’s take a similar table and add a THead element and some IBMIDDoc
Phrase elements with STYLE attribute specifications.

Table 13. Another sample table

Col #1 Col #2 Col #3 Col #4
Row 1, Cell [1. Row 1 Row 1, Cell 3; here’s a little more Row 1, Cell
1 2. Cell 2 text than the other cells have 4

Row 2, Cell [Row 2, Cell 2 Row 2, Cell 3 Row 2, Cell
1 4

Here’s its markup:

ID Workbench: IBMIDDoc User’s Guide and Reference

<table frame="all" pgwide="0">

<cap>Another sample table</cap>

<tgroup cols="4" colsep="1" rowsep="1">
<colspec colname="coll" colwidth="1%">
<colspec colname="col12" colwidth="2*">
<colspec colname="col13" colwidth="3*">
<colspec colname="col4" colwidth="1%">
<thead>

<row>

<entry valign="top" rowsep="1">Col #1</entry>
<entry valign="top" rowsep="1">Col #2</entry>
<entry valign="top" rowsep="1">Col #3</entry>
<entry valign="top" rowsep="1">Col #4</entry>
</row>

</thead>

<tbody>

<row>

<entry valign="top">Row 1, Cell 1</entry>
<entry valign="top">

Row 1</1i>

Cell 2</1i>

</entry>

<entry valign="top">Row 1, Cell 3; here's a Tittle
more text than the other cells have</entry>
<entry valign="top">Row 1, Cell 4</entry>
</row>

<row>

<entry valign="top">Row 2, Cell 1</entry>
<entry valign="top">Row 2, Cell 2</entry>
<entry valign="top"><ph style="italic">Row 2, Cell
3</ph></entry>

<entry valign="top">Row 2, Cell 4</entry>
</row>

</thody>

</tgroup>

</table>

A Complex Table with Row and Column Spans

Now let’s take a similar table and add NAMEST, NAMEEND, and MOREROWS
attribute values to change the look of the table. NAMEST and NAMEEND specify
the spanning of columns, and MOREROWS specifies the spanning of rows.

Table 14. Complex table example

Row 1, Cell 1 Row 1, Cell 2
Row 1, Cell 3 Row 1, Cell 4

Here’s its markup:

<table frame="all" pgwide="0" id="complxt"><cap>Complex table example</cap>
<tgroup cols="3">

<colspec colname="coll" colwidth="77*">

<colspec colname="col2" colwidth="100%">

<colspec colname="col13" colwidth="119%">

<tbody>

<row>

<entry namest="coll" nameend="col2">Row 1, Cell 1
</entry>

<entry colname="co13" morerows="1">Row 1, Cell 2</entry>
</row>

<row>

<entry colname="col1">Row 1, Cell 3</entry>

<entry colname="col12">Row 1, Cell 4</entry>

Chapter 7. Creating IBMIDDoc Tables 79

</row>
</tbody>
</tgroup>
</table>

A Complex Table Header

Here’s a complex table header. As in the previous example, NAMEST, NAMEEND,
and MOREROWS were used to combine the heading cells.

Head 1 Head 2

Sub 1 Sub 2 Sub 3

Here’s it’s markup:

<table frame="all" pgwide="0">

<tgroup cols="4">

<colspec colname="col1l">

<colspec colname="col2">

<colspec colname="col13">

<colspec colname="col4">

<thead>

<row>

<entry colname="col1l" morerows="1" align="center">Head 1</entry>
<entry namest="col12" nameend="col4" align="center">Head 2</entry>
</row>

<row>

<entry colname="col12" align="center">Sub 1</entry>
<entry colname="col13" align="center">Sub 2</entry>
<entry colname="col14" align="center">Sub 3</entry>
</row>

</thead>

<tbody>

<row>

<entry colname="coll">a</entry>

<entry colname="col2">b</entry>

<entry colname="col13">c</entry>

<entry colname="col4">d</entry>

</row>

</thody>

</tgroup>

</table>

Adding footnotes to a table

While you cannot have footnotes within a table using the FN tag, you can use
superscripts and a note list to have the same affect. For example, here’s a table
with some sample notes:

Sample' And another?

Notes:
1. The first table note
2. And another table note.

Here is its coding:
<table pgwide="0">
<tgroup cols="2">
<colspec colname="col1l">
<colspec colname="col2">

80 ID Workbench: IBMIDDoc User’s Guide and Reference

<tbody>

<row>

<entry colname="coll">Sample<ph style="superscript">1</ph></entry>
<entry colname="co12">And another<ph style="superscript">2</ph></entry>
</row>

<row>

<entry namest="coll" nameend="col2">

<notelist>

<1i>The first table note</1i>

And another table note.</1i>

</notelist></entry>

</row>

</thody>

</tgroup>

</table>

Chapter 7. Creating IBMIDDoc Tables 81

82 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 8. The document structure of an IBMIDDoc document

This section illustrates the order and usage of elements in creating a document.
The high-level elements include:

» The IBMIDDoc tag itself (About the IBMIDDoc tagl)
* Prolog (“About the prolog” on page 88)
* FrontM, front matter® (lEront matter (FrontM)” on page 98)

* Body (already covered previously, see I‘Creating the body of your doacument” onl
)

e BackM, back matter(tAhoui_ba.ck_ma.tter_(.Ba.c]MLan_pa.ge_lﬂj)

This example gives an high-level view of the structure of an IBMIDDoc document:

<ibmiddoc>
<prolog>
</prolog>
<frontm>
</frontm>
<body>

<d>

</d>
</body>
<backm>
</backm>
</ibmiddoc>

About the IBMIDDoc tag

The IBMIDDoc tag contains information about the whole document. This includes
the document style, language used, security classification, and page-numbering
information.

Getting in style, the document style, that is

IBMIDDoc has a number of built-in styles. To use a style other than the default, set
the IBMIDDoc tag’s DocStyle attribute to one of these following values:

IBMS8X11
8-1/2 by 11 inch style. Replaces BookMaster style IBMXAGD.

IBM7X9
7 by 9 inch style. Replaces BookMaster style IBMXGGD.

IBM2COL
8.5x11 style (2 column layout)

IBMCD
4.75x4.75 style (for CD Jewel Case booklets)

IBMREFC
Reference cards (3-5/8x9in.).

6. Some folks call this “don’t matter”, because customers seldom read it — do you read a preface?

© Copyright IBM Corp. 1992, 2001 83

84

IBM5X8
5.5x8.5 style (for hardware).

IBM4X6
4.25x6.25 style (for hardware).

IBMS8X5
5.5x8.5 landscape style (for hardware).

IBM9X7
7x9 landscape style.

If you create a PDF from this style, the pages may switch between
landscape and portrait presentation in Adobe Acrobat Reader or Exchange.
Add the following lines to your PostScript file before distilling it to prevent
this from occurring:

/currentdistillerparams where {pop}

{userdict /currentdistillerparams {1 dict} put} ifelse

/setdistillerparams where {pop}

{userdict /setdistillerparams {pop} put} ifelse
<< /AutoRotatePages /A1l >> setdistillerparams

IBMLAND
Printer System’s landscape books. (Not for BookMaster)

IBMXAGD
User Guides (8.5x11in., A4); old BookMaster style.

IBMXARF
Reference (8.5x11in., A4); old BookMaster style. This can be replaced by
using a style of ibm8x11 and a layout of onecol.

IBMXGGD
Summary Guides (7-3/8x9in.); old BookMaster style.

TIV7X9
7x9 style for Tivoli®

This style creates automatic running headers for titles. The style puts Part,
Chapter, and Tivoli head 1 text in the RETKEY area. The STitle content, if
specified, replaces the Title content in the running heading.

TIV8X11
8.5x11 style for Tivoli

This style creates automatic running headers for titles. The style puts Part,
Chapter, and Tivoli head 1 text in the RETKEY area. The STitle content, if
specified, replaces the Title content in the running heading.

OBIPORT
5.5x8.5 style (for Options by IBM)

OBIWWAG6P
4.25x5.75 style (for Options by IBM)

SMALLFLG
3.625x8.5 style (for hardware)

You can also vary the number of columns in the document. The IBMIDDoc tag has
a Layout attribute; it has these values:

LAYOUT=Default-Layout | OneCol | OffsetCol | TwoCol
Specifies the column-style for the book.

ID Workbench: IBMIDDoc User’s Guide and Reference

Default-Layout
The section uses the default layout for the document style.

OneCol
The headings and text format across the entire page.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

TwoCol

The text formats in two columns. Headings format across the page or
with the two-column text.

You can vary the page layout at chapters and chapter-like elements. Just like on
the IBMIDDoc tag, you use the Layout attribute on these elements: D, lers, preface,
abstract, soa, legend, abbrev, bibilog, glossary, safety, IBMsafety, PNINDEX, and
MasterIndex.

Setting the IBM copyright

The dates for the IBM copyright are taken from the IBMCopyr attribute. You
typically enter either a single year or two years separated by a comma. Here’s the
setting for a new book, published for the first time in 1999:

<ibmiddoc ibmcopyr="1999">

Here’s the setting for a book that was originally published in 1985, and was last
published in 2000:

<ibmiddoc ibmcopyr="1985, 2000">

The date is printed in the edition notice; see 'Natices and Edition natices” onl

Setting the security classification

Sometimes your document needs to be confidential. To make it so, set the
IBMIDDoc tag’s IBMSec attribute to IC.

You can also enter the security and other information in the SEC attribute. For
example, this shows the document as being confidential for company ABC. It also
includes a date and time stamp; which is very useful when you are preparing
multiple drafts for your reviewers.

<ibmiddoc sec="ABC Confidential - &date; &time;">

Setting page numbering to sequential or folio-by-chapter

Page numbering by chapter (known as folio-by-chapter) is a technique of
numbering where the chapter number (or in the case of appendixes, the appendix
letter) is prefixed to the page numbers, the figure numbers, and the table numbers.
Thus, the fifth page in chapter 3 is numbered 3-5, the second figure in chapter 7 is
numbered 7-2, and the fourth table in appendix E is numbered E-4. The page
numbers, figure numbers, and table numbers are reset to 1 at the beginning of each
chapter.

Adding the PageNumber=FBC attribute to the IBMIDDoc tag gives you
folio-by-chapter page numbering.

Chapter 8. The document structure of an IBMIDDoc document 85

86

If Eour book has more than one volume, see [!Creating multiple volumes for d

Creating multiple volumes for a book

Sometimes you have a book that is just huge. To have the book printed, you need
to divide it into volumes. To do this, you need to add the MULTIVOL=Index-Folio
attribute to the IBMIDDoc tag. You can use either sequential or folio-by-chapter

‘Eage numbering; see L -by- i

The Index-Folio setting adds X- as a prefix for the page numbers in the index and
starts the page numbering from 1.

The remaining steps to create a set of multiple volume books are as follows:

1. You format your book as one large book, to get the table of contents,
cross-reference, and index page numbers correct.

2. If your multi-volume books also have different cover pages and possibly order
numbers, you will need to create mini-documents with that cover information.

3. You then use Adobe Acrobat to separate your large document into pieces;
adding the separate pieces to the mini-documents.

A typical set of volumes would contain:
1. Volume 1

a. cover
b. edition notice
c. table of contents, figure list, table list (for entire set)
d. chapter 1 through 10, for example
e. index (for entire set)
2. Volume 2
a. cover
b. edition notice
c. table of contents, figure list, table list (for entire set)
d. chapter 11 through 20, for example
e. index (for entire set)

Controlling generated chapter, part, and appendix titles

Sometimes you may want to change the way “Chapter” or “Appendix” is added to
your headings. The IBMIDDoc tag attributes PartPrefix ChapPrefix AppPrefix have
attributes that allow you to control the form of this generated text. The have the
basic form show below:

Text-Part, Text-Chap, or Text-App
This is the default. This outputs: “Part 1.” for part headings, “Chapter 1.” for
chapter headings, or “Appendix A.” for appendix headings.

Numonly-Part, Numonly-Chap, or Numonly-App
This is omits the word from the number. This outputs: “1.” for part headings,
“1.” for chapter headings, or “A.” for appendix headings.

None-Part, None-Chap, or None-App
This is omits the word and the number from the heading. Only the heading
text itself appears.

ID Workbench: IBMIDDoc User’s Guide and Reference

Specifying the language of the document

The Language attribute specifies the language in which a document is written. It
also specifies how the IBMIDDoc-generated text should be printed.

The valid values for the Language attribute on IBMIDDoc element are:
e BDUTCH or nl_BE

* BFRENCH or fr_BE

* BPORTUGUESE or pt_BR
¢ BULGARIAN or bg_BG

e CATALAN or ca_ES

e CENGLISH or en_CA

* CFRENCH or fr_CA

¢ CROATIAN or hr_ HR

* CZECH or cs_CZ

e DANISH or da_DK

e DUTCH or nl_NL

* ENGLISH, en_US, or USENGLISH
¢ ESTONIAN or et_EE

» FINNISH or fi_FI

e FRENCH or fr_ FR

e GERMAN or de_DE

e GREEK or el GR

* HUNGARIAN or hu_HU
* ICELANDIC or is_IS

e ITALIAN or it_IT

* JAPANESE or ja_JP

¢ KOREAN or ko KR

e LATVIAN or lv_LV

e LITHUANIAN or It LT

* MACEDONIAN or mk_MK
* NORWEGIAN or no_NO
* POLISH or pl_PL

* PORTUGUESE or pt_PT
* ROMANIAN or ro_RO

e RUSSIAN or ru_RU

¢ SCHINESE or zh_CN

¢ SERBIAN or sr_SP

¢« SFRENCH or fr CH

* SGERMAN or de_CH

* SITALIAN or it_CH

¢ SLOVAK or sk_SK

* SLOVENIAN or sl_SI

* SPANISH or es_ES

e SWEDISH or sv_SE

e TCHINESE or zh_TW

e THAI or th TH

e TURKISH or tr TR

* UKENGLISH or en_GB

Bookmarks for PDF tables of contents

Adobe Acrobat PDF documents can have bookmarks generated that match the
document’s table of contents. This creates a very usable method of navigating the
PDF file. The Xyvision PostScript formatter automatically adds these bookmarks.

Chapter 8. The document structure of an IBMIDDoc document 87

Licensed and restricted materials

If you have a licensed or restricted document, use the CLASSIF attribute to
indicate this. It is not within the scope of this book to explain what classification
category is to be used for a particular document. The attribute looks like this:

CLASSIF= CONFRES | RES | LIC
Identifies the classification of restricted materials.

CONFRES
Confidential restricted material

RES
Restricted material

LIC
Licensed material

CLASSIF=LIC for the style TIV8x11, causes that Tivoli style to include the
licensed statement on each page and on the cover.

Line justification for DBCS languages

This is used only for DBCS (double-byte character set) languages. While this is not
supported at this time, you can have it in the source. This is used for left and right
justification of text; the preferred format for DBCS languages. You specify the
justification control this way:

<ibmiddoc style="xpp: (justify)">

The default is to not justify; the values nojustify and ragged indicate that.

About the prolog

The prolog is where we put information (marked up with special tags) about the
whole document. For instance, the title, the author’s name and address, and so
forth.

Here is a simple prolog:

<prolog>
<ibmbibentry><doctitle><titleblk>
<title>My Cute, Little Document</title>
</titleblk></doctitle>
<ibmdocnum>SC99-1234-01</1ibmdocnum>
<authors>

<author><person>

<name>Fred Mertz</name>
<address>East Overshoe, SD</address>
</person></author>

</authors>

</ibmbibentry>

</prolog>

Not all the tags you can use in the prolog are shown here. We’ll discuss the ones
shown first and then tell you about the others. The prolog itself does not cause
anything to be printed; instead, it is a place to collect information that will be used
in other places — for example, on the draft title page when the TIPAGE value is
used.

Document title

The document’s title is contained in the IBMBibEntry and Title elements. If the
document title is short, you enter it with the Title element alone. If you want

88 1D Workbench: IBMIDDoc User’s Guide and Reference

multiple lines in your title, you use the Title element and insert your lines as you
want them formatted; putting a carriage return after each line to be split.

So a short title would be entered like this:
<title>Tom Sawyer</title>

whereas a long title would be entered like this:

<title>The Do's and Don'ts of
Caring for Your Fruit Bat</title>

If your title is very long, you may also want to use the STITLE element to get a
short title (used in some document styles for the even-page running foot). For
example:

<title>The Do's and Don'ts of

Caring for Your Fruit Bat</title>
<stitle>Fruit Bat User's Guide</stitle>

To have the title page appear in your document, see 'Front matter (FrontM)” orl

IBMBibEntry contains all of the bibliographic information for the document. It can
contain the following:

* Authors

* DocTitle

* FileNum

e IBMDocNum
e IBMPartNum
* ISBN

e PublicID

* Publisher

* RetKey

* CoverDefs (LAdding to the front or back caver (CaverDef)” on page 91))

Document number
You enter the document number, if you have one, with the IBMDocNum element;
after the document title. For example:

</doctitle>
<ibmdocnum>SC99-1234-01</ibmdocnum>

The last two digit-number is commonly called the “dash-level” and indicates how
many times the book as been revised. This is always a two-digit number.

Author and Address

The Author and Address elements contain the author’s name and address
information. The address is entered using as many lines as needed, surrounded by
Address and its end tag. The text for each address line must be on a single line.
These go within the Authors tag; just before the ending IBMBibEntry tag. For
example:

<authors>

<author><person>

<name>Fred Mertz</name>

<address>
127 East Main Street,

Chapter 8. The document structure of an IBMIDDoc document 89

90

Date

East Overshoe, SD <postalcode>59134</postalcode>
</address>

</person></author>

</authors>

</ibmbibentry>

The CritDates element contains a date for your document. For example, this
specifies a date of September 9th, 2000:

</ibmbibentry>

<critdates>

<critdate>

<date>September 9th, 2000</date>

<desc>Date of publishing.</desc>

</critdate>

</critdates>

The current date prints on the draft title page. This critdate does not change the
setting of the date symbol. The Critdate goes within Critdates; which comes after
IBMBibEntry. Currently, it does not have much use.

Improving the searching of PDF books

Several prolog items will help in the focused searching of Adobe Acrobat PDF
books. Ensure you have these items; they are passed through to the PDF
document’s “Information” dialog:

IBMIDDoc Element PDF Document Information field
Library title (or stitle): document title (or Title
stitle)

Desc in IBMBibEntry Subject
IBM, Tivoli, or blank (from company Author
attribute on IBMIDDoc)

Retkey in IBMBibEntry (after ending Keywords
DocTitle)

“XPP” Creator
(blank -- automatic by Distiller) Producer
(current date) Created
(blank -- automatic by Distiller Modified

Other prolog elements

The Prolog contains all tracking and control information for the document. Prolog
can contain a number of elements, including:

* Approvers (similar to Authors)

* BibEntryDefs (Chapter 14_“Bibliographies and citations” on page 141)

» CopyrDefs (tLsing CopyRDefs” on page 91)

* GLDefs (I'Lsing GI Defs” on page 94)

+ IBMProdInfo, IBM product information (‘Using IBMProdInfo” on page 92)
* IDXDefs (Chapter 11, “Indexing” on page 115)

* LDescs (Chapter 12 _“All about linking” on page 129)

* Maintainer (Iﬂlsh.g.tead.er’&mmanﬁomu(RCE)Lan_pa.geJﬂﬂ)

* MasterIndexInfo ('Creating a master index” on page 129)

ID Workbench: IBMIDDoc User’s Guide and Reference

* ObjLib i j i i
* Owners (similar to Authors)

* ProdInfo

* PropDefs

* QualifDefs, qualification definitions (Qualifying information” on)

Adding to the front or back cover (CoverDef)

You use the CoverDefs element to define cover artwork for your book’s front and
back covers. It is contained in the IBMBIBENTRY; the title for your book. For
example:

<lentity frontl system "frontl.eps" ndata graphics>
<lentity backl system "backl.eps" ndata graphics>

<prolog><ibmbibentry><doctitle><titleblk>
<title>Sample Cover</title>
</titleblk></doctitle>

<coverdef>

<frontcover><mmobj><objref obj="frontl">
<textalt>System/X cover artwork</textalt>
</mmobj></frontcover>
<backcover><mmobj><objref obj="backl">
<textalt>System/X back cover artwork</textalt>
</mmobj></backcover>

</coverdef>

</ibmbibentry></prolog>

You can also add text to the front cover. Inside the FrontCover tag, insert the PBLK
tag and any content that you want to appear on the cover. For example:

<frontcover>

<pblk style="1blbox"><title>Notice</title>

<p>

The IBM License Agreement for Machine Code is included in this book.
Carefully read the agreement. By using this product you agree to
abide by the terms of this agreement and applicable copyright Taws.
</p>

</pblk>

</frontcover>

Using CopyRDefs

If you have copyrighted material from some other company, you need to enter that
company’s information in the document prolog.

The CopyRDefs element contains the primary copyright information for the
document. Use the CopyR element to specify this primary copyright information.

The primary CopyR element must have an ID attribute. This ID is referred to on
the IBMIDDOC element using the Copyr attribute, as shown in the example that
follows.

<IBMIDDOC COPYR="ibmprim">
<PROLOG>

<COPYRDEFS><COPYR ID="1ibmprim">
<P>IBM Corporation

1994, 1995

A11 Rights Reserved</P></COPYR>

Chapter 8. The document structure of an IBMIDDoc document 91

92

</COPYRDEFS>
</PROLOG>

</IBMIDDOC>

Using IBMProdinfo

The IBMProdInfo element contains the IBM-specific product information about the
product described in the document.

¢ ProdName, product name

* Version

* Release

* ModLvl, modification level

* IBMPgmNum, IBM program number
e IBMFeatNum, IBM feature number

For example:

<ibmprodinfo>
<prodname>System/36</prodname>
<version>2</version>
<release>3</release>
<modlv1>1</modlv1>
<ibmprognum>223-3330</1ibmprognum>
</ibmprodinfo>

Using Property Definitions (PropDefs)

PropDefs contains elements that define properties that can be used by other
elements in your document. These properties apply to elements contained within
the document or division with which the property definitions are associated.

All property definition elements can be used in PropDefs. These elements include:

* ClassDef (P’T)Pfining Element Classes” on page 207)

* PropDef (Defining Flement Properties” on page 201))

* LersDef (Chapter 17, “Defining Modular Information” on page 175)

+ ModInfoDef (Ehapter 17_Defining Modular Infarmation” on page 179)
* MsgltemDef (“Message and code lists” on page 38)

* PropGroup

PropDefs and Common Property Values

Use the PropDef element to define common property values. In the absence of
ELETYPES or ID attributes, the property specified applies to all elements. These
common properties are specified on common attributes. Examples of such common
attributes are:

e Props

* Status

e Style

Limiting the Scope of PropDef Definitions

The global effect of PropDef definitions can be limited by specifying PROPNAME
and ELETYPES. Scoping can also be limited by using a different set of PropDefs in
each DProlog, instead of having only one set in the Prolog of the document.

ID Workbench: IBMIDDoc User’s Guide and Reference

For example, specifying ELETYPES="UL’ on a PropDef element causes the other
properties specified on the same PropDef element to apply to all UL elements.

The PROPNAME attribute with a value of P001 provides a name to refer to when
you want to apply the particular property definition to a specific element in your
document using the PROPSRC attribute.

If both ELETYPES and PROPNAME are specified, the properties specified on the
PropDef element apply to all of the specified element types, and may be referred
to by the PROPNAME value.

If you wish that all figures be boxed figures, you can use the property definition
described in the examples that follow.

<PROLOG>

<PROPDEFS>
<PROPDEF PROPNAME="wider" ELETYPES="fig"
STYLE="BKM: (width=page place=inline frame=rules)">
</PROPDEF>
</PROPDEFS>

All Figure elements will now be framed.

In the next example, the PropDef has an ID of P001, and can be referenced by any
element where such properties are valid.

<PROLOG>

<PROPDEFS>
<PROPDEF PROPNAME="P0O1" ELETYPES="fig"
STYLE="BKM: (width=page place=inline frame=rules)">
</PROPDEF>
</PROPDEFS>

The document markup for a figure that includes PowerPC artwork would look like
the example that follows.
<FIG ID="Unit" PROPSRC="P0O1">

<FIGCAP>The IBM PowerPC CPU</FIGCAP>

<MMOBJ>

<OBJREF 0BJ="ppcfig">

</MMOBJ>
</FIG>

For hardcopy documents, you may have some column-wide figures. Instead of
specifying the override on each column-wide figure, define your figure PROPDEF
tags like this. The first PROPDEF (without the propname)sets the default for all
figures; the second PROPDEF sets the column-wide override.

<propdef eletypes="fig" style="bkm:(place=inline)">

</propdef>

<propdef propname="colfig" eletypes="fig" style="bkm:(width=column place=inline)">
</propdef>

To get a column-wide figure, you specify "COLFIG" on the PROPSRC attribute of
that figure. For example:

<fig propsrc="colfig">

Chapter 8. The document structure of an IBMIDDoc document 93

By default, the BookMaster output process places these at the top of the next page.
All other output processes place them inline. Use the INLINE override. For
example:

style="bkm: (width=column place=inline)"

For wide figures in BookManager BOOKSs, you may need to use the DWIDTH
attribute. For example:

style="bkm: (width=column place=inline dwidth=100)"

For more information about using PropDefs, see Chapter 20, “Property and Clasd

Using PropDefs for Conditional Processing
Properties may be used to include or exclude information. This is called

property-based retrieval.

For example, you can define a complex set of properties for doing conditional
processing using PropDef, and then use those values for other elements by
referring to the PropDef element, rather than having to explicitly specify those
attributes on each element.

In the example that follows, a PropDef element is used to define the properties for
including either RS6000 or PowerPC information.

<!DOCTYPE IBMIDDOC PUBLIC "+//ISBN 0-933186::IBM//DTD IBMIDDoc//EN"
"ibmiddoc.dtd"
<IBMIDDOC COPYR="1ibmprim"><PROLOG>
</PROLOG>
<PROPDEFS>
<PROPDEF PROPNAME="ppc" PROPS="POWERPC #AND #NOT RS6000"
<DESC>This PropDef will be referred to when PowerPC information is
to be processed.</DESC>
</PROPDEF>
<PROPDEF PROPNAME="rs6" PROPS="RS6000 #AND #NOT POWERPC"
<DESC>This PropDef will be referred to when RS6000 information is
to be processed.</DESC>
</PROPDEF>
</PROPDEFS>
</PROLOG>
<BODY>
<D PROPSRC="PPC">
<DPROLOG>
<TITLEBLK>
<TITLE>Installing a 128-Bit Video Card in the IBM PowerPC</TITLE>
</TITLEBLK>
</DPROLOG>
<DBODY><P>This procedure describes how to insert the 128-Bit
video card in the IBM PowerPC.</P>
<PROC>
<TITLEBLK><TITLE>Installing a 128-Bit Video Card</TITLE></TITLEBLK>
<PROCENTRY>

</PROC>
</DBODY>
</D>

<D PROPSRC="RS6">

<DPROLOG>
<TITLEBLK>
<TITLE>Installing a 128-Bit Video Card in the RS6000</TITLE>
</TITLEBLK>

94 1D Workbench: IBMIDDoc User’s Guide and Reference

</DPROLOG>

<DBODY><P>This procedure describes how to insert the 128-Bit

video card in the RS6000.</P>

<PROC>
<TITLEBLK><TITLE>Installing a 128-Bit Video Card</TITLE></TITLEBLK>
<PROCENTRY>

</PROC>
</DBODY>
</D>

</BODY>

</IBMIDDOC>

Using LDescs and Nameloc

LDescs contains elements to describe links and the locations used in these links.

Contained location elements can:

e provide an indirect reference to another SGML element. This protects the link(s)
from changes made to the target element.

* associate a single ID with multiple elements
* support references to other documents, and to elements in other documents
* support references to non-SGML information.

For example, to link to multiple elements in the same document, you can use the
Nameloc element to contain a list of IDs that are used to identify the information
topic. In the example that follows, the LINKEND attribute refers to the Nameloc
element with the ID=DDInfo. The elements in the document that have the
ID=aboutDan and ID=REHero are linked to any link element which references the ID
DDInfo using the LINKEND attribute.

<IBMIDDOC>
<PROLOG>
<IBMBIBENTRY>
<DOCTITLE>
<TITLEBLK><TITLE>Qur Saturday Heroes</TITLE>
</TITLEBLK>
</DOCTITLE>
</IBMBIBENTRY>
<LDESCS>
<NAMELOC ID="DDInfo">
<NMLIST>AboutDan REHero</NMLIST>
</NAMELOC>
</PROLOG>
<BODY>
<D>
<DPROLOG>
<TITLEBLK><TITLE>Movie Serials</TITLE>
</TITLEBLK>
</DPROLOG>
<DBODY>
<P>The <L LINKEND="ddinfo">Dan Danger serial hero</L>
was very popular in the 1940s.</P>
<D>
<DPROLOG>
<TITLEBLK><TITLE>Male Heros</TITLE>
</TITLEBLK>
</DPROLOG>

Chapter 8. The document structure of an IBMIDDoc document 95

96

<DBODY>
<P ID="aboutdan">Looking back, we now see Dan Danger as the
quintessential Saturday morning serial hero.</P>
<D>
<DPROLOG ID="REHero">
<TITLEBLK><TITLE>Heroes and Villains</TITLE>
</TITLEBLK>
</DPROLOG>
<DBODY><P>More stuff about heroes....</P>
</DBODY>
</D>
</DBODY>
</D>
</DBODY>
</D>
</BODY>
</IBMIDDOC>

Using GLDefs

Using

Use GLDefs to contain GLEntry elements that can be used by reference from
anywhere in your document. For more information about using GLEntry, see

b] |]3 IIG] ”]3j

In the next example, terms are defined in GLDefs in the Prolog, and referred to by
CONLOC reference within the document.

<PRpLOG>

<GLDEFS>
<GLENTRY>
<TERM ID="mainec">Maine Coon</TERM>
<DEFN>A friendly and gentle breed of cat.</DEFN>
</GLENTRY>
<GLENTRY>
<TERM ID="ragdol11">Rag Dol1</TERM>
<DEFN>A gentle breed of cat that may be even
more docile than the Maine Coon.
</DEFN>
</GLENTRY>
</GLDEFS>
</PROLOG>
<BODY>
<D>
<DPROLOG>
<TITLEBLK>
<TITLE>Movie Serials
</TITLE>
</TITLEBLK>
</DPROLOG>
<DBODY>
<P>The <L LINKEND="ddinfo">Dan Danger serial hero</L>
was very popular in the 1940s. Dan's sidekick was a
<TERM CONLOC="mainec"> named Elvis.</P>

</IBMIDDOC>

BibEntryDefs
BibEntryDefs contains BibEntry, LibEntry, IBMBibEntry, and IBMLibEntry elements.

An IBMIDDoc document requires a IBMBibEntry element, which contains the
bibliographic information about the document.

ID Workbench: IBMIDDoc User’s Guide and Reference

BibEntryDefs is an optional Prolog element that can contain a variety of
bibliographic entries that can be referred to throughout the document, or to build a
bibliography by reference.

In the example that follows, BibEntryDefs contains several IBMBibEntry elements.
The first IBMBibEntry is used to contain information about the containing
document. The other IBMBibEntry elements contain entries for other referenced
documents, and an IBMBibEntryDef that uses the CONLOC attribute to get its
content from the containing document’s IBMBibEntry. The example also includes
an IBMLibEntry element.

<PROLOG>
<IBMBIBENTRY ID="BOOKO">
<DOCTITLE>
<TITLEBLK><TITLE>IBMIDDoc USER'S GUIDE</TITLE></TITLEBLK>
</DOCTITLE>
<AUTHORS>
<AUTHOR>
<PERSON>
<NAME>FRED MERTZ</NAME>
<ADDRESS>
<INTERNET>fredm@usa.ibm.com</INTERNET>
</ADDRESS>
</PERSON>
</AUTHOR>
</AUTHORS>
<IBMDOCNUM>SH21-0783-02</IBMDOCNUM>
</IBMBIBENTRY>

<BIBENTRYDEFS>
<IBMBIBENTRY ID="BOOK1">
<DOCTITLE>
<TITLEBLK><TITLE>IBMIDDoc MIGRATION GUIDE</TITLE>
</TITLEBLK>
</DOCTITLE>
</IBMBIBENTRY>
<IBMBIBENTRY ID="B0OK2">
<DOCTITLE>
<TITLEBLK><TITLE>IBMIDDoc REFERENCE GUIDE</TITLE></TITLEBLK>
</DOCTITLE>
</IBMBIBENTRY>
<IBMBIBENTRY ID="B0OK3">
<DOCTITLE>
<TITLEBLK><TITLE>IBMIDDoc TUTORIAL </TITLE></TITLEBLK>
</DOCTITLE>
</IBMBIBENTRY>
<IBMLIBENTRY ID="IDDOCLIB">
<LIBRARY>
<TITLEBLK><TITLE>IBMIDDOC</TITLE></TITLEBLK>
</LIBRARY>
<PUBLISHER>
<CORPNAME>IBM</CORPNAME>
</PUBLISHER>
<CONTAINEDDOCS BIBIDS="BOOK1 BOOK2 BOOK3">
</IBMLIBENTRY>
</BIBENTRYDEFS>
</PROLOG>

For more information about IBMIDDoc bibliographic elements, see m

[lB‘]]‘] 1 | l ”]4]'

Chapter 8. The document structure of an IBMIDDoc document 97

Front matter (FrontM)

98

The front matter contains the title page, notices (such as the edition notice), the
preface, the summary of changes, the table of contents, the table list, and the figure
list. The elements that can be used in FrontM include:

+ EdNotices (see !Natices and Edition notices’)

* TOC (see I‘Table of contents” on page 99)

* FigList (see UList of figures” on page 100)

* TList (see ['List of tables” on page 10)

* Preface (see l'The preface” on page 100

* SOA (see I'Summary of changes” on page 100)

* Abbrev (abbreviations), Abstract, Legend, and others (see)

e D, divisions
+ IBMSafety (see IBM Safety text” on page 101))
* Safety (see 'IBM Safety text” on page 101)

The FrontM Style attribute can specify the following values using the Display
keyword. You specify these in any combination.

TIPAGE
Causes a draft title page to appear (this should not be used for final
camera-ready output).

COVER
Causes a cover, inside title page, and back cover page to appear.

SPINE
Causes the spine to appear after the back cover. The spine contains the
IBM Logo, Library, Title, and Version number.

OLDSPINE
Causes the spine to appear after the back cover. The spine Includes the
IBM Logo, Library, Title, Version number, and document number.

NORECYCLE
Prevents the recycle logo form appearing on the back cover. Removes the
recycled paper logo and text from the back cover of a US English
document

REGLOGO
This uses a registered logo on the back cover even when the PrtLoc
element is used in the document.

For example, this causes a draft title page, the cover, inside cover, back cover, and
spine to be output as part of your document:

<FRONTM STYLE="display='TIPAGE COVER SPINE'">

Notices and Edition notices

Anything you want to put on the back of the title page are known collectively as
“notices”. Some documents have only an edition notice, which goes at the bottom
of the back of the title page; others have notices in addition to the edition notice.

The edition notice involves the EDNotice tag and the Title tag. The Title tag is used
immediately following the EDNotice tag, and specifies the text of the heading for
the edition notice. A sample edition notice might look like this:

ID Workbench: IBMIDDoc User’s Guide and Reference

<ibmiddoc ibmcopyr="1996, 1999">

<ednotices><title>First Edition (June 1997)</title>
<p>This edition applies to the IBMIDDoc language,
Version 4.2, and to all subsequent releases

and modifications until otherwise indicated in new
editions.</p>

</ednotices>

Look at the page following this book’s title page to see what IBMIDDoc does with
the edition notice. The EDNotice end tag brings in the copyright line, if the
IBMCopyr attribute was specified on your IBMIDDoc tag (or if the COPRNOTE
tag is used).

Other notices

If you have other things to put on the back of the title page besides the edition
notice, put them all within a NOTICES tag and its matching end tag before the
EDNotice tag (if there is one). It might look like this:

<notices><pblk style="1blbox"><title>Note</title>

<p>Before using this information, be sure to read

the general information under <xref refid="notices">.

</p>

<p>This manual was produced using IBMIDDoc SGML, the

Epic editor, and processed for print and online using

the ID Workbench.</p>

</pblk></notices>

<ednotices>

The NOTICES tag (with its end tag) is actually allowed anywhere in your
document. If you put it before the EDNotice tag, the notice associated with it
appears on the back of the title page.

Table of contents

The TOC contains the table of contents the document. You can choose to use the
GendTitle, for which the title text is generated automatically, or you can enter your
own title for this special division by using the Title element.

Typical markup for a TOC:
<toc><gendtitle></toc>

A TOC with a heading you've specified:

<toc><titleblk><title>
Here's what's in my cool, little booklet
</title></titleblk></toc>

You can control which heading levels appear in the table of contents by using the
MAXTOC attribute on the IBMIDDoc tag. For example, the default for the style
IBM8X11 is to show headings in the table of contents to heading level 3. Specifying
the following will include divisions to heading level 4 to appear:

<ibmiddoc maxtoc="4" docstyle="ibm8x11">

You can also control which headings appear in a table of contents by using the
TOC attribute on the Division or other heading tag.

To create a partial table of contents for a part or chapter; see

”

Chapter 8. The document structure of an IBMIDDoc document 99

List of figures

Use the FigList element to contain a list of figures that appear in the document.
You can choose to use the GendTitle, for which the title text is generated
automatically, or you can enter your own title for this special division by using the
Title element.

Typical markup for a FigList:
<figlist><gendtitle></figlist>

List of tables

Use the TList element to contain a list of tables that appear in the document. You
can choose to use the GendTitle, for which the title text is generated automatically,
or you can enter your own title for this special division by using the Title element.

Typical markup for a TList:
<tlist><gendtitle></tlist>

The preface

Use the Preface element to contain explanatory or preparatory information about
the document. As with other FrontM elements, you may use the GendTitle element
or provide a unique title by using the TitleBlk element. Enter the preface text using
the same rules you follow when creating any other division.
<preface>

<specdprolog><gendtitle></specdprolog>

<dbody>

<p>This manual...</p>

</dbody>

</preface>

If you don’t want to use the generated title, you can enter another title within a
TitleBlk element.
<preface>
<specdprolog><titleblk>
<title>About this book</title>
</titleblk></specdprolog>
<dbody>
<p>This manual...</p>
</dbody>
</preface>

Summary of changes

Use the SOA element to contain a list or description of the important information
that has been changed or added since the last revision of the document. SOA is
valid in FrontM (recommmended) and BackM. For example:
<soa>
<specdprolog><titleblk><title>What's new and different
</title></titleblk></specdprolog>
<dbody>
<p>Changes since the last edition include...</p>
</dbody>
</soa>

Special sections

There are a number of special sections that often occur in publications, typically in
either the front matter or the back matter. IBMIDDoc recognizes these special
sections (as well as the preface, which we’ve already covered):

100 1D Workbench: IBMIDDoc User’s Guide and Reference

Special Section Tag

List of Abbreviations ABBREV
Abstract ABSTRACT
Bibliography BIBLIOG
Legend LEGEND

IBM Safety text

Use IBMSafety to contain any IBM-specific safety concerns or issues that are
addressed in your information.

<FRONTM>

<IBMSAFETY SPEC="AUTO">
<GENDTITLE>
</IBMSAFETY>

</FRONTM>

Note: Not supported by Xyvision.

About back matter (BackM)

The BackM element can contain Appendicies, the bibliography, glossary, index, part
number index, and Divisions.

The Xyvision and BookMaster transforms provide a part separator for the back
matter when the body of the document contained a PART tag. If you want to
suppress the automatically-generated part separator, use the following coding on
the BACKM tag:

<backm style="xpp: (nopart)">

Using appendix
The Appendix element contains divisions that contain appendix information.
Appendix is valid in BackM.

You must enter titles for the appendixes. For example:

<BACKM>
<APPENDIX>
<D>
<DPROLOG>
<TITLEBLK>
<TITLE>Whantoozler Tuning Parameters</TITLE>
</TITLEBLK>
</DPROLOG>
<DBODY>
<P>There are many settings that you can adjust to
improve Whantoozler performance.
</P>
</DBODY>
</D>
</APPENDIX>
</BACKM>

Using glossary

Use the Glossary element to contain a list of the glossary terms for the document.
You can choose to use the GendTitle, for which the title text is generated
automatically, or you can enter your own title for this special division by using the
Title element. Glossary should contain a GL element, which can contain an explicit

Chapter 8. The document structure of an IBMIDDoc document 101

list of GLEntry elements, or can use the AUTO value on the SPEC attribute. The
AUTO value on the SPEC attribute causes the GL to contain a list of all the
GLEntry elements in the document. AUTO is the default value for the SPEC
attribute, and is the usual way to create a list of GLEntry elements in a GL.

<BACKM>
<GLOSSARY>
<SPECDPROLOG>
<GENDTITLE>
</SPECDPROLOG>
<DBODY>
<GL> ... </GL>
</DBODY>
</GLOSSARY>
</BACKM>

See information about glossary.

Using bibiography (Bibliog)
Use the Bibliog element to contain a list of documents related to the document.
Bibliog is valid in both FrontM and BackM.

Bibliog should contain the BibList element, which can contain an explicit list of
BibEntry elements.

You can choose to use the GendTitle, for which the title text is generated
automatically, or you can specify the title of the Bibliog ("Related Publications”)
using the TitleBlk elements. For example:

<bibliog>

<specdprolog><gendtitle></specdprolog>

<dbody>

<bibTist><bibentry><doctitle><titleblk><title>My Nice
Book</title></titleblk></doctitle></bibentry>
<bibentry><doctitle><titleblk><title>Your Nice Book
</title></titleblk></doctitle></bibentry>

</biblist>

</dbody></bibliog>

See Chapter 14 _“Riblinographies and citations” on page 141 for more information.

Using part number index (PNIndex)

A Part Number Index can be automatically generated by including the PNIndex
element in the BackM element. In most cases, you will use the GendTitle element
to include the system-defined title for the PNIndex.

<PNINDEX><GENDTITLE></PNINDEX>

For more information on these, see

Using Index

The Index element content is normally generated automatically at processing time
from the index tags you've sprinkled throughout the source.

<INDEX><GENDTITLE></INDEX>

For more information about creating indexes, see

102 1D Workbench: IBMIDDoc User’s Guide and Reference

The Index should be the last item that has content in a document. Only the
reader’s comment form should follow the index.

Using reader’s comment form (RCF)

A Reader Comment Form can be automatically generated by including the RCF
element in the BackM element. In most cases, you will use the GendTitle element
to include the system-defined title for the RCF. There should no longer be a
“Contacting IBM” section before the RCF; that now belongs in the preface.

For the RCF to be generated, you need to specify the MAINTAINTER element
information in the prolog of your document:

<maintainer>

<corp>

<corpname>IBM Corporation</corpname>

<address>ATTN: Dept 542

3605 HWY 52 N

Rochester, MN

<postalcode>55901-9986</postalcode>

<phone equip="fax">1-800-555-1212</phone></address>
</corp>

</maintainer>

In the back matter, you need to include the RCF element; for example:

<backm>
<rcf><gendtitle></rcf>
</backm>

Chapter 8. The document structure of an IBMIDDoc document 103

104 1D Workbench: IBMIDDoc User’s Guide and Reference

Chapter 9. Using definition tags

There are a number of elements that occur in IBMIDDoc documents that have

these properties:

¢ There are many things to say when describing the elements (that is, they have
many attributes).

* The element is likely to occur many times in the same document, using the same
(or nearly the same) set of attributes.

We would all like to save time in marking up these documents. Particularly, we’'d
like to save time when we change our minds about the values of the attributes we
want to use. Wouldn't it be nice to be able to do this in one place rather than
search through the document and change it in all places that it occurs?

To allow you to describe things once and then use the descriptions repeatedly,
IBMIDDoc provides a number of “definition” tags. They are all recognizable
because their names end with the letters “DEFE.” The tags and their corresponding
definition tags are shown in

Table 15. Tags and corresponding xxDEF tags

Corresponding

Element DEF Element xxDEF Tag Attributes

DL DLDEF DefName, Props, LineSpace, TermWidth,
TermStyle, HeadStyle

FIG FIGDEF DefName, Props, Frame, ScalePct, PgWide

GL GLDEF DefName, Props, LineSpace, RetKey

LERS LERSDEF DefName, Props, Sep, Retkey, Auth, Comments,
Context, Defaults, ErrCond, Examples, Flags,
Format, Intrep, Messages, Other, Parms, Process,
Purpose, Restrict, Results, Retcodes, SysEnv, Usage,
Version, ClassName, Conloc, ID, Rev, Status, Style,
HyTime, RefType, InfoMast

MSGLIST MSGLDEF DefName, Props, Layout, RetKey

NOTELIST OLDEF DefName, Props, LineSpace.
An OLType attribute from any OLDEEF tag is
ignored because NoteLists have no OLType
attribute..

OL OLDEF DefName, Props, LineSpace, OLType

PARML DLDEF DefName, Props, LineSpace, TermWidth,
TermStyle, HeadStyle

SCREEN SCREENDEF DefName, Props, PgWide LineLength

SYNTAX SYNTAXDEF DefName, Props, SynStyle, ScalePct, PgWide

UL ULDEF DefName, Props, LineSpace, ULType

XMP XMPDEF DefName, Props, PgWide

We're not going to describe all of these tags and their attributes here; we just want
you to understand how definitions work so that we don’t have to explain it each
time we describe one of the tags above. The definition tags set the common

© Copyright IBM Corp. 1992, 2001

105

DEFs

106

attributes of the using tags. Once your specify the attribute on the definition tag, it
is not necessary to specify it again on the using tag. Definition tags have a
DefName attribute, which is the means by which a using tag asks for a particular
definition with a matching DEF attribute. Definition tags can be specified without
a DefName attribute, in which case they essentially replace the initial settings of
attributes for the entire document.

In all IBMIDDoc definitions, the using tag (that is, the tag with the DEF on it that
uses the definition) can override individual attributes from the definition by
specifying them again. You are not required to use a definition tag; but they sure
make life easier.

The DEF tags go in your document’s prolog, inside a PropDefs tag. That way they
apply to your entier document. You can also put DEF tags in a division’s DProlog
tag (in a PropDefs tag); these only apply to the division and it’s children.

Let’s consider an example. The FIG tag, as initially shipped with IBMIDDoc, has
the attribute initial settings shown here:

FRAME=none
PGWIDE=0

Let’s say that for a document we need to work on, that most of the figures will
have ruled frames and be page-wide. We would specify a FIGDEF tag in the
Prolog with the following attributes. Note that there is no DefName attribute; this
overrides the document’s defaults.

<prolog>
<propdefs>
<figdef frame=rules pgwide=1>

However, a handful of our figures, will be column-wide, boxed, and have a
slightly larger type size. This shows an additional FIGDEF to handle these figures;
note that is has a DefName attribute::

<prolog>
<propdefs>

<figdef frame=rules pgwide=1>
<figdef defname=colfigs pgwide=0 frame=box scalepct=150>

Now most of the figures in our book can be described simply by using the FIG tag
with no attributes (except the FIG tag’s own ID for cross references), but the boxed
figures will have to use a DEF=COLFIGS attribute as well. Then there is always
one maverick that insists on being different from everyone else; this one suffers
from having too much content and must be scaled down:

<fig id=abc>
<fig id=jk1 def=colfigs>
<fig id=xyz def=colfigs scalepct=50>

Let’s summarize what we did here: first, we redefined the FIG attribute initial
settings for our use in this document (the FIGDEF tag with no DefName). Then,
we set up the FIG attributes for some of our figures (the FIGDEF tag with a
DEFNAME). Finally, we show our figure markup (1) using the new initial settings,
(2) using the “colfigs” values, and (3) using the “colfigs” attribute values plus an
override for the SCALEPCT attribute.

ID Workbench: IBMIDDoc User’s Guide and Reference

DEFs

Here’s how the figures appear:

Figure has a ruled frame and is page-wide.

Figure 8. "default’

Figure has a boxed frame, is column-wide, with larger

type.

Figure 9. "colfigs”

Figure has a boxed frame, is column-wide, with smaller type.

Figure 10. "colfigs” with an override

Summarizing the initial setting override hierarchy

“Initial setting override hierarchy” is a fancy way of describing a simple process.
IBMIDDoc has a set of initial values for attributes which can be overridden in your
document by:

1. Definition tags without DefName attributes, which can be overridden by:

2. Definition tags with DefName attributes and using tags with matching DEF
attributes, which can be overridden by:

3. The using tag itself.

Here’s a complete description of how ID Workbench processing checks each
attribute and determines its value:

1. An attribute placed on an element directly
2. An attribute placed on an element definition with defname="mydef’, when the
current element has the attribute def="mydef’

3. An attribute placed on a generic element definition for this element (for
example, a FIGDEF or OLDEF with no defname).

4. An attribute placed on a classdef with classname="myclass’, when the current
element has the attribute class="myclass’

5. An attribute placed on a propdef with propname="myprop’, when the current
element has the attribute propsrc="myprop’

6. An attribute placed on a propdef with no propname.

Each of these describes the behavior for a single attribute. Every attribute is
checked individually, in the order described above. This means, if a figure tag is
defined as follows:

<fig def="mydef' pgwide=0>

The pgwide will override any other definitions, but all other attributes (such as
frame, scalepct, or style) will follow the normal course of inheritance. This is the
case for every attribute on every tag covered by the new DEF elements. For any
other tags, the same order of precedence applies, except that numbers 2 and 3 are
skipped.

On the LERSDEF tag, there are both DefName and CLASSNAME attributes. If both

are specified, you get a warning in the transformation, and only the DefName
attribute is used. Otherwise, the CLASSNAME and DefName attributes are

Chapter 9. Using definition tags 107

DEFs

108

considered identical, as are the DEF and CLASS attributes on the LERS tag. In step
2 of the attribute hierarchy above, any combination of classname/defname with the
class/def attributes is valid. For example:

<lersdef defname='mydef'>

can be referenced either by
<lers def='mydef'> or <lers class='mydef'>

Similarly:
<lersdef classname='myclass'>

can be referenced either by
<lers def='myclass'> or <lers class='myclass'>

ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 10. Revision Elements and Marked Notes

IBMIDDoc has a slick way of indicating changes in your document. Use RevDefs,
Rev, and Mark elements to track revisions in your documentation. These elements
are valid in the Prolog or DProlog elements of your document. You can also use a
marked deletion (MD) element to indicate some text you are going to remove.

Revision and Marked Notes elements include:

¢ Rev, define a revision level

e RevDefs, define several revisions

* REV attribute, assign a revision level to an element

* MD, indicate words or phrases the be removed; the text is formatted with a
strike-through font

The following Mark elements are not yet fully supported; they only work for
BookMaster output processing.

* Mark

* MkAction
* MKClass
* MKDesc
* MKNote
* MarkList

Using Revisions

In order to define revisions, you must place a Rev element in a RevDefs element.
The RevDefs can be in your document prolog to affect the whole document; or in a
division DProlog to affect only that division. The Rev element defines the specifics
for a single revision that can be used throughout the document or division. You
can have more than one revision in a document. This is useful for multiple drafts.
Normally, in hardcopy, a revised text is indicated by a vertical bar to the left of the
text. You can set different characters for your different revisions. Any element that
contains new, changed, or deleted information can refer to the ID attribute value
on the Rev element to denote why and how the information has changed.

Defining Revisions in the RevDefs Element

The RevDefs element contains several Rev elements. Each Rev defines a revision,
describes the reason for the revision, and states if the revision should be used or
ignored during document processing. If the Rev is to be used, the character
specified on the char attribute will be printed in the margin to the left of the
changed information. If the revision is ignored, no special characters will appear
beside the information.

To begin, get to the prolog of your document and insert a RevDefs element; then
insert a Rev element. Pick an identifier for your REV tag that makes sense.
Suggestions include:

e v4r5 — this indicates version 4, release 5
* r2ml — this indicates release 2 modification 1; or 2.1

© Copyright IBM Corp. 1992, 2001 109

Revisions

Then, set the IDENT attribute to USE; this enables the revision. If you want to turn
off the revisions, set IDENT to IGNORE.

If you want a special character to indicate the revision, type that one character into
the CHAR attribute. Normally, a vertical bar is used.

Here is a simple revision definition; only one revision is defined in the document’s
prolog;:

<prolog>

<revdefs>

<rev id="v4r5" ident="use">

<date>9/9/99</date>

<desc>First draft for vdr5</desc>

</rev>

</revdefs>

</prolog>

Here is a more complicated set of revision definitions. "v4r5” and "v4r5d2" are
enabled, with characters "|” and "+" being used respectively. The other revision for
"v4rd" is defined, but set to ignore.

<revdefs>

<rev id="v4r5" ident="use">
<date>9/9/99</date>

<desc>First draft for vé4rb</desc>
</rev>

<rev id="v4rbd2" code="+" ident="use">
<date>9/10/99</date>

<desc>Second draft for v4r5</desc>
</rev>

<rev id="v4r4" ident="1ignore">
<date>9/9/98</date>

<desc>V4R4 changes</desc>

</rev>

</revdefs>

Currently, you can have up to 20 different revision levels active in a document
being formatted for Xyvision PostScript or PDFE.

Indicating Revisions in the Document Markup

To indicate that text is new or changed; you use the REV attribute on the element
that contains the text. The REV attribute refers to the REV elements defined in the
RevDefs. The revision characters start with the beginning tag, and continue
through to the ending tag.

Using the "v4r5” revision definition from LDeﬁ.um.g_Remsms_m_the_RenDefd
Element” on page 10d, the middle list item is changed:

* something old

¢ something new (or changed)
* something borrowed

Here’s its markup:

something old</1i>

<1i rev="v4r5">something new (or changed)</1i>
something borrowed</1i>

110 1D Workbench: IBMIDDoc User’s Guide and Reference

Revisions

If you need to revise a section that is part of another revision, IBMIDDoc allows
you to nest the revisions; that is, to place revisions inside other revisions. When the
formatter encounters the REV attribute for your new revision, it stops printing the
character associated with the old revision and starts printing the character you
assigned to the new revision. Then, when the formatter encounters the end tag for
your new revision, it resumes printing the character associated with the old
revision.

For example, if the whole list was changed for "v4r5”, then the middle item was
added for the second draft; you would want something like this:

* something old

* something new (or changed)
* something borrowed

* something blue

Here’s its coding:

<ul rev="vé4r5">

something old</1i>

<1i rev="v4r5d2">something new (or changed)</1i>
something borrowed</1i>

something blue</1i>

The revision markup doesn’t evaluate the dates of the revision definitions, it works
on nested position. It’s totally possible to make a small change first and then make
a larger change that encompasses the first change. The inner revision will still
show its change bar. Watch out for these; you might need to delete the nested Rev
attributes if they should really be part of outer revision.

Marking text for deletion

Sometimes, as part of a revision, you may want to indicate that some text has been
deleted, but still leave that text in the document for your reader’s convenience. If
you precede the text to be deleted with the MD (marked deletion) tag and follow it
with the matching end tag, the formatter overstrikes the text with a horizontal line.
The MD element is like a phrase. For example:

You may want to eliminate repetittons redundancies.
Here’s its markup:

You may want to eliminate <md rev="v4r5">repetitious</md>
redundancies.

Creating Collections of Marked Notes

To use marked notes in IBMIDDoc, you enter mark elements that define the
marked note collection. These are contained in the RevDefs element, which is
contained in the Prolog or DProlog elements. You must define at least one
collection in order to use marked notes in your document. These collections of
notes of can be put in a number of forms, including a table.

Processing Note
Marked Notes currently only work in BookMaster output processing.

Chapter 10. Revision Elements and Marked Notes 111

Revisions

These are the elements you'll need to use to create a marked collection of notes:
* Mark

* MKAction

¢ MKClass

* MKDesc

* MkNote

* MarkList

Using the Mark Element

The Mark element names a marked collection of changes and specifies whether or
not the other elements associated with this marked collection are processed when

your document is formatted. Mark elements are contained in the RevDefs element,
along with Rev elements.

A typical Mark element looks like the one in this example:

<mark id="mkv4r5" ident="use">
<desc>v4r5 marked message changes</desc>
</mark>

Defining Marked Actions and Classes

MkKkAction is used to define one or more actions that can be associated with
marked notes. These actions can be used with any marked class. MkClass defines a
marked note class within MkDesc. You can define as many classes as you need.
These class codes are also used on the MarkList element to tell IBMIDDoc which
class codes to make part of the marked notes table.

<propdefs>

<mkdesc>

<!--Define two classes for marked lists - notes and abends-->

<mkclass name="msg">Msg</mkclass>

<mkclass name="abend">Abend</mkclass>

<!--Define the actions for the changed info-->

<mkaction name="new">New</mkaction>

<mkaction name="change">Changed</mkaction>

<mkaction name="del">Deleted</mkaction>

<mkaction name="rep">Replaced</mkaction>

</mkdesc>

</propdefs>

Using the MkNote Element

The MkNote element identifies the actual text of your marked note. Several
attributes are used on the MKNote element. These include:

CLASS
defines one or more mark classes to which the marked note belongs.

ACTION
defines one or more actions associated with the marked note.

MKIDS
contains the ID of one or more Mark elements.

ITEM
defines an identifying label for the note, such as a message number or error
report.

The content of the tag displays in the description column of the marklist table.

112 1D Workbench: IBMIDDoc User’s Guide and Reference

Revisions

<mknote class="msg" action="change" mkids="mkv4r5" item="IDWOO12">Hi there!
</mknote>

Generating a Collection with MarkList Element

The MarkList element causes a table of marked collection notes to be generated.
You can include any notes that you mark in the marked note list, and you can
headings for the table. For example, the marked note list can be used to generate a
definitive summary of changes. In addition, you can use marked notes to collect
information about document content, notes to yourself or others, or references to
certain locations in the document that you think will be very important to the
reader.

The MarkList element generates a list of marked notes at the place in the
document where the MarkList element is specified. Only notes of the specified
classes, collections, and actions will be included in the generated list.

<marklist mkids="mkv4r5" classes="msg abend" actions="change del rep"
display="item action page desc" classhd="Msg" actionhd="Reason"
itemhd="Msg" lochd="Page" deschd="Message text">

A Marked Notes Markup Example
The example that follows illustrates how to use marked notes in IBMIDDoc.

<ibmiddoc docstyle="1ibmxagd">
<prolog><ibmbibentry><doctitle><titleblk>

<title>My Marked Changes Document for Messages</title>
</titleblk></doctitle></ibmbibentry>

<propdefs>

<mkdesc>

<!--Define two classes for marked lists - notes and abends-->
<mkclass name="msg">Msg</mkclass>

<mkclass name="abend">Abend</mkclass>

<!--Define the actions for the changed info-->
<mkaction name="new">New</mkaction>

<mkaction name="change">Changed</mkaction>

<mkaction name="del">Deleted</mkaction>

<mkaction name="rep">Replaced</mkaction>

</mkdesc>

</propdefs>

<revdefs>

<rev id="revv4r5" ident="use">

<date></date>

<desc></desc>

</rev>

<mark id="mkv4r5" ident="use">

<desc>v4r5 marked message changes</desc>

</mark>

</revdefs>

</prolog>

<body>

<d>

<dprolog><titleblk>

<title>List of changed items</title>
</titleblk></dprolog>

<dbody>

<marklist mkids="mkv4r5" classes="msg abend" actions="change del rep"
display="item action page desc" classhd="Msg" actionhd="Reason"
itemhd="Msg" lochd="Page" deschd="Message text"></dbody>
</d>

<msglist>

<msg rev="revv4rs">

<msgnum>IDWOO12</msgnum>

<msgtext>Hi there!</msgtext>

<msgitem class="xp1">

Chapter 10. Revision Elements and Marked Notes 113

Revisions

<p>This is a friendly message.

<mknote class="msg" action="change" mkids="mkv4r5" item="IDWOO12">Hi there!
</mknote></p>

</msgitem>

</msg>

<msg rev="revv4r5">

<msgnum>IDWOO13</msgnum>
<msgtext>Farewell!</msgtext>

<msgitem class="xp1">

<p>This unlucky message was removed.

<mknote class="msg"

action="del" mkids="mkv4r5" item="IDWOO13">Farewell!
</mknote></p>

</msgitem>

</msg>

</msglist></body>

</ibmiddoc>

The resulting marklist table will look like the example that follows.

Msg Reason Page Message text
IDW0012 Changed 1 Hi there!
IDW0013 Deleted 2 Farewell!

114 1D Workbench: IBMIDDoc User’s Guide and Reference

Chapter 11. Indexing

Creating an index using IBMIDDoc is somewhat like creating a table of contents
(TOC). The index is built for you from items in the text you have tagged as index
entries. Just as you use the TOC tag to indicate you want a table of contents, you
use the INDEX tag in the back matter of your document to show that you want
the index included.

Indexes are similar to a TOC in that a subject and page number are listed.
However, the index can provide much more detail than a TOC. It provides a term,
subterms, and sometimes synonyms (in the form of “see and see also” references)
with page numbers indicating where detailed information can be found on the
subject. Indexes are also sorted alphabetically for easy subject retrieval.

You can build an index by tagging the terms you think will be useful for the
reader. Place the index tags at the point that the topic occurs to ensure the page
references in the index will be correct whenever you format the document. The
formatter will automatically create an index in alphabetical order and place the
correct page number next to each entry in the index.

[Cable 14 illustrates the terminology we use in this chapter to describe the elements
of an index.

Table 16. Terminology used in discussion of indexing

entry: appetizers 102
subject: bechamel sauce 13
page references: cabbage 58, 115
primary entry: eggs 106
secondary entry: souffles 108
tertiary entry: chocolate 112
entry heading: meats

beef 60

poultry 75

“see also” reference: See also chicken, turkey

white sauce
“see” reference: See bechamel sauce

In this chapter we will discuss the levels of indexes, where to place index entries,
how to define index entries, refer to index entries, the use of see and see also
references, and how to control and generate an index. But first we will discuss the
basic index structure.

© Copyright IBM Corp. 1992, 2001 115

Structuring a basic index

A good index in an indispensable part of any document. This is especially true for
reference documents. Because you don’t usually read reference information from
cover to cover, you need a way to be able to find specific bits of information you
need.

To be a good, complete retrieval device, an index must do the following;:

Help readers find information within the document.
Anticipate how readers will search for information.
Serve the novice and the expert.

Show how topics interrelate.

Tell what the book contains.

Cross-reference similar terms or concepts.

Before we talk about the actual tags, here are some good tips as you develop an
index:

Familiarize yourself with the content, organization, and objectives of the
document before you start the indexing process.

Analyze your audience. Who will be using the book? Are readers likely to be
familiar with the book and the product? What will the reader already know?

Ask yourself, “Does this topic contain information the reader will want to find?”
If so, create at least one index entry for that topic.

Develop an indexing worksheet for each section of your document. On it list
major concepts or ideas, major terms defined, acronyms and abbreviations,
restrictions and warnings, and cross-references to other information products.
Use the worksheet to determine which topics should be main entries and which
should be subentries. The worksheet also ensures that important information is
not left out of the index.

Be sure to use both the acronym or abbreviation and its “spelled-out version” as
index entries if your document uses them.

Ask yourself when looking at an index entry, “Are there any commonly used
synonyms for this word?” If so, include them in your index as well.

Make sure that each index entry has no more than two or three references. Use
specific subentries to reduce the number of page references and give your reader
a more precise pointer to the topic.

The IBMIDDoc indexing elements include:

I1, primary

12, secondary

I3, tertiary

IdxTerm, index term text
IRef, index reference
IdxDefs, index definitions
Index, index placement

116 1D Workbench: IBMIDDoc User’s Guide and Reference

Basic index tagging

There are 3 levels of index entries: Primary (il), Secondary (i2), and Tertiary (i3).
The simplest kind of index entry is a primary entry. A primary entry is the major
subject and should be a noun or noun phrase. A primary entry with a page
number, is entered with the I1 tag, which says, “This is an index subject at the first
level”. It would look like this:

<il><idxterm>dessert sauces</idxterm></il>

A primary index entry may or may not have page number listed. However, if the
primary index entry does not have a secondary entry associated with it, the
primary tag will automatically have a page number entered. There will be more on
index entries and page numbers later in this chapter.

Most indexes run to more elegant structures with primary, secondary, and
sometimes tertiary entries. The secondary entry narrows the primary entry into a
more specific subject. It may or may not have a page reference. Secondary entries
are arranged alphabetically in the index following the primary entry to which they
apply. A secondary entry with a page number is entered with the 12 tag.

When you have a large number of subtopics under your primary entry, a
secondary or tertiary tag improves index readability. If you've ever seen an index
where most of the entries are primary and have page numbers, you know how
difficult it can be to find the information you need. Using the I2 tag makes an
entry stand out and directs the reader’s attention to a topic instead of a mass of
numbers.

Tertiary entries are the third, even more specific level for the major topic. A tertiary
entry always has a page reference. Tertiary entries are arranged alphabetically
following the secondary entry to which they apply.

Placement of index tags

Indexing isn’t as easy as tossing an il tag here and an i2 tag there. Believe it or
not, there are “rules” for index tagging unless you want an index with only
primary index entries. As we discussed before, secondary and tertiary entries make
an index more readable. So, unless you have a small index, you'll want to add a
few index levels.

There are two ways to associate secondaries with their primaries and tertiaries
with their secondaries. One way is by their position in the source file. The other
way is by creating cross references. We'll tell you all about the position way first.

Position method

The position method has the secondary entries within the tags of the primary
entry. Likewise, the tertiary entries are embedded in the secondary entries. The
rule when using the position method is you cannot have the secondary entries
listed outside the primary entry and the tertiaries cannot be outside the secondary
entry. Here’s an example of the position method:

<il><idxterm>dessert sauces</idxterm>

<i2><idxterm>butterscotch</idxterm></i2>

<i2><idxterm>hot fudge</idxterm>

<i3><idxterm>microwave method</idxterm></i3>

Chapter 11. Indexing 117

118

Cross

<i3><idxterm>stovetop method</idxterm></i3>
</i2>
<i2><idxterm>strawberry</idxterm></i2>
</il>

Here is the formatted result:

dessert sauces
butterscotch 12
hot fudge
microwave method 12
stovetop method 12
strawberry 12

You’ll notice that the i3 entries, microwave and stovetop methods, are only listed
under hot fudge. This is because the i3 tags are listed inside the i2 hot fudge tag. If
you wanted the i3 tags to be under butterscotch, hot fudge, and strawberry, you
would have to place the i3 tags inside each one of the i2 tags. So you would have
microwave method and stovetop method listed three times each in this example.
You'll also notice the page numbers are automatically placed in the formatted
example. You don’t need to print the document then add the page numbers. It’s all

done for you.

referencing index entries

As you can see from the examples under [Pasition method” an page 117, repeating

the entire structure of primary and secondary entries before each tertiary entry can
be pretty tedious. For this reason, IBMIDDoc has the ID, I1ID, and I2ID attributes
on the indexing tags to allow you to get at the structure with just the name you

put on the ID.

The ID attribute identifies an index entry within an SGML document. IDs must be
unique within a single document. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-), or

periods (.).

When you put an ID attribute on an I1 or 12 tag, the formatter “remembers” that
entry and any higher level entries associated with it.

For example, if you had these entries:

<jl><idxterm>sauces</idxterm>
<i2 id="mayo"><idxterm>mayonnaise</idxterm>

<i3><idxterm>hard way</idxterm></i3></i2></il>

This associates the ID “mayo” with both mayonnaise and sauces.

Then you can enter:

<i3 i2id="mayo"><idxterm>blender method</idxterm></i3>

<i3 i2id="mayo"><idxterm>food processor method</idxterm></i3>

and get exactly the same results as if you had coded this:

<jl><idxterm>sauces</idxterm>
<i2><idxterm>mayonnaise</idxterm>

<i3><idxterm>hard way</idxterm></i3></i2></il>

<il><idxterm>sauces</idxterm>
<j2><idxterm>mayonnaise</idxterm>

ID Workbench: IBMIDDoc User’s Guide and Reference

<i3><idxterm>blender method</idxterm></i3></i2></i1>

<jl><idxterm>sauces</idxterm>
<i2><idxterm>mayonnaise</idxterm>
<i3><idxterm>food processor method</idxterm></i3></i2></i1>

When you use the reference attribute on the 12 and I3 tags, they pick up the
specified level needed from the structure named with the reference name. (You
can’t use a reference on an I1 tag, because there are no “higher” levels.)

If you want to pick up all the levels (that is, you have an identical structure to the
one named with the ID attribute), you should use the IREF tag. Because you are
picking up all the levels, the IREF tag doesn’t need a level indicator of its own.
The IREF tag adds a page number to an existing structure.

So if we had many different ways of making mayonnaise with a blender, we could
enter:

<jl><idxterm>sauces</idxterm>
<i2 id="mayo"><idxterm>mayonnaise</idxterm></i2></i1>

<iref refids="mayo">

<iref refids="mayo">
and we would get this result:

sauces
mayonnaise 20, 23, 26

You can even use both an ID and a reference on an 12 or I3 tag, to both pick up the
higher level entries (the referenced entry) and then give this whole new structure a
name (the ID). (You want to be careful not to confuse yourself, though.)

Where to put index entries

Your index entries can be entered just about anywhere; they don’t cause any
variation in how the text around them is formatted. Here is a list of good places to
put index entries to ensure the proper page reference:

¢ Immediately following a heading, after the ending Dprolog tag.

* Following the first sentence of a paragraph.

* Following the first sentence of a list item or definition description.

* Immediately following an XMP tag or FIG tag (in particular, if you are indexing
a figure that is going to float, the index tag must be inside the figure).

* Immediately following the first ENTRY element of the first ROW of a TABLE,

for entries that point to an entire table (this is because the page on which the
table will begin isn’t determined until the first ENTRY element is processed).

For example, because the formatter keeps the first few lines of a paragraph on the
same page, using the index tags in these places ensures that the page reference
picked up for the entry is the same page on which the paragraph starts. If the
index entries were placed before the paragraph, they might be processed (and the
page number picked up) before the formatter discovers that it has to start a new
page for the paragraph.

It is a good idea to put index entries that don’t have page references associated
with them in one place in the front of your source document. If you scatter them

Chapter 11. Indexing 119

through your document, you will have trouble finding them when you want to
change them because the index itself won't give you a page number to help you
find them.

And where NOT to put index entries: Do not put index entries in the following

places:

* Do not place index entries anywhere before the PREFACE tag or between the
BODY tag and the first division in the body. They can cause extraneous blank
pages in your BookMaster-formatted document if they occur at either of these
points.

* Don’t put index entries in a table between a ROW tag and an ENTRY tag. This
is also a Bookmaster-formatting problem. Put them in the Entry tag.

* Don’t put index entries in the middle of a sentence, this raises heck with
translation centers. Put them before the paragraph, or before the sentence.

Defining index entries (central indexing)

You can define index entries in the document’s prolog. This is often called
“central” or “central-file” indexing.

Use the index definitions (IdxDefs) element to put some or all the index entry
definitions in a central place, either the document prolog or a division prolog. This
makes it easier for you to maintain your index IDs, since you can maintain them in
a central place. Use I1 to define each primary index entry. In IdxDefs, any 12
(secondary) and I3 (tertiary) index entries must be contained in the I1 index
entries. The following example shows I1 index entries in IdxDefs for “document
structure” and “element”:

<idxdefs>

<il id="ixdocstruct"><idxterm>document structure</idxterm>

<il id="ixelement"><idxterm>element</idxterm></il>
</idxdefs>

No page number is associated with index entries located in the IDXDEFS. Use the
IREF element or add lower level index entries to set reference points. For example:

<iref refids="ixdocstruct">
<i2 ilid="ixelement"><idxterm>context</idxterm></i2>

Creating index entries by cross-indexing

120

There are many times in indexing when you want to associate the same set of
subentries and page references with a group of primary index entries. This process
is called “cross-indexing”.

You can use the IdxTerm element multiple times to associate the same set of
subentries with several I1-level index terms. For example, to associate the same set
of 12 and I3 entries with both “cross indexing” and “indexing, cross”, you can
define an I1 index entry as follows:

<jl><idxterm>cross indexing</idxterm><idxterm>indexing, cross</idxterm>
<j2><idxterm>creating</idxterm>

<i3><idxterm>easy way</idxterm></i3></i2></il>

You would get this result:
cross indexing

creating
easy way 12

ID Workbench: IBMIDDoc User’s Guide and Reference

indexing, cross
creating
easy way 12

In this example, “cross indexing” is the first index term specified and is considered
to be the main index term for this entry.

Cross-indexed primaries do not have to have identical subentries. For example,
suppose you want to index all custard pies under both “pies” and “custard pies”;
all fruit pies under both “pies” and “fruit pies”; and a general discussion of pies
under “pies” alone. To do that, use the following markup, the Index definitions are
also used and are in the document’s prolog.

<prolog>

<jdxdefs>

<il id="pies"><idxterm>pies</idxterm></il>

<il id="custpies"><idxterm>custard pies</idxterm><idxterm>pies</idxterm></i1>
<il id="fruitpies"><idxterm>fruit pies</idxterm><idxterm>pies</idxterm></il>
</idxdefs>

</prolog>

<1:2.1'11'd="p1'es"><1'dxter‘m>gener‘a1 discussion</idxterm></i2>
<1: 2 . ilid="custpies"><idxterm>coconut</idxterm></i2>

<1: 2 . ilid="custpies"><idxterm>chocolate</idxterm></i2>

<1: 2 . ilid="fruitpies"><idxterm>peach</idxterm></i2>

<1: 2 ' ilid="fruitpies"><idxterm>blueberry</idxterm></i2>

which gives results similar to this:

custard pies
chocolate 2
coconut 1

fruit pies
blueberry 5
peach 3
pies
bTueberry 5
chocolate 2

coconut 1
general discussion 1
peach 3

| Defining See and See-also references

If you need see and see-also references in your index, use the SeelD and SeeText
attributes with I1 or I2 elements. SeelD points to an index entry specified by an ID
attribute.

SeeText points to text that you specify. Use SeelD whenever possible because it
ensures that you are referring your reader to a real entry in the index. (You see a
question mark in your cross-reference listing if a SeelD specifies an ID that does
not exist.) This markup shows the SeelD attribute:

<il id="bech"><idxterm>bechamel sauce</idxterm></il>
<il seeid="bech"><idxterm>white sauce</idxterm></il>

Chapter 11. Indexing 121

122

Processing Note: For a see reference to work correctly in XHTML or HTML
output, the I1 needs to be in the prolog. Any Il in the body of
the document is treated as an index link, giving you a see-also
reference. Also, the ID needs to have an IREF in the body of the
document.

IBMIDDoc determines whether the reference should be a see or a see-also
reference. If “white sauce” has no page references of its own and no secondary
entries, the index reference is a see reference, as follows:

bechamel sauce

white sauce
See bechamel sauce

However, if “white sauce” has page references or other subentries, the index
reference is a see-also reference, as follows:

bechamel sauce 29

white sauce 32
See also bechamel sauce

SeeText works the same as SeelD, except that you supply the text you want for the
reference, as follows:

<I1 seetext="cakes, cookies, pies"><IDXTERM>desserts</IDXTERM></11>

With SeeText, you must ensure that the referenced entries (in this case, cakes,
cookies, and pies) can all be found in your index.

If “desserts” has other references, the index entries appear as follows, with the
see-also reference listed first in the subentries:

desserts
See also cakes, cookies, pies

If both SeelD and SeeText are specified, only the SeelD is used.

If a SeelD points to the ID of a secondary or tertiary entry, as in the following
example, IBMIDDoc constructs the full cross reference for you:

<I1><IDXTERM>sauces</IDXTERM><I2 ID="vinaig"><IDXTERM>vinaigrette</IDXTER

<I1 SEEID="vinaig"><IDXTERM>0i1 and vinegar dressing</IDXTERM>

The cross-reference looks similar to this:

0il and vinegar dressing
See sauces, vinaigrette

sauces
vinaigrette 83

When you use SeelD in one index entry to refer to another index entry that has
several index terms defined, the “See” or “See also” text generated in the index
shows only the main (first) index term.

Note: If a SeelD attribute points to an I1 or I2 element that specifies cross indexing
(has multiple IdxTerm elements), the resulting see or see-also reference

ID Workbench: IBMIDDoc User’s Guide and Reference

points only to the first (main) IdxTerm element. Because of that, you should
select the main entry carefully for any index elements that specify cross
indexing.

For Xyvision generated PDFs, there will not be a PDF link between the “see” entry
and the entry it refers to.

Controlling the Index Sorting

This currently does not work.

The automatic sorting of index entries may not always suit your needs, as in these
examples:

¢ When you want to index titles without regard to leading articles; for example,
indexing “The Wind in the Willows” under “wind”.

* When you want to index entries that start with a special character according to
the first alphabetic character rather than the special character; for example,
indexing “&date;” under the Ds instead of the &s.

* When you want numeric subjects to appear in the alphabetic section as if they
are spelled out; for example, indexing “8-layer cake” as if it is spelled
“eight-layer cake”.

To change the way an index entry is sorted, specify the SortKey attribute. This is
currently not supported for the Xyvision PostScript and PDF formatter.

For example, to sort “8-layer cake” as if the “8” is spelled out as “eight”, use the
following markup:

<il sortkey="eight">8-layer cake</il>

This could results in an index like the following;:

egg substitutes 58
8-layer cake 82
endive, Belgian 75

The sort key needs to be only long enough to guarantee that the entry is sorted as
you want. For this example, the following markup would be sufficient because ei
is enough to ensure the desired sorting.

<il sortkey="ei">8-layer cake</il>

However, consider making the sort key somewhat longer to ensure the desired
sorting when information, such as “8-layer salad”, is added. So you really may
want this for your “8-layer cake” sortkey:

<il sortkey="eight-layer cake">8-layer cake</il>

Generating the index

The INDEX tag shows that you want your index placed in the back matter. In the
BACKM (back matter) section, insert an INDEX tag. You should also insert a
GENDTITLE tag. It generates the level 1 heading “Index” for you and then
includes the sorted and formatted index.

It would look like this:

Chapter 11. Indexing 123

| Helping online

<backm>
<index>
<gendtitle>
</index>
</backm>

and that’s all there is to that.

You can override the index heading text like so:

<index>

<titleblk>

<title>My Cute, Highly Retrievable Index</title>
</titleblk>

</index>

To get an idea of what your final index will look like, just look at the index in this
book; it was done using these tags.

For XHTML and HTML processing, your index entries are added to the meta data
for your HTML file. This helps search engines to better find your articles.

124

reviewers see your index entries

The XHTML transform has an option to show your index entries in the places they
occur. This is currently only for IBMIDDoc to XHTML processing; to help with
online reviews. You specify this when you transform your IBMIDDoc to XHTML,;
the XHTML-2 page has an option named Display index entries in document
body(/INDEXSHOW). Given this source:

<d id="challenge">

<dprolog><titleblk>

<title>Challenges of the current environment</title>
</titleblk></dprolog>

<il><idxterm>challenges, current environment</idxterm></il>
<jl><idxterm>current environment, challenges</idxterm></il>
<jl><idxterm>environment, current, challenges</idxterm></il>
<dbody>

<p>The challenges of Allview's environment can be divided into these categories:
<d1>

<dlentry><term>Cost</term>

<defn>A dollar amount.</defn></dlentry>
<dlentry><term>Quality</term>

<defn>Maintenance of proper standards.</defn>

</dlentry>

</d1></p>

</dbody></d>

This is what you'll see on the corresponding XHTML web page; the index entries
are colored and appear as follows:

ID Workbench: IBMIDDoc User’s Guide and Reference

[Incex: challenges, current environment]
[Index: current environment, challenges]
[Index: awwvironment, current, challenoges]

Challenges of the current emironment

The challenges of Allview's ervironment can he divided into these categories:
Zost

A dollar amount.
caality

mMaintenance of proper standards.

Creating a master index

A master index incorporates the index entries from other documents and combines
them into one central place for the user The master index provides the name of the
document and the page number where the information about the index entry can
be found.

To create a master index for a set of documents, do the following:

1. Each of the documents that contribute to a master index needs to have the
master index prefix specified in their prolog. In each contributing book, use a
MasterIndexInfo element containing a MasterIndexPrefix element to specify the
prefix code. For example, for a user guide, you might want to use the prefix
USERGD; for a reference, you might want to use the prefix REF. For example:
<masterindexinfo>

<masterindexprefix>USERGD</masterindexprefix>
</masterindexinfo>

The prefix should be something short, generally less than 10 characters. We also
recommend having no spaces. When an entry in the master index prints, they
will look something like the following. This sample master index has three
books: USERGD for a user’s guide, INTRO for an introduction, and PLAN for a
planning guide. The page number after the prefix is the page number in the
corresponding book.

configuring INTRO-2, USERGD-12
changing PLAN-34

deleting USERGD-39
2. To format a master index using Xyvision:

a. This step is optional. The master index support allows you to link directly
from a PDF of the master index to that page in the PDF of the contributing
document. To do this, you can specify an ExternalFileName element in each
contributing document to be contained in the master index. Specify only the
file name of the document. Do not specify a file extension. This only works
for Xyvision-formatted documents. For example, this specifies the name of
this document is myusergd. If you will be placing the PDF files on an AIX®
server, remember that the file names are case-sensitive.

<externalfilename>myusergd</externalfilename>

b. Each of the documents to be contained in the master index needs to be
formatted for PostScript using Xyvision. By specifying the master index

Chapter 11. Indexing 125

126

prefix elements, the Xyvision formatter generates a PostScript file and a
master index file (file extension MDX) for each document. The document
must also have an Index tag, and be processed so that an index is generated
(avoid the NOINDEX option).

c. Once all of the contributing documents have been formatted and the master
index files (MDX) have been created, you create a master index document
that imbeds each of the individual master index files. You indicate that this
is a master index document by coding a MasterIndex element containing a
MasterIndexObj element for each MDX file to be included. Each MDX file
needs to be declared; declare the MDX file as a "graphic” entity with a
notation of "mindex”.

d. Format the master index file for PostScript using Xyvision to create the
master index document.

e. If you want, create Adobe Acrobat PDFs from the PostScript files for the
master index and the contributing documents.

3. To format a master index using BookMaster:

a. Each of the documents to be contained in the master index needs to be
formatted for PostScript using BookMaster. You will need to format the
documents without using the ID Workbench. The master index files from
BookMaster processing are not returned to the OS/2® IDWB client.

Transform each contributing document to BookMaster.
Transform the master index document to BookMaster.

d. Upload each converted document, with its artwork, to VM and process
them using IDPS. For each contributing book, specify the correct
BookMaster master index options for IDPS to create the master index;
either:

Master index ==> filename

or:
SYSVAR (M filename)

where filename is the name for the contributing document’s master index
file. This creates the file: filename DSMMINDX.

e. For each contributing document, you will need to add an imbed command
for the master index file in the following format. Add these lines just before
the INDEX tag in the master index document.

.* set the name of the DSMMINDX file

.namefile name=filename cms='filename dsmmindx'
.* imbeds the index source

.im filename

This shows an example prolog for a contributing document. The ExternalFileName
specifies the file name of a document: idfgsmst, without the file extension. The
MasterIndexInfo and MasterIndexPrefix elements indicate the prefix is GSUG (the
prefix used for this book).

<ibmbibentry><doctitle>

<titleblk>

<title>Getting Started and User's Guide</title>
</titleblk></doctitle>
<externalfilename>idfgsmst</externalfilename>
</ibmbibentry>

<masterindexinfo>
<masterindexprefix>GSUG</masterindexprefix>
</masterindexinfo>

ID Workbench: IBMIDDoc User’s Guide and Reference

In the master index document, the contributing MDX master index files must be
declared. This example shows two sets of declares. The "mindex” declares are for
the master index files; the "sgmldoc” declares are for cross-book links (using the

citations).

<IENTITY instidx SYSTEM "idfinmst.mdx" ndata mindex>
<IENTITY planidx SYSTEM "idfpImst.mdx" ndata mindex>
<IENTITY gsugidx SYSTEM "idfgsmst.mdx" ndata mindex>
<IENTITY inst SYSTEM "idfinmst.idd" ndata sgmldoc>
<IENTITY plan SYSTEM "idfpimst.idd" ndata sgmldoc>
<IENTITY gsug SYSTEM "idfgsmst.idd" ndata sgmldoc>

This shows a sample master index document:

<ibmiddoc>

<prolog><ibmbibentry><doctitle>

<titleblk>

<title>Master Index</title>

</titleblk></doctitle>

</ibmbibentry>

<bibentrydefs>

<ibmbibentry docname="gsug" id="gsug"><doctitle><titleblk><title>
Getting Started and User's Guide</title></titleblk></doctitle>
</ibmbibentry>

<ibmbibentry docname="inst" id="inst"><doctitle><titleblk><title>
Workstation Installation Guide</title></titleblk></doctitle>
</ibmbibentry>

<ibmbibentry docname="plan" id="plan"><doctitle><titleblk><title>
Planning and Host Installation Guide</title></titleblk></doctitle>
</ibmbibentry></bibentrydefs>

</prolog>

<frontm style="display="'cover'">

<toc><gendtitle></toc>

</frontm>

<body>

<d>

<dprolog><titleblk>

<title>Master Index Prefix Codes</title>

</titleblk></dprolog>

<dbody>

<d1>

<dlentry><term>GSUG</term>

<defn><cit bibid="gsug"></defn>

</dlentry>

<dlentry><term>INST</term>

<defn><cit bibid="inst"></defn>

</dlentry>

<dlentry><term>PLAN</term>

<defn><cit bibid="plan"></defn>

</dlentry>

</d1>

</dbody></d>

</body>

<backm>

<masterindex>

<specdprolog><gendtitle></specdprolog>

<masterindexobj obj="gsugidx">

<masterindexobj obj="planidx">

<masterindexobj obj="instidx">

</masterindex></backm>

</ibmiddoc>

Chapter 11. Indexing

127

128 1D Workbench: IBMIDDoc User’s Guide and Reference

Chapter 12. All about linking

Hypertext links (we’ll just call them links from now on) connect elements in one
part of an online document to elements in another part of the same document or a
separate online document.

Linking 101

Think of links as you would think of cross references in a printed document. For
example, while reading about Henry David Thoreau in the encyclopedia, a reader
comes across a reference to another topic: “See also Ralph Waldo Emerson”. What
does the reader do? Keeps a finger on the page that describes Thoreau and turns
back to the new reference. The reader has just created a link from one part of the
document to another.

In printed documents, a reader turns to related information. In online documents,
IBMIDDoc creates a link to related information, and the online reader can then
display that information. The way a reader selects a reference, that is, asks the
online browser to display it, is usually by double-clicking on some highlighed text.
Web browsers, Adobe Acrobat, and BookManager Read are the typical online
browsers for which we create books or articles.

The following terms are used for the different types of links:

Cross-reference links
These are explicit links that IBMIDDoc creates between cross references
that use the XREF tag and referenced information within one document.

Author-defined links
These are explicit links that you specify with the L (link) tag and others.
These can be within a document or from one document to another.

Associative links
These are links that BookManager creates automatically. You do not need
to specify them. They typically come from glossary terms

Implicit links
These links are derived from the structure of the markup. Tables of
contents and index entries are examples of implicit links derived from the
SGML markup structure.

It may be obvious, but please do not forget to test your links. There is also
maintenance between releases in checking links, as things you link to might move
to other locations on the web.

Creating links within a document

Generic links support the identification of a “hot spot” as one anchor of the link,
and the specification of a target as the other end of a link. Within the same
document, you can use the XREF tag or the L tag to create links. The XREF tag
uses the heading text or figure number, for example, as the “hot spot” text. If you
want to use your own text for the link, perhaps for readability or to have the link
fit better in a sentence, use the L (link) element. The content of the L element is the
“hot spot” text, and the linkend attribute specifies the ID of the other anchor.

© Copyright IBM Corp. 1992, 2001 129

This next example shows how to make both an XREF tag and an L tag link to a
heading. The L tag’s LinkEnd attribute references the division’s ID attribute.
<d id="xrefhyl">

<dprolog><titleblk>

<title>A11 about Tinking</title>

</titleblk></dprolog>

<dbody>

<p>Hypertext Tinks (we'll just call them Tinks from

now on) connect elements in one part of an online

document to elements in another part of the same document

or a separate online document. </p>

<p>Sometimes you need to <1 Tinkend="xrefhyl">1ink</1> to
other topics.</p>

<p>See <xref refid="xrefhy1"> for ways of creating Tinks.</p>

The XREF appears as a cross reference with a page number in a hardcopy
document. In an online document, the heading text “All about linking” is
highlighted and selectable. The L type of link has no representation at all in a
hardcopy document. But, in an HTML, PDF, or BookManager online version, the
text “link” is highlighted and selectable. When you select the link, the browser
jumps to the division. Why the difference you ask? There are times when you want
to control the text in link; for this, you use the L tag.

Here’s how they appear:

| Formatted Example

Sometimes you need to Lind to other topics.

See Chapter 12_“All ahout linking” on page 129 for ways of creating links.

| End of Formatted Example |

You can link to other elements in the same document using this same linking
mechanism. The target of an explicit link should be to an ID on the outer container
(for example, D, MSG, LE, FIG, TABLE) and not the title text or caption text.

If you want to link to something that does not have a title, caption, or other
generated text, you still have a choice.

* You can use an XREF tag to point to another element (like a P tag), and on that
target element, use the XREFTEXT attribute to specify the linking text. This
allows you to cross-reference, get your page number for hardcopy or PDF, and
still have a link.

* Use an L tag to point to the other element; the content of the L tag contains the
linking text.

Here’s a sample of a link and a cross-reference to a paragraph:

<p id="paraxref" xreftext="cute, little paragraph">

Here's a cute, 1ittle paragraph that I want to Tink

to. It has no caption so I need to add the XREFTEXT

attribute.</p>

<p>See the <1 Tinkend="xrefhyl">cute paragraph</1> for another way to Tink.</p>
<p>See <xref refid="paraxref"> for ways of creating links.</p>

130 1D Workbench: IBMIDDoc User’s Guide and Reference

Here’s how it comes out:

| Formatted Example |

Here’s a cute, little paragraph that I want to link to. It has no caption so I need to
add the XREFTEXT attribute.

See the w for another way to link.
See Lcute, little paragraph’l for ways of creating links.

| End of Formatted Example

Linking to another document

There are several classes of inter-document links to other documents:
* Linking to another IBMIDDoc document.

This type of link is interpreted based on the output being produced for the
linking (from) document. The link produced in the output of the linking
document assumes the same type of processing is done for the target document.
So Xyvision documents produced from IBMIDDoc will link to the Xyvision
output of the target document, HTML documents to other HTML documents,
IPF documents to other IPF documents, and so forth.

* Linking to a specific output type of document.

This type of link specifies the type of document to be linked (for example,
HTML or IPF). The type of output processing done to the linking document does
not affect the type of the target, which remains the same.

Note: If the ID Workbench output transform application finds an ID that conforms
to BookMaster’s ID rules (seven characters or less, no special characters,
starting with an alphabetic character), it will preserve the ID when it
transforms the SGML markup to BookMaster markup. This enables both
cross-document links using BookManager and cross-document references
between IBMIDDoc documents, and between IBMIDDoc documents and
native BookMaster documents.

Citation link to an IBMIDDoc document

You use the CIT element to reference another document as a whole. If the
bibliographic entry specifies an entity declaration for the bibliographic entry and
uses the DocName attribute, a link to that other document is created. For
BookManager to use this link properly, specification of IBMDocNum is also
necessary.

This markup generates the appropriate cross-document link markup in Xyvision
PDFs and BookManager.

<IENTITY bk2ent SYSTEM "xdoclnk2.idd" NDATA sgmldoc>

<ibmbibentry docname="bk2ent" id="bk2">
<doctitle><titleblk><title>Target Document (XDOCLNK2)</title>
</titlblk></doctitle>

<ibmdocnum>SC41-0002</1ibmdocnum>

</ibmbibentry>

<p>Title citation Tink: See the <cit bibid="bk2"> for this
information.<p>

Chapter 12. All about linking 131

To implement this, you need to do the following;:

1. Declare the target book as a “graphic” entity. The name bk2ent is the name that
is used in the IBMBibEntry DOCNAME attribute. The system ID xdoc1nk2.1idd
needs to be the target name of the book you are linking to; typically this is a
PDF or HTML file. The file name needs to match the target PDF or HTML file

name. The notation data is an sgmldoc.

2. Create an IBMBibEntry for the book. The DOCNAME attribute points to the

declared book name. The ID you assign is used on Cit tags and
NameLoc/NMList tags.

Linking to an XHTML, HTML, or web document

132

A link to an XHTML or HTML document (or location within a web document) is
accomplished by referencing its URL. This is done by referencing, by ID, a notation
location or NOTLOC element with a specified notation of URL which contains the

URL.

Here is an example that will link to the main IBM web page.

<ldescs>
<notloc id="ibm" notation="url1">http://www.ibm.com</notloc>
<ldescs>
</prolog>

<p>You should try linking to the
<1 Tinkend="ibm">IBM home page</1>.</p>

| Formatted Example

You should try linking to the [BM home pagel

| End of Formatted Example

When processing for HTML or Xyvision PDF output, the appropriate anchor
markup is generated. When processing for other outputs, the URL is ignored.

Here is another example that will links to a PDF version of a book:

<ldescs>

<notloc id="gsugpdf" notation="url">
http://w3.rchland.ibm.com/projects/IDWB/documents/idfgsmst.pdf</notloc>
<ldescs>

</prolog>

<p>You should try linking to the
<1 Tinkend="gsugpdf">PDF version of the IDWB Getting Started book</1>.</p>

| Formatted Example

You should try linking to the PDE version of the IDWB Cetting Started boold.

| End of Formatted Example

ID Workbench: IBMIDDoc User’s Guide and Reference

http://www.ibm.com
http://w3.rchland.ibm.com/projects/IDWB/documents/idfgsmst.pdf

| Linking to items in another IBMIDDoc document

7

We showed you in L'C how to
link to a Xyvision PDF document as a whole. How would you like to link to a
specific heading, figure, or table within a Xyvision PDF book? Here’s how! This
also works for BookManager cross-book links (from one BookManager book to
another).

I You can also link from one XHTML or HTML “book” to another (from one set of

I XHTML or HTML files to another set of XHTML or HTML files). For this to work,
I you need to format the XHTML or HTML files; and save the resulting IDX file

I from the IBMIDDoc to XHTML or IBMIDDoc to HTML process.

I You find the ID of that heading, figure, or table on the target book, and set up
I your LDesc and NameLoc tags to point to those IDs. Then you make Links to
[those NameLoc definitions, and Xyvision and Acrobat do the rest.

For example, you have the following things you want to reference in a book
named “fred.pdf”:

* Figure ID: betty

[

[

[* Heading ID: barney
[

[* Table ID: wilma

The declaration for the SGML document must have the name matching the PDF
name; the extension can be IDD. The NameLoc tags set up the links that are used
later:

<IENTITY fred SYSTEM "fred.idd" NDATA sgmldoc>
<ldescs>

<nameloc id="barneyintro" objtype="head">
<nmlist docname="fred">barney</nmlist>
</nameloc>

<nameloc id="bettyphoto" objtype="fig">
<nmlist docname="fred">betty</nmlist>
</nameloc>

<nameloc id="wilmachart" objtype="table">
<nmlist docname="fred">wilma</nmlist>
</nameloc>

</1descs>

<p>Barney's hobbies are listed <1 linkend="barneyintro">here</1>.
This is Barney's wife, <1 linkend="bettyphoto">Betty</1>.
Wilma divides her time <1 linkend="wilmachart">this way</1>.</p>

I Sometimes you need to use the softcopy book name or some other name for the
I PDFs. If this is the case; you will need to ensure the declarations for the targeted
I books have the system ID set as the final file name of that target book.

The D Workbench FpH-ing Started and Llser's Guidd has more information about the
processing needed for this type of linking; see:

» LLinking in Xyvision-Formatted Bookd
. KOTML and LITML linki |

Chapter 12. All about linking 133

| Making a graphic a link

To make a graphic a link, you use the MMObjLink tag within the MMObj tag.
Sometimes you want a picture to link to an article. For example, this graphic links

to the main topic in this section:

Here’s how you code that:

<mmobj placement="inline"><objref obj="tocdoc">
<mmobjTink Tinkend="xrefhyl"></mmobj1ink>
<textalt>table of contents icon</textalt></mmobj>

The MMODbjLink tag can contain an AreaDef tag; AreaDef is currently not
supported in the output transforms. The entire graphic becomes the link.

By using a 1x1 pixel graphic, you can make what is called a “skip link” that you
can use to have a screen reader bypass something. Only the screen reader will read
the alternative text; and the link will be easy for the reader to select. The sighted
user will not encounter the link. Here’s how you might use a skip link:

»>—COMMAND-NAME—THIS=that-value

v
A

Here’s text that follows the diagram.

Here’s how that was coded:

<p><mmobj><objref obj="hidden">

<mmobjTink linkend="idafterdiag"></mmobj1ink>
<textalt>Skip reading of syntax diagram.</textalt>
</mmobj><syntax>

<group>

<kwd>COMMAND-NAME</kwd>

</group>

<group choiceseq="composite"><kwd>THIS</kwd><delim>
=</delim><var>that-value</var></group>
</syntax></p>

<p id="idafterdiag">Here's text that

follows the diagram.</p>

Linking to an IPF document

134

A direct link to an IPF book may be coded similar to this example:
<IENTITY sctagent SYSTEM "SCTAGENT.INF" NDATA IPFINF>

<nameloc id="ID907" objtype=book>
<nmlist nametype=entity>sctagent</nmlist>
</nameloc>

<p>This paragraph links to an IPF online book.
See this <1 linkend=ID907 style="IPF: (data='sctagent.inf'
object='view.exe' reftype=launch)">IPF topic</1> for more info.</p>

In the example, the NAMELOC only defines the ID referenced by the link. The
entity declaration performs no function at all. This coding reflects the coding that
should be used in the future when the need for the passthrough attributes has
been eliminated.

ID Workbench: IBMIDDoc User’s Guide and Reference

This coding will generate the appropriate IPF code but does not produce usable
Xyvisoin PDF, BookManager, or HTML code. Cross document (XREF) references

are not supported in IPF.

For IPF, the citation element alone does not generate a cross-document link. The
link must be coded with the appropriate IPF passthrough attribution to generate a

launch-type link, launching the IPF viewer against the desired IPF file.

<IENTITY bk2ent SYSTEM "xdoclnk2.idd" NDATA sgmldoc>

<nameloc id="1k1" objtype="BOOK">
<nmlist nametype=entity>bk2ent</nmlist>
</nameloc>

<ibmbibentry docname="bk2ent" id="bk2">
<doctitle><titleblk><title>Target document (XDOCLNK2) </title>
</titleblk></doctitle>

<ibmdocnum>SC41-0002</1ibmdocnum>

</ibmbibentry>

<p>Title citation Tink: See the <cit bibid="bk2" props="#not IPF">
<1 Tinkend=1k1 props="IPF" style="ipf:(data='xdocInk2.inf"
reftype='launch' object='view.exe')">

Target document (XDOCLNK2)

</1>

for this information.</p>

Chapter 12. All about linking

135

136 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 13. Glossaries

Glossaries are similar to definition lists, in that you pair terms with their
definitions, using the Term and Defn (definition) elements. You begin your glossary
with the Glossary element, which generates a head level 1 with the generic
heading “Glossary.” The Glossary element, can have an ID attribute for
cross-referencing. You can use your own title instead of “Glossary,” so you might
have "Definition of terms”.

The glossary typically goes in the back matter, in the Backm element’s content.
Here are the typical tags for the glossary section:

<backm>

<glossary>
<specdprolog><gendtitle></specdprolog>
<dbody>

<gl>...</g1>

</dbody>

</glossary>

</backm>

If you like, you can enter ordinary text after the DBody before you actually begin
your glossary list with its entries. You start the glossary list with a GL tag and end
it with its matching end tag. Within the glossary list, you use the GlEntry, Term,
and Defn tags to mark up the terms and their descriptions. The description can be
many paragraphs. For example, the glossary in this book was entered in part like
this:

binding edge. The edge of a page to be bound, stapled, or drilled.

Here’s its markup:

<gl>

<glentry><term>binding edge</term>

<defn>The edge of a page to be bound, stapled, or drilled.
</defn>

</glentry>

</g1>

If your term has multiple definitions, just enter another set of Defn elements in the
Glentry. For example:

cat. (1) cute, furry mammal that purrs when rubbed the right way (2) owner of the house in which it dwells, any
people sharing the dwelling are the caretakers

Here’s its markup:

<gl>

<glentry><term>cat</term>

<defn>cute, furry mammal that purrs when rubbed the
right way</defn>

<defn>owner of the house in which it dwells, any people
sharing the dwelling are the caretakers</defn>
</glentry>

</g1>

© Copyright IBM Corp. 1992, 2001 137

Defining Terms

Use the GLEntry element to define a term used in your document. GLEntry
contains the glossary term and one or more Defn elements, each of which contains
a definition for the term. You can define terms in the document prolog or in a
glossary list.

Glossary entries for IPF output become divisions displayed in popup windows.
In your document, you can use a Termdef attribute on a Term element that points

to the ID of the glossary term. In HTML, IPF, and Window’s Help, this generates a
link from the Term element to the term in the glossary.

Separating letter groups in a glossary

The retrievability of items in your glossary will be improved if you use the GLBIk
(glossary block) elements for alphabetic groups of terms. For example:

A

aardvark. long-nosed doglike creature.

B

bat. flying mouse

Here’s its markup:

<gl>

<glblk><title>A</title>
<glentry><term>aardvark</term>
<defn>long-nosed doglike creature.</defn>
</glentry>

</g1blk>
<glblk><title>B</title>
<glentry><term>bat</term>
<defn>flying mouse</defn>
</glentry>

</g1blk>

</g1>

Defining Classes for Terms

You can also define classes of glossary terms, and assign properties to those
classes, as shown in the following example, where the terms are defined as being
in either class odwords or class duckwords:

<CLASSDEF ELETYPES="GLENTRY" CLASSNAME="odwords">
<TITLE>0THER D-WORDS</TITLE>

<SEM>0THER WORDS BEGINNING WITH A D</SEM>
</CLASSDEF>
<CLASSDEF ELETYPES="GLENTRY" CLASSNAME="duckwords">
<TITLE>OTHER D-WORDS</TITLE>

<SEM>WORDS ABOUT DUCKS</SEM>
</CLASSDEF>

<GL>
<GLENTRY CLASS="odwords"><TERM>December</TERM>

<DEFN>A month that is often cold and dreary.</DEFN></GLENTRY>
<GLENTRY CLASS="odwords"><TERM>duty</TERM>

138 1D Workbench: IBMIDDoc User’s Guide and Reference

<DEFN>What one must do in Tife.</DEFN></GLENTRY>

<GLENTRY CLASS="duckwords"><TERM>ducks and drakes</TERM>

<DEFN>The game of skimming stones across water.</DEFN></GLENTRY>
<GLENTRY CLASS="duckwords"><TERM>ducky</TERM>

<DEFN>Very well, as in <g>Just ducky, thanks.</q></DEFN></GLENTRY>
<GLENTRY CLASS="odwords"><TERM>Durango</TERM>

<DEFN>City in Colorado.</DEFN>

<DEFN>City somewhere else.</DEFN></GLENTRY>
</GL>

For more information about defining classes, see Chapter 20 “Property and Clasd

”

Chapter 13. Glossaries 139

140 1D Workbench: IBMIDDoc User’s Guide and Reference

Chapter 14. Bibliographies and citations

This section introduces the IBMIDDoc bibliographic elements. These elements
identify books and documents, and allow you to create citation references (and
links) as well as traditional “back of the book” bibliographies.

IBMIDDoc has two sets of bibliographic elements.
* The BibEntry elements contain non-IBM bibliography information

¢ The IBMBibEntry elements contain IBM bibliographic information. IBMBibEntry
elements should be used to describe all IBM documents.

In most respects, IBM and non-IBM bibliographic elements are the same. Unless
otherwise noted, the information contained in this chapter which refers to a
non-IBM-specific bibliographic element (for example BibEntry) also applies to both
the IBM-specific bibliographic element (IBMBibEntry).

These elements use the bibliographic entries contained in the BibEntryDefs element
by referring to the individual BibEntry’s ID.

e Cit — title citation
 BibList — bibliography list
* LibEntry — library entry

Identifying books and documents

You identify books and documents as bibliographic items using BibEntryDefs
elements. The BibEntryDefs element can be used in a Prolog (for your whole
document to use) or in a DProlog (for that division to use). BibEntryDefs contain
one or more BibEntry elements, which contain individual bibliographic entries.

You can set up a file entity to contain a library of BibEntry elements, and then
imbed that file in the BibEntryDefs. This is useful when all the books in your
library use the same bibliographic information to create bibliographies.

Each BibEntry (or IBMBibEntry) element can contain extensive bibliographic
information about a publication. Each BibEntry must contain a DocTitle element. It
can also contain Author, Desc, Publisher, PrtLoc, DocNum, PartNum, ISBN, and
PubID. An IBMBibEntry element can contain the same elements, plus two other
elements, IBMDocNum and IBMPartNum, which contain IBM-specific publication
information.

Here is the markup for defining two books. The IDs can be used to generate
citations and bibliographies. The DOCNAME attributes point to an external entity
that declares a book to cross-reference to, using a CIT (citation) tag.

<bibentrydefs>

<ibmbibentry docname="fruitbats" id="fruitybat"><doctitle>
<titleblk><title>The Care and Feeding of Fruit Bats
</title></titleblk></doctitle>
<ibmdocnum>Z799-9876-00</1bmdocnum>

</ibmbibentry>

<ibmbibentry docname="vampbats" id="vampbat">
<doctitle><titleblk><title>The Vampire Bat, a much

© Copyright IBM Corp. 1992, 2001 141

maligned creature</title></titleblk></doctitle>
<ibmdocnum>2799-1234-00</1ibmdocnum>
</ibmbibentry>

</bibentrydefs>

Here are the declarations for the two books:

<IENTITY vampbats SYSTEM "vampbats.idd" ndata sgmldoc>
<IENTITY fruitbats SYSTEM "fruitbats.idd" ndata sgmldoc>

Using title citations

The Cit element represents a citation of another document. The Cit can either refer
to a BibEntry or LibEntry by ID, or include a BibEntry or LibEntry element. The
example that follows is a Cit that references the books defined inm

hnoks.a.n.d.dnmm.enis-nn.pa.ge.]éﬂ]” :

See this book [Che Care and Feeding of Fruit Batd and that book UZhL‘Zﬂ.m.pJ.rLBﬂ.t]
b wuch maligned creature 7799:1234-00 for serious bedtime reading.

Here’s its markup:

See this book <cit bibid="fruitybat"> and that book
<cit bibid="vampbat" form="full"> for serious bedtime reading.

Here’s an example citation that is self-contained:

See these books for a good read and then a weird read: Tom Sawyer and
System/36: Concepts and Programmer’s Guide

Here’s its markup:

See these books for a good read and then a weird read: <cit>
<bibentry><doctitle><titleblk><title>Tom Sawyer</title>
</titleblk></doctitle></bibentry></cit> and <cit>
<ibmbibentry><doctitle>
<library><titleblk><title>System/36</title></titleblk>
</Tibrary>

<titleblk><title>Concepts and Programmer's Guide</title>
</titleblk></doctitle></ibmbibentry></cit>

The default document style determines the appearance, or form, of the citation.
You can specify the form of the Cit by using the FORM attribute. This allows you
to specify that only the title or document number will be displayed. You can also
use the FORM=FULL specification to cause the entire bibliographic entry to be
displayed.

When LibEntry is specified in a Cit element, the LibEntry is collected for use in
generated bibliography.

Citations

When the Cit element is used in IBMIDDoc, the link to the target is automatically
generated at processing time. Citations must use bibliographic entries to define the
target of the citation. If the bibliographic entry specifies an entity using the
DOCNAME attribute, the citation may also be treated as a link as well as a citation
by the document name of the target. All targets must be defined in a BibEntryDefs
element in a Prolog, DProlog, or SpecDProlog element. A central file containing a
master BibEntryDefs element with all of the IBMBibEntry and BibEntry elements
for a product library can be referenced using an entity reference in your document.

142 1D Workbench: IBMIDDoc User’s Guide and Reference

The Cit element uses the BIBID attribute to reference the ID value of the target
citation reference that is defined in the IBMBibEntry or BibEntry element contained
in a BibEntryDefs element. The example that follows illustrates how to use these
elements.

<!ENTITY fredbook SYSTEM "fred.idd" ndata sgmldoc>
<bibentrydefs><ibmbibentry docname="fredbook" id="fred">

<doctitle><titleblk><title>Phred's Guide to Phishing
</title></titleblk></doctitle></ibmbibentry></bibentrydefs>

<p>See <cit bibid="fred"> for most excelent tips on
catching walleyes.</p>

Generating a bibliography

In most cases, bibliographic references are listed in individual BibEntry elements
that are contained in the BibEntryDefs element in the Prolog element. Each of these
bibliographic references usually has an ID attribute. This ID allows the BibEntry to
be referred to in Cit and LibEntry elements. The LibEntry element contains the IDs
of the BibEntry elements that make up that library.

To create the markup for a bibliography, you create a BIBLOG section in the
back-matter. Then, enter citation tags inside an unordered list. For example:
<bib1liog><specdprolog><gendtitle></specdprolog><dbody>

 <cit bibid="fruitybat" form="full">, describes everything about fruit bats.</1i>

<cit bibid="vampbat" form="full">, describes everything about vampire bats.</1i>
 </dbody></bibliog>

— Automatic Bibliographies
Wish this was true — but it is just not supported.

When bibliographic elements are arranged as described in the preceding
paragraph, a Bibliography will be generated when the SPEC attribute value is
AUTO.

<BIBLIOG>

<P>A Tist of the documents referred to in this book....
follows.

<BIBLIST SPEC="AUTO" FORM="full"><GENDTITLE>

Defining library entries

LibEntry and IBMLibEntry elements are used to structure and organize
information about libraries and collections of documents. You can use IBMLibEntry
elements within IBMBibEntryDefs (or BibEntryDefs) , BibList, and Cit elements.
The LibEntry element performs the same function as an IBMLibEntry element, but
applies only to non-IBM documents.

IBMLibEntry contains the Title of the library. IBMLibEntry can also contain
Publisher, PrtLoc, IBMBofNum, IBMPartNum, Prod, ISBN, PubID, ContainedDocs,
and Desc elements. IBMLibEntry indicates which books are in the library it
describes by referencing the IBMBibEntry elements that describe them. It can
contain a list of individual IBMBibEntry elements, or it can contain elements and
links that refer to IBMBibEntry elements contained in BibEntryDefs. These entries
are referenced using the CONTAINEDDOCS attribute.

Chapter 14. Bibliographies and citations 143

The IBMLibEntry in the example that follows shows the ContainedDocs element
that references two books:

<bibentrydefs>

<ibmlibentry>
<library><titleblk><tit1e>BS/300</title></titleblk>
</Tibrary>

<ibmbofnum>SBOF-1234-0</1ibmbofnum>

<containeddocs bibids="booka bookb"></ibmlibentry>
<ibmbibentry id="booka"><doctitle><titleblk><title>
BS/300 Guide</title></titleblk></doctitle></ibmbibentry>
<ibmbibentry id="bookb"><doctitle><titleblk><title>
BS/300 Reference</title></titleblk></doctitle></ibmbibentry>
<libentry>
<library><titleblk><title>Back'n'Recovery</title>
</titleblk></1library>

</libentry>

</bibentrydefs>

Linking BibEntry elements and other documents

A BibEntry and all references to it are links to the document the BibEntry
describes. Using the DOCNAME attribute on the BibEntry element allows you to
refer to an SGML entity that represents the document being described in the
BibEntry. When this attribute is used, any element that refers to the BibEntry will
also become a link to the document represented by the SGML entity referred to by
this DOCNAME attribute.

An example of using BibEntry and BibEntryDefs

144

The example that follows illustrates a common usage of the BibEntryDefs and
BibEntry elements.

<PROLOG>

<LDESCS>
<NAMELOC ID="UGNAME" OBJTYPE="BOOK">
<NMLIST DOCNAME="UGX">USERGIDE</NMLIST>
</NAMELOC>
</LDESCS>
<BIBENTRYDEFS>
<IBMBIBENTRY ID="BOOK1">
<DOCTITLE>
<TITLEBLK><TITLE>IBMIDDOC MIGRATION GUIDE</TITLE>
</TITLEBLK>
</DOCTITLE>
</IBMBIBENTRY>
<IBMBIBENTRY ID="B0OOK2">
<DOCTITLE><TITLEBLK><TITLE>IBMIDDOC REFERENCE</TITLE></TITLEBLK>
</DOCTITLE>
</IBMBIBENTRY>
<IBMBIBENTRY DOCNAME="UGX" ID="BOOK3">
<DOCTITLE>
<LIBRARY><TITLEBLK><TITLE>IBMIDDOC</TITLE></TITLEBLK></LIBRARY>
<TITLEBLK><TITLE>IBMIDDOC USER'S GUIDE</TITLE></TITLEBLK>
</DOCTITLE>
<AUTHORS><AUTHOR><PERSON>
<NAME>Fred Mertz</NAME>
<ADDRESS>
<INTERNET>fredmd@usa.ibm.com</INTERNET>
<PHONE>212-555-4062</PHONE>
</ADDRESS>
</PERSON></AUTHOR>
</AUTHORS>

ID Workbench: IBMIDDoc User’s Guide and Reference

<PUBLISHER>
<CORPNAME>IBM CORPORATION</CORPNAME>
</PUBLISHER>
<IBMDOCNUM>SH21-0783-01</IBMDOCNUM>
</IBMBIBENTRY>
<IBMLIBENTRY>
<LIBRARY ID="IDDOCLIB">
<TITLEBLK><TITLE>IBMIDDOC LIBRARY</TITLE></TITLEBLK>
</LIBRARY>
<CONTAINEDDOCS BIBIDS="BOOK1 BOOK2 BOOK3"></IBMLIBENTRY>
</BIBENTRYDEFS>
</PROLOG>
<BODY>

<D>

<P>FOR MORE INFORMATION, SEE <XREF REFID="UGNAME" OBJTYPE="BOOK"></P>
</DBODY>

</D>

</body>

Chapter 14. Bibliographies and citations 145

146 1D Workbench: IBMIDDoc User’s Guide and Reference

Chapter 15. Programming Syntax Diagrams

IBMIDDoc contains a number of elements that are used to define program syntax
diagrams. These elements include:

¢ Syntax; contains the diagram and the markup.

* Delim; delimiters, such as commas and parentheses.

* Fragment; a portion of the diagram.

* FragRef; a reference to a fragment.

* Group; gathers parts of the diagram together.

¢ Kwd; a keyword, such as something that must be entered or chosen.
¢ Oper; an operator, such as a plus sign.

* RepSep; a way of repeating and specifying a separator for the repeat.
* Sep; a separator.

* SynBlk; combines groups together.

* SynNote; a diagram footnote.

* SynPh; a syntax phrase.

e Var; a variable, such as a file name.

This chapter contains some general information about creating syntax definitions,
and examples of the IBMIDDoc markup are used to obtain the formatted output.

— Migration Note
If you are familiar with Bookmaster syntax definitions, you will notice several
differences when using IBMIDDoc syntax definitions:

* RepSep definitions
¢ Descriptions (now within the group or fragment)
* Group and Syntax elements can have titles

For conversion purposes, the outermost group element, which contains all of
the other groups in a typical syntax definition, may need to be broken up into
several groups, in order to accommodate BookMaster conversion limitations.

Defining the syntax diagram

IBMIDDoc provides elements and attributes that let you create program syntax
diagrams. A sample syntax diagram is shown below:

SAA CPI Database Reference
»»—ERASE FORM name |_ <
PROC (CONFIRM= YES;,J
QUERY NO
TABLE

The sample diagram includes the following syntax diagram elements:

© Copyright IBM Corp. 1992, 2001 147

148

Syntax
The diagram itself. In the sample diagram, the diagram is set off from the
text by a labeled box and contains the diagram title, “SAA CPI Database
Reference.” IBMIDDoc provides the Syntax element and its end element to
define a syntax diagram. The Syntax element has attributes that let you
specify the characteristics of the diagram.

Groups
A collection of items or of other groups. One group in the sample diagram
comprises the keywords FORM, PROC, QUERY, and TABLE. Another
group in the sample comprises the two keywords YES and NO.

Items Individual elements inside the diagram. In the sample diagram, the items
are keywords (the words shown in uppercase letters), a variable (the word
name), a delimiter (the left parenthesis), and an operator (the = character).
Items can also include fragment references and separators. These items
needs to be in groups.

IBMIDDoc provides elements and attributes to mark up the syntax diagram
elements. Here is the markup we used for the sample diagram:

<syntax><title>SAA CPI Database Reference</title>
<group>

<kwd>ERASE</kwd>

</group>

<group choiceseq="CHOICE">
<kwd>FORM</kwd>

<kwd>PROC</kwd>

<kwd>QUERY</kwd>

<kwd>TABLE</kwd>

</group>

<group>

<var>name</var>

</group>

<group optreq="OPT" choiceseq="composite"><delim>
(</delim><kwd>CONFIRM</kwd><oper>=</oper>
<group choiceseq="CHOICE">

<kwd>YES</kwd>

<kwd>NO</kwd>

</group>

</group>

</syntax>

IBMIDDoc also provides elements and attributes for elements not illustrated in the
sample diagram.

Fragments
A part of a syntax diagram, separated from the diagram to show greater
detail. Like a syntax diagram, a fragment can contain items and groups.
We do not mean to imply that the main syntax diagram is always
complete. Often a main syntax diagram shows only a part of the syntax of
the whole program. The word “fragment,” as used here, means a part of
your main diagram or of another fragment.

Syntax notes (SynNote)
Notes often placed at the bottom of the diagram. Syntax notes are similar
to footnotes placed in text.

RepSep
Defines a repeat separator in a syntax diagram.

ID Workbench: IBMIDDoc User’s Guide and Reference

SynBlk
Organizes syntax definitions into subdivisions and keeps them together on
a line.

SynPh Contains syntax elements, and is usually used to show a portion of a
syntax definition.

The Syntax element

The Syntax element contains the syntax diagram markup. The attributes of the
Syntax element define the characteristics of the diagram.

The text of the syntax diagram title can be contained in a Title element within the
Syntax element. For example, we included a title, “SAA CPI Database Reference,”

within the Title element on our previous sample syntax diagram.

The following diagram shows the format for the Syntax element itself:

SYNTAX
»»>—<SYNTAX >
|—‘ COMPLANG= ’J |—‘ Common Attributes ’J
>4| Title i >
L —space— L — —|
SynStyle= box PgWide= 0_|
: | RepSep | —1b1box— L
rule—
/SYNTAX ><

I—Sca] ePct=—ypercen t—l

A

{ Group |
Fragment
FragRef '_

SynB1k ||:
o

SynNote

COMPLANG=

[—COMPLANG=1anguage_name |

For wide diagrams being output for BookManager BOOKSs, specify a style override
that uses the BookMaster DWIDTH attribute (the default value is 74):

<syntax style="bkm: (dwidth=100)">

The PgWide attribute controls the width of your diagram. 0 is page-wide, 1 is
column-wide, and 2 (the default) is as wide as the current text line.

The ScalePct attribute allows you to scale a diagram up or down. For example,
scalepct=150 makes the diagram 150% of the normal size.

Chapter 15. Programming Syntax Diagrams 149

150

You can have a box around your diagram, rules above and below it, or a labeled
box around your diagram. Use the SynStyle attribute to add these style effects. The
default is a space (SynStyle=Space).

SynStyle=LblBox
Causes a box to be placed around the diagram. The top line of the box has
text label that is taken from the diagram’s Title tag.

SynStyle=Box
Causes a box to be placed around the diagram.

SynStyle=Rule
Causes a line to be placed above and below the diagram; to visually
separate it from the surrounding text.

The Group element

The Group element defines the syntax group and lets you give the group a name
in a Title element. Groups are needed to collect items like keywords, delimiters,
variables into logical gatherings. Groupings indicate sequential items that need to
be entered together or choices between mutialy exclusive items.

The Title element enables the Group to be automatically fragmented if it is too
large to fit the current area. All items in a sequential group are kept on the same
line. If you have several items that are too wide for one line, you’ll have to split
them into separate groups.

Each of the following examples shows a group with two keywords.
¢ In this example the group is required and sequential:

»»—FORM—PROC >«

Here’s its markup:

<syntax>
<group>
<kwd>FORM</kwd>
<kwd>PROC</kwd>
</group>
</syntax>

* In this example the group is sequential and optional (optreq attribute):

>

|-—FORM——PROC—-|

Here’s its markup:
<syntax>

<group optreqg="opt">
<kwd>FORM</kwd>
<kwd>PROC</kwd>
</group>

</syntax>

* In the next example, the group is a choice of the two keywords (choiceseq
attribute); one is required:

ID Workbench: IBMIDDoc User’s Guide and Reference

A\
A

FORM
PROC—-|

Here’s its markup:

<syntax>

<group choiceseq="choice">

<kwd>FORM</kwd>

<kwd>PROC</kwd>

</group>

</syntax>

In the next example, the group is a choice of the two keywords (choiceseq
attribute) but they are optional (optreq attribute):

i:FORM:‘
PROC

Here’s its markup:

<syntax>

<group optreq="opt" choiceseq="choice">

<kwd>FORM</kwd>

<kwd>PROC</kwd>

</group>

</syntax>

In the next example, the group is a sequential default, the values are assigned
even if you enter nothing:

FORM—PROC
- 1

>p <

Here’s its markup:

<syntax>

<group optreq="def" choiceseq="seq">

<kwd>FORM</kwd>

<kwd>PROC</kwd>

</group>

</syntax>

Sometimes you need to show a diagram and indicate there is no interveining
space between the items. The composite attribute means “sequential with no
spaces”:

»>—FORM=formvalue <

Here’s its markup:

<syntax>

<group choiceseq="composite"><kwd>FORM</kwd><delim>=</delim>
<var>formvalue</var></group>

</syntax>

This shows an example of several sequential groups; this is to allow the diagram
to break and flow properly:

»—[FORM
PROCJ

Chapter 15. Programming Syntax Diagrams 151

152

>—printer—LPT1—|:Portra1t—_l—SOME LARGE KEYWORD TO GET THE DIAGRAM TO BREAK AND FLOW——>«
Landscape

Here’s its markup:

<syntax>

<group choiceseq="choice">
<kwd>FORM</kwd>
<kwd>PROC</kwd>

</group>

<group>

<var>printer</var>
</group>

<group>

<kwd>LPT1</kwd>

</group>

<group choiceseq="choice">
<kwd>Portrait</kwd>
<kwd>Landscape</kwd>
</group>

<group>

<kwd>SOME LARGE KEYWORD TO GET THE DIAGRAM TO BREAK AND FLOW</kwd>
</group>

</syntax>

The KWD (keyword) element

The KWD element describes a keyword, which is a command name or any other
literal information.

Examples:

* In this example, a group element contains two keywords, each contained in
KWD elements:

»»—FORM—PROC ><

Here’s its markup:

<syntax>
<group>
<kwd>FORM</kwd>
<kwd>PROC</kwd>
</group>
</syntax>

* In this example, the PROC keyword is optional:

»—FORM

v
A

I—PROC—|

Here’s its markup:

<syntax>

<group>

<kwd>FORM</kwd>

<kwd optreq="opt">PROC</kwd>
</group>

</syntax>

* In this example, the PROC keyword is a default:

ID Workbench: IBMIDDoc User’s Guide and Reference

PROC
o> roRN———] >

Here’s its markup:

<syntax>

<group>

<kwd>FORM</kwd>

<kwd optreq="def">PROC</kwd>
</group>

</syntax>

The VAR (variable) element

The VAR element describes any variable information.

In this example, the VAR element contains the text Tanguage_name.

»>—| ANGUAGE—=—T1anguage_name > <

Here’s its markup:
<syntax>

<group>
<kwd>LANGUAGE</kwd>
<oper>=</oper>
<var>language_name</var>
</group>

</syntax>

The OPER (operator) element
The OPER element describes an operator. Operators include add (+), subtract (-),
multiply (¥), divide (/), equal (=), and other mathematical operators. The operator
can consist of more than one character.

In this example, the OPER element contains an equals (=) sign.

»>—| ANGUAGE—=—T1anguage_name > <

Here’s its markup:
<syntax>

<group>
<kwd>LANGUAGE</kwd>
<oper>=</oper>
<var>language_name</var>
</group>

</syntax>

The SEP (separator) element

The SEP element describes a separator that is to separate keywords, variables,
operators, or groups. The separator can be more than one character.

»»—FRED—,—BARNEY

v
A

Here’s its markup:

Chapter 15. Programming Syntax Diagrams 153

154

<syntax>

<group>
<kwd>FRED</kwd>
<sep>,</sep>
<kwd>BARNEY</kwd>
</group>
</syntax>

The Delim (delimiter) element

The Delim element specifies a delimiter that is to indicate the start or end of
keywords, variables, operators, or groups. The delimiter can be one or more
characters.

Examples:
* In this example, the delimiter is a plus (+) sign:

»»—FRED—+—WILMA

A\
A

Here’s its markup:
<syntax>
<group>
<kwd>FRED</kwd>
<delim>+</delim>
<kwd>WILMA</kwd>
</group>
</syntax>
* You can use the STARTEND attribute to ensure that delimiters are specified in
matched sets. If the syntax diagram requires a single delimiter, do not use
STARTEND.

»»—ID(identifier)

Y
A

Here’s its markup:

<syntax>

<group choiceseq="composite"><kwd>ID</kwd><delim startend="start">
(</delim><kwd>identifier</kwd><delim startend="end">
)</delim></group>

</syntax>

The RepSep (repeat separator) element

The RepSep element specifies whether the group of items or groups can repeat,
and also the repeat separator character, if one is to be used. If the repeat separator
character is specified, it separates the repeated group of items or groups in the
syntax diagram.

The RepSep element must have an ID value. This ID is used when referencing the

RepSep element from within the syntax markup. Use the REPID attribute on the
repeating group; it references the ID on a RepSep element.

»»—<repsep—id=identifier: | common attributes —
requ L constanth
Loptreq=J:opt convar=£var1’ab1e

Examples:

ID Workbench: IBMIDDoc User’s Guide and Reference

¢ The following example shows a group containing a variable you can repeat;
there is no repeat separator character.

v

>> variable -

Here’s its markup:
<syntax>
<repsep id="rsep0003a"></repsep>
<group repid="rsep0003a">
<var>variable</var>
</group>
</syntax>
* The following example shows a group containing a variable and a repeat
separator character. In this example, the repeat separator character is required:

)

»»—Y variable >

Here’s its markup:

<syntax>

<repsep id="rsep0003">,</repsep>
<group repid="rsep0003">
<var>variable</var>

</group>

</syntax>

* The following example shows a group containing a variable and a repeat
separator character. Here the repeat separator character is optional.

]

»—Y variable >

Here’s its markup:

<syntax>

<repsep optreq="OPT" id="rsep0004">,</repsep>
<group repid="rsep0004">

<var>variable</var>

</group>

</syntax>

The FRAGMENT and FRAGREF (fragment reference) element

A syntax diagram can contain a section that has too many items or groups to fit in
the diagram, or it can contain a section that is used more than once. You can
present such a section as a separate fragment. You give the fragment a name that
corresponds to the name of the section in the main diagram represented by the
fragment.

The Fragment element specifies a fragment of your main syntax diagram or

another fragment. The Fragment element is similar to the Syntax element. You can
use Kwd, Var, Oper, Delim, Sep, FragRef, Group, and SynNote. These elements let
you specify a diagram fragment in the same way that you specify a main diagram.

Chapter 15. Programming Syntax Diagrams 155

You can specify as many fragments as you want for a main diagram. The Fragment
elements cannot be placed inside a Group element. Fragment is valid only within
Syntax and SynBlk elements.

The FRAGREEF element describes a reference to a syntax diagram fragment. The
text of the FRAGREF element is placed in the syntax diagram and must match the

name of the fragment reference that it refers to.

This shows a simple fragment that is done as a FragRef and a Fragment:

»—| Common attributes i

v
A

Common attributes:

|—ID=identifier—| |—STYLE=si.‘yle stuff—|

Here’s its markup:

<syntax>

<fragref><title>Common attributes</title></fragref>
<fragment><title>Common attributes</title>

<group optreq="opt" choiceseq="composite"><kwd>ID
</kwd><oper>=</oper><var>identifier</var></group>
<group optreq="opt" choiceseq="composite"><kwd>STYLE
</kwd><oper>=</oper><var>style stuff</var></group>
</fragment>

</syntax>

Syntax Notes

IBMIDDoc provides the SynNote element for placing notes in your syntax
diagrams. Syntax notes are similar to footnotes in regular text. At processing time,
a number or other callout is placed next to an item, group, or fragment in the
diagram, indicating that a note is associated with that part of the diagram, and the
note appears at the bottom of the diagram, after any fragments.

Examples:
* This shows a simple note:

(1)

»—FRED

v
A

Notes:

1 This is a rather common name.
Here’s its markup:
<syntax>
<group>
<kwd>FRED</kwd>
<synnote>This is a rather common name.</synnote>
</group>
</syntax>
* You can use the CALLOUT attribute in hardcopy to have a specific character
displayed for the note item. This diagram is brought to you by the letter "N":

156 1D Workbench: IBMIDDoc User’s Guide and Reference

(N)

»»—FRED >

Notes:

N This is a rather common name.
Here’s its markup:

<syntax>

<group>

<kwd>FRED</kwd>

<synnote callout="N">This is a rather common name.
</synnote>

</group>

</syntax>

* You can also specify a note once, then refer to it more than once:

(1) (1)
»>—FRED BARNEY ><

Notes:

1 This is a rather common name.
Here’s its markup:

<syntax>

<synnote id="comname">This is a rather common name.
</synnote>

<group>

<kwd>FRED</kwd>

<synnote refid="comname">
</group>

<group>

<kwd>BARNEY</kwd>
<synnote refid="comname">
</group>

</syntax>

Syntax Phrases

Syntax phrases allow you to use a portion of a syntax statement; such as a term in
a parameter list. For example:

Filename
> [_ _1 input-file-name i

Filename
Sample description for this syntax item.

This is the markup:

<syntax>

<group>

<kwd optreq="def">Filename</kwd>
<var>input-file-name</var>
</group>

</syntax><parml>

Chapter 15. Programming Syntax Diagrams 157

<parm><term><synph><kwd optreq="def">Filename</kwd></synph></term>
<defn>Sample description for this syntax item.</defn>

</parm>

</parml>

Examples of Syntax Definitions and Markup

The examples in the sections that follow represent typical syntax definitions.

Example 1: A simple syntax definition

This example illustrates one of the simplest styles of syntax definition, with only
one optional parameter value.

<SYNTAX>
<TITLE>XYZ Command</TITLE>
<GROUP>
<TITLE>CMD</TITLE>
<KWD>XYZ</KWD>
<GROUP OPTREQ="OPT">
<TITLE>OPTION 1</TITLE>
<SEP>&ssb1;</SEP>
<KWD>PARM</KWD>
<0PER>=</0PER>
<VAR>value</VAR>
</GROUP>
</GROUP>
</SYNTAX>

This SGML input will produce the following output.
XYZ Command

>>—-| CMD i >«

CMD

|—XYZ i
\—| Optional Parm ’J

Optional Parm

f— PARM=value '

Example 2: A simple syntax definition that repeats

This example illustrates a syntax definition for a command with a parameter that
can be repeated.

158 1D Workbench: IBMIDDoc User’s Guide and Reference

Syntax Diagram With Repetition

»>—command—Y B] <
parm=value

Here’s its markup:

<syntax><title>Syntax Diagram With Repetition</title>
<repsep id="REP1">,</repsep>

<group>

<kwd>command</kwd>

</group>

<group repid="REP1" optreq="OPT" choiceseq="composite">
<kwd>parm</kwd><oper>=</oper><var>value</var></group>
</syntax>

Example 3: A more complex syntax definition

The following syntax definition contains a single group comprising three variable
expressions, two separators, and two delimiters. Each variable expression is
optional. The definition also includes a required keyword and a required variable
statement.

SAA CPI C Reference

»»—Tfor—(; ;)-statement <
|—exp] —| I—epo—l |—expj’—l

Here’s its markup:

<syntax><title>SAA CPI C Reference</title>

<group choiceseq="composite"><kwd>for</kwd>

<group choiceseq="composite"><delim optreq="req" startend="START">
(</delim><var optreq="OPT">expl</var><sep optreq="req">
;</sep><var optreq="OPT">exp2</var><sep optreq="req">
;</sep><var optreq="OPT">exp3</var><delim optreq="req"
startend="END">)</delim></group>

<var>statement</var></group>

</syntax>

Example 4: A variation on Example 3
This is the same diagram as in [Example 3: A more complex syntax definition’],

with a syntax note added.

SAA CPI C Reference

A\
A

»»—for—(; ;)—statement
L (1) I—epo—l I—exp3—I
expl

Notes:

1 This indicates the beginning condition.

Here’s its markup:

Chapter 15. Programming Syntax Diagrams 159

160

<syntax><title>SAA CPI C Reference</title>

<group choiceseq="composite"><kwd>for</kwd>

<group choiceseq="composite"><delim optreq="req" startend="START">
(</delim><var optreq="OPT">expl</var><sep optreq="req">
;</sep><var optreq="OPT">exp2</var><sep optreq="req">
;</sep><var optreq="OPT">exp3</var><delim optreq="req"
startend="END">)</delim></group>

<var>statement</var></group>

</syntax>

Example 5: A syntax definition showing a fragment and
significant blanks

The following syntax definition includes a fragment called “Data Type.” The
fragment is placed below the main syntax definition. This example also shows the
use of the syntax significant blank symbol (&ssbl.); use this to ensure a blank is left
in the diagram where the user should code a space.

Database Reference

»»—CREATE TABLE——tabZe_name——l—(coZumn_name——1 Data Type i L_ _J) —L—><
NOT NULL

Data Type:

—INTEGER |
DECIMAL (length + colwidth)—
DEC

CHARACTER:
CHAR4 |—(length)—|

GRAPHIC(length)

Here’s its markup:

<syntax><title>Database Reference</title>

<repsep id="rsep0006"></repsep>

<group>

<kwd>CREATE TABLE</kwd>

</group>

<group>

<var>table_name</var>

</group>

<group repid="rsep0006">

<group choiceseq="composite"><delim startend="START">
(</delim><var>column_name</var></group>
<fragref><title>Data Type</title></fragref>

<kwd optreq="OPT">NOT NULL</kwd>

<delim optreq="req" startend="END">)</delim>
</group>

<fragment><title>Data Type</title>

<group choiceseq="CHOICE">

<kwd>INTEGER</kwd>

<group>

<group choiceseq="CHOICE">

<kwd>DECIMAL</kwd>

<kwd>DEC</kwd>

</group>

<group choiceseq="composite"><delim startend="START">
(</delim><var>length</var><sep>&ssh1;+&ssh1;</sep>

ID Workbench: IBMIDDoc User’s Guide and Reference

<var>colwidth</var><delim startend="END">)</delim>
</group>

</group>

<group>

<group choiceseq="CHOICE">

<kwd>CHARACTER</kwd>

<kwd>CHAR</kwd>

</group>

<group optreq="OPT" choiceseq="composite"><delim startend="START">
(</delim><var>length</var><delim startend="END">)
</delim></group>

</group>

<group choiceseq="composite"><kwd>GRAPHIC</kwd><delim
startend="START">(</delim><var>length</var><delim
startend="END">)</delim></group>

</group>

</fragment>

</syntax>

Example 6: A syntax definition with automatic fragmentlng

The following example is identical to I

”

except that the fragment is marked
up as a group with a title. Because the group is very wide, it automatically
fragments.

Database Reference

v
(column_name Data Type | ——
_I ! I—NOT NULL—|

Data Type

|——INTEGER |
DECIMAL (length + colwidth)—
e

CHAR

ACTER
(:HAR4 I—(Zength)J

GRAPHIC(length)

Here’s its markup:

<syntax><title>Database Reference</title>
<repsep id="rsep0006"></repsep>

<group>

<kwd>CREATE TABLE</kwd>

</group>

<group>

<var>table_name</var>

</group>

<group repid="rsep0006">

<group choiceseq="composite"><delim startend="START">
(</delim><var>column_name</var></group>
<fragref><title>Data Type</title></fragref>
<kwd optreg="OPT">NOT NULL</kwd>

<delim optreq="req" startend="END">)</delim>
</group>

<fragment><title>Data Type</title>

Chapter 15. Programming Syntax Diagrams 161

<group choiceseq="CHOICE">

<kwd>INTEGER</kwd>

<group>

<group choiceseq="CHOICE">

<kwd>DECIMAL</kwd>

<kwd>DEC</kwd>

</group>

<group choiceseq="composite"><delim startend="START">
(</delim><var>length</var><sep>&ssb1;+&ssb1;</sep>
<var>colwidth</var><delim startend="END">)</delim>
</group>

</group>

<group>

<group choiceseq="CHOICE">

<kwd>CHARACTER</kwd>

<kwd>CHAR</kwd>

</group>

<group optreq="OPT" choiceseq="composite"><delim startend="START">
(</delim><var>length</var><delim startend="END">)
</delim></group>

</group>

<group choiceseq="composite"><kwd>GRAPHIC</kwd><delim
startend="START">(</delim><var>length</var><delim
startend="END">)</delim></group>

</group>

</fragment>

</syntax><syntax><title>Database Reference</title>
<repsep id="rsep00061"></repsep>

<group>

<kwd>CREATE TABLE</kwd>

</group>

<group>

<var>table_name</var>

</group>

<group repid="rsep00061">

<group choiceseq="composite"><delim startend="START">
(</delim><var>column_name</var></group>

<group choiceseq="CHOICE"><title>Data Type</title>
<kwd>INTEGER</kwd>

<group>

<group choiceseq="CHOICE">

<kwd>DECIMAL</kwd>

<kwd>DEC</kwd>

</group>

<group choiceseq="composite"><delim startend="START">
(</delim><var>length</var><sep>&ssb1;+&ssh1;</sep>
<var>colwidth</var><delim startend="END">)</delim>
</group>

</group>

<group>

<group choiceseq="CHOICE">

<kwd>CHARACTER</kwd>

<kwd>CHAR</kwd>

</group>

<group optreq="OPT" choiceseq="composite"><delim startend="START">
(</delim><var>length</var><delim startend="END">)
</delim></group>

</group>

<group choiceseq="composite"><kwd>GRAPHIC</kwd><delim
startend="START">(</delim><var>length</var><delim
startend="END">)</delim></group>

</group>

<group>

<kwd optreq="OPT">NOT NULL</kwd>

162 1D Workbench: IBMIDDoc User’s Guide and Reference

<delim optreq="req" startend="END">)</delim>
</group>
</group>
</syntax>

Chapter 15. Programming Syntax Diagrams 163

164 1D Workbench: IBMIDDoc User’s Guide and Reference

Chapter 16. Developing Programming Language Reference
Materials

We are often called upon to produce reference information for the various elements
of programming languages, either as the major portion of a language reference
manual, or as part of a combined language guide and reference. In this context we
use the term “programming language” very broadly, including the higher-level
languages (such as Java), command and control languages (such as JCL, TSO, and
CMS commands), macro languages, such as Access Method Services macros, and
markup languages (such as our very own IBMIDDoc).

These reference materials typically have a couple of things in common:

¢ The same set of subtopics (format, parameters, usage, and so on) is repeated for
each language element (statement, macro, and so on). While each subtopic may
have its own heading, you don’t want these headings to appear in your table of
contents.

* Consistency of presentation and retrievability are critical, as readers want to find
the information as quickly as possible and not have to re-interpret the
presentation each time.

Another good reason to use IBMIDDoc elements for language element reference
materials is that once you’ve determined how you're going to use the elements for
your particular language reference material, you'll find they are a help in
developing consistent, well-structured materials that are easier to maintain.

The Structure of a Language Element Reference Section

Use LERS to contain reference information for computer languages and command
information. LERS contains one or more Language Elements (LEs) that contain the
description of a computer language element such as commands, and description
items, such as format, purpose, and examples. There are several elements used to
complete the LERS section.

A typical LERS section looks like:

language element reference section <LERS>
language element <LE>
language element name <LEN>
language element description <LEDesc>
language element description item <LEDI>

language element <LE>

language element name <LEN>

language element description <LEDesc>
language element description item <LEDI>

end language element reference section </LERS>
The language element reference section (LERS) contains many language elements

(described with the LE, LEN, and LEDESC tags), and for each of the language
elements you can have lots of description items (LEDI tags). By description items,

© Copyright IBM Corp. 1992, 2001 165

we mean such things as format (sometimes called “syntax”), purpose, examples —
those categories of information we typically provide when describing a language
element.

Describing Your Reference Section

Your first task in creating a language element reference section (after you figure
how you're going to present the material, of course) is to describe it, which you do
with attributes on either the LERS (language element reference section) element or
the LERSDEF (LERS definition) element.

While a book typically might have only a few, or perhaps just one language
element reference section, these sections can be enormously long. It is impractical
and inefficient to handle these long sections in a single source file; you will want
to break up the material into multiple files, each with its own LERS element, so
that each file can be processed independently. This is why we have the LERSDEF
element. It allows you to specify all of the LERS attributes — you put the
LERSDEF in your Prolog, and it is referenced in your document.

What can you describe on the LERS or LERSDEF element about your reference
section?

* How to get at the description

The LERSDEF element has a DEFNAME attribute so you can refer to it using the
DEF attribute on the LERS element. However, if you are setting your document’s
default (all your LERS are the same), you can use LERSDEEF in the Prolog
without the DEFNAME attribute.

* What text you want generated for the description items

Each language element description item element (LEDI) has an attribute that
defines the category of that description item. IBMIDDoc will generate a
subheading for each description item, as determined by the attribute.

For each category, IBMIDDoc has a corresponding attribute on the LERS and
LERSDEF elements that allows you to specify the subheading text you want in
place of the text generated by default. You can specify any text you want, or you
can specify that no heading be generated at all.

* Whether each language element starts a new page

Normally, each language element begins on a new page. To control the
separation between language elements, you use the SEP attribute on the LERS or
LERSDEF tag. You can pick from the following:

SEP= PAGE | NORMAL | LHPAGE | RHPAGE
allows you to specify how you want the language elements separated,
where:

PAGE Starts the language element on the next page.

NORMAL

Specifies normal heading separation — usually white space.
LHPAGE

Starts the language element on the next left-hand page (even page).
RHPAGE

Starts the language element on the next right-hand page (odd page).
* Whether the language elements are to be used as the retrieval subject for a
page

ID Workbench: IBMIDDoc User’s Guide and Reference

It may be easier for a reader to look up a language element in a long list if the
language elements are used as retrieval subjects. In styles where the subject is
placed in the running heading, such as the default style, this results in
dictionary-like running headings. You can pick from the following:

RETKEY=None | First

Use the RetKey attribute to enable or disable automatic running headings for
this tag.

NONE
indicates that nothing is to be used.

FIRST
indicates that the first non-blank item on the page is to be used.

The values NODUP and FIRSTLAST are not supported at this time.

If you code any explicit RetKey elements, they are honored and will appear.
If you nest elements that can generate a running heading (for example, a
MsgList inside Lers), only the outer active generated heading is used. That
is, if you specified automated RetKey generation for LERS and MSGLIST, a
Msgno inside Lers will not be used in the RetKey area. But if you had an
explicit RetKey inside the Msg, then the RetKey is honored as an explicit
override.

[Cable 17 shows the attribute name for each of the language element description
item categories, the text that will be generated by default in styles that use
IBMIDDoc’s initial setting, and what the category means. Of course, you will only
use the categories that are appropriate for your material.

Table 17. Categories of language element description items

Attribute name Generated heading Description

AUTH Authorization the authorization level necessary to use
this language element

COMMENTS Comments just about anything you consider
comments

CONTEXT Context the context in which this language
element is valid

DEFAULTS Defaults the defaults

ERRCOND Error Conditions error conditions that can arise from
misuse

EXAMPLES Examples examples of input and output

FLAGS Flags the flags that could be set by the
language element

FORMAT Format the general format (or syntax)

INTREP Internal Representation | the internal representation (for example,
binary) of the language element
(sometimes called “encoding”)

MESSAGES Messages messages that can be generated as a
result of use of this element

OTHER a build-your-own category

PARMS Parameters the parameters of the language element

PROCESS Processing the processing that will be done for the
language element (that is, the logic)

Chapter 16. Developing Programming Language Reference Materials 167

Table 17. Categories of language element description items (continued)

Attribute name Generated heading Description

PURPOSE Purpose the purpose of the language element

RESTRICT Restrictions restrictions on use of the language
element

RESULTS Return Codes explanations of the return codes possible
with the language element

SYSENV System Environment the system environment in which the
language element is valid

USAGE Usage how the language element is used

VERSION Version the version of the program in which the
language element is valid

The categories have been selected based on a review of what has been used in the
past. The OTHER category exists to allow you to create a category that has not
been anticipated in the list above; before you decide to use OTHER to create a new
category, review the ones available carefully to make sure that your category
doesn’t already exist.

Be assured that IBMIDDoc is not demanding that you structure your reference
information to match these categories. You might very well want to deal with the
defaults as part of the discussion of the parameters, rather than as a separate
“Defaults” category; similarly, you might want to deal with “Context” in the
discussion of usage. These decisions depend on the nature of the language you are
describing and the approach you take to its presentation.

So you might, for example, decide the following;:

* Your reference section should have the categories PURPOSE, FORMAT, PARMS,
USAGE, and EXAMPLES

* You do want the FORMAT category headed “Syntax”
* You do want the PARMS category headed “Attributes and Contained Elements”

Your LERSDEF might look like this:

<LERSDEF

FORMAT="Syntax"

PARMS="Attributes and Contained Elements"
DEFNAME="UGREFLERS">

<DESC>Contains the LEDI IBMIDDoc User's Guide
and Reference LERS name specifications.</DESC>

</LERSDEF>

You didn’t have to say anything about PURPOSE or EXAMPLES because you want
the default headings generated.

Describing the language element

168

You start each item in a LERS section with an LE (language element) tag. It is like
a division tag. The LEN (language element name) tag contains the title of the LE.
You can format where the line breaks occur in the title if you would like. For
example, the following will format the title over two lines:

<1en>COPYFILE

Copy a file
</Ten>

ID Workbench: IBMIDDoc User’s Guide and Reference

In the table of contents, the line split does not occur (except in Frame2000
currently).

Following the language element name, you have a series of language element
description items, marked up with the LEDI element. Each LEDI element CLASS
attribute needs to have an attribute that describes the category of the item:

AUTH EXAMPLES ~ OTHER RESULTS

COMMENTS FLAGS PARMS RETCODES

CONTEXT FORMAT PROCESS SYSENV

DEFAULTS ~ INTREP PURPOSE USAGE

ERRCOND MESSAGES ~ RESTRICT VERSION

These are the same description item category attributes that occur on the LERS and

LERSDEF element (see Tahle 17 on page 167).

Example of a Simple Language Element Reference Section

Time for an example. In this example, we use these categories:

PURPOSE
Without a heading. Because it follows the LEN immediately, it doesn’t
need its own heading.

FORMAT
Uses the special heading text “Syntax”.

PARMS
Without a heading. It appears to the reader as simply part of the syntax
discussion.

USAGE
Uses the default heading text.

RESTRICT
Uses the special heading text “Do’s and Don’ts”.

EXAMPLES
Uses the default heading text.

MESSAGES
Uses the default heading text. We only have one command that yields
messages, so this is used only once.

Our language in the following example is a command language for a culinary
robot. Here’s its coding:

<lers format="Syntax" parms="" process="" restrict="Do's and Don'ts">
<le>

<len>DISHDEF

defining a dish</len>

<ledi class="purpose">

<p>The DISHDEF command defines a dish — the

ingredients that it contains and the processing steps

to prepare it.</p>

</ledi>

<ledi class="format">

<syntax>

<repsep id="cul"></repsep>
<group>

<kwd>DISHDEF</kwd>

</group>

<group style="bkm: (composite)">
<kwd>NAME</kwd>

<delim>=</delim>

Chapter 16. Developing Programming Language Reference Materials 169

<var>name-of-dish</var>

</group>

<group repid="cul" style="bkm: (composite)">
<kwd>INGREDIENT</kwd>

<delim>=</delim>

<var>ingredient-name</var>

<delim>/</delim>

<var>quantity</var>

</group>
<group repid="cul" style="bkm: (composite)">
<kwd>STEP</kwd>

<delim>=</delim>

<var>process-name</var>

<delim> (</delim>

<var>ingredient-list</var>

<delim>)</delim>

<group choiceseq="choice">

<group>

<kwd>UNTIL</kwd>

<var>condition-name</var>

</group>

<group>

<kwd>FOR</kwd>

<var>time</var>

</group>

</group>

</group>

</syntax>

</ledi>

<ledi class="parms">

<parml>
<parm><term><synph><kwd>NAME</kwd><delim>=</delim><var>
name-of-dish</var></synph></term>

<defn>identifies the dish name.</defn>

</parm>
<parm><term><synph><kwd>INGREDIENT</kwd><delim>=</delim><var>
ingredient-name</var><delim>/</delim><var>quantity
</var></synph></term>

<defn>identifies an ingredient and the quantity per
serving. The ingredient must be expressed in international
culinary ingredient units (ICIUs). The quantity must

be expressed in international culinary quantity units
(ICQUs). This parameter is repeated as often as necessary
to define each of the ingredients in the dish.</defn>
</parm>
<parm><term><synph><kwd>STEP</kwd><delim>=</delim><var>
process-name</var><delim>(</delim><var>ingredient-1list
</var><delim>)</delim></synph></term>

<defn>identifies a preparation step and the ingredients
to use. Process names must be expressed in international
culinary step units (ICSUs). This clause is repeated

as often as necessary to define each of the preparation
steps for the dish.</defn>

</parm>
<parm><term><synph><kwd>UNTIL</kwd><var>condition-name
</var></synph></term><term><synph><kwd>FOR</kwd><var>
time</var></synph></term>

<defn>identifies a condition under which the step

is to conclude or an amount of time for processing.
Condition names must be expressed in international
culinary condition units (ICCUs). </defn>

</parm>

</parml>

</ledi>

<ledi class="usage">

<p>Use the DISHDEF command to specify to the culinary
robot how to prepare a dish. </p>

ID Workbench: IBMIDDoc User’s Guide and Reference

</ledi>

<ledi class="restrict">

<p>Make sure that the ingredients 1ist is in the order
in which the ingredients are to be used. For example,
for a SAUTE step, make sure that BUTTER is specified
before VEAL or the robot will put the veal in the
pan before the butter.</p>

</ledi>

<ledi class="examples">

<xmp>dishdef name=vealalfred

ingredient=butter/ltsp

ingredient=vealscallop/60z ingredient=salt/pinch
ingredient=tarragon/ltsp ingredient=sourcream/halfcup
step=saute (butter vealscallop) until golden brown
step=add (salt tarragon) for 1 min

step=deglaze (sourcream) for 6 min</xmp>

</ledi>

</le>

<le>

<len>EVALUATE

evaluate nutrition, cost, or preparation time</len>
<ledi class="purpose">

<p>0Once you have a menu defined, use the EVALUATE
command to determine its nutritional characteristics
and the preparation time. If you have access to the
Daily Market Cost data base, you can also evaluate
the cost of a shopping 1ist containing one or more

menus .</p>

</ledi>

<ledi class="format">
<syntax>

<group>
<kwd>EVALUATE</kwd>
</group>

<group choiceseq="choice">
<group>
<kwd>NUTRITION</kwd>
<group style="bkm: (composite)">
<kwd>MENU</kwd>

<delim>=</delim>
<var>menu-name</var>

</group>

</group>

<group>

<kwd>COST</kwd>

<group style="bkm: (composite)">
<kwd>SHOPLIST</kwd>

<delim>=</delim>
<var>shopping-1ist-name</var>

</group>

</group>

<group>

<kwd>PREPTIME</kwd>

<group style="bkm: (composite)">
<kwd>MENU</kwd>

<delim>=</delim>
<var>menu-name</var>
</group>

<group style="bkm: (composite)">
<kwd>SERVING</kwd>
<delim>=</delim>
<var>number</var>
</group>

</group>

</group>

</syntax>

</ledi>

Chapter 16. Developing Programming Language Reference Materials

171

172

<ledi class="parms">

<parml>
<parm><term><synph><kwd>MENU</kwd><delim>=</delim><var>
menu-name</var></synph></term>

<defn>requests a nutritional evaluation of menu name.
</defn>

</parm>

<parm><term><synph><kwd>C0ST</kwd> <kwd>SHOPLIST</kwd><delim>
=</delim><var>shopping-1ist-name</var></synph></term>
<defn>as determined by your marketing profile and

the Daily Market Cost data base, this command generates
a cost for the named shopping Tist for each of the
markets in the profile, including the cost of the
gasoline for driving to those markets designated in
your profile as not providing delivery service.</defn>
</parm>

<parm><term><synph><kwd>PREPTIME</kwd> <kwd>MENU</kwd><delim>
=</delim><var>menu-name</var> <kwd>SERVING</kwd><delim>
=</delim><var>number</var></synph></term>
<defn>requests an evaluation of the preparation time
for the designated menu serving the designated number
of people.</defn>

</parm>

</parml>

</ledi>

<ledi class="usage">

<p>Use the EVALUATE command as required to maximize

the nutrition and minimize the cost of meals. Knowing
the preparation time is critical in requesting that
menus be prepared.</p>

</ledi>

<ledi class="examples">

<xmp>//evaluate nutrition menu=companydinner

//evaluate cost shoplist=monday

//evaluate preptime menu=companydinner serving=8</xmp>
</ledi>

</le>

</Ters>

DISHDEF
defining a dish

Purpose
The DISHDEF command defines a dish — the ingredients that it contains and the
processing steps to prepare it.

Syntax

»»—DISHDEF—NAME=name-o0f-dish——INGREDIENT=ingredient-name/quantity————»

»—Y STEP=process-name (ingredient—list)—I:UNTIL——condition—name >«
FOR—t imeg

NAME=name-of-dish
identifies the dish name.

ID Workbench: IBMIDDoc User’s Guide and Reference

INGREDIENT=ingredient-name/quantity
identifies an ingredient and the quantity per serving. The ingredient must be
expressed in international culinary ingredient units (ICIUs). The quantity must
be expressed in international culinary quantity units (ICQUs). This parameter
is repeated as often as necessary to define each of the ingredients in the dish.

STEP=process-name(ingredient-list)
identifies a preparation step and the ingredients to use. Process names must be
expressed in international culinary step units (ICSUs). This clause is repeated
as often as necessary to define each of the preparation steps for the dish.

UNTILcondition-name

FORtime
identifies a condition under which the step is to conclude or an amount of
time for processing. Condition names must be expressed in international
culinary condition units (ICCUs).

Usage
Use the DISHDEF command to specify to the culinary robot how to prepare a dish.

Do’s and Don’ts

Make sure that the ingredients list is in the order in which the ingredients are to be
used. For example, for a SAUTE step, make sure that BUTTER is specified before
VEAL or the robot will put the veal in the pan before the butter.

Examples

dishdef name=vealalfred

ingredient=butter/1tsp

ingredient=vealscallop/60z ingredient=salt/pinch
ingredient=tarragon/1tsp ingredient=sourcream/halfcup
step=saute (butter vealscallop) until golden brown
step=add (salt tarragon) for 1 min

step=deglaze (sourcream) for 6 min

EVALUATE
evaluate nutrition, cost, or preparation time

Purpose
Once you have a menu defined, use the EVALUATE command to determine its

nutritional characteristics and the preparation time. If you have access to the Daily
Market Cost data base, you can also evaluate the cost of a shopping list containing
one or more menus.

Syntax
»»>—EVALUATE NUTRITION—MENU=menu-name »><
ECOST—SHOPLIST=sh0pping— list-name
PREPTIME—MENU=menu-name—SERVING=number—

MENU=menu-name
requests a nutritional evaluation of menu name.

COST SHOPLIST=shopping-list-name
as determined by your marketing profile and the Daily Market Cost data base,
this command generates a cost for the named shopping list for each of the
markets in the profile, including the cost of the gasoline for driving to those
markets designated in your profile as not providing delivery service.

Chapter 16. Developing Programming Language Reference Materials 173

174

PREPTIME MENU=menu-name SERVING=number
requests an evaluation of the preparation time for the designated menu serving
the designated number of people.

Usage

Use the EVALUATE command as required to maximize the nutrition and minimize
the cost of meals. Knowing the preparation time is critical in requesting that menus
be prepared.

Examples

//evaluate nutrition menu=companydinner
//evaluate cost shoplist=monday
//evaluate preptime menu=companydinner serving=8

ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 17. Defining Modular Information

Use modular information describe information that is often repetitive in structure
and content, and requires precise markup. To do this, you can define many
different modular information classes for each type of information you need to
describe. You can use modular information to create reference information for most
anything. This chapter introduces ways to create modular information using
IBMIDDoc.

You can create modular information classes that describe programming data
structures, commands and syntax, or command definitions, for example. This
information is often displayed in a tabular format. You can define this format using
the modular information elements described in this section.

Tables are a presentation-oriented structure. Modular information attempts to
capture the relationships that are often expressed in tables, using classes of
information, in a more meaningful way. Many tables have aspects with specific
meanings. There are times when, for presentation-specific purposes, a table must
be altered or resized—to fit on a page, for example. These changes can cause
confusion about the relationships the table is intended to illustrate.

Modular information elements capture these meanings using the class mechanism
that is part of modular item specifications. IBMIDDoc’s modular information
elements are a way to express many of the structures that are currently expressed
as tables. IBMIDDoc modular information can be expressed in many ways, without
obscuring the meaning of the relationships expressed in the information’s classes.

You can use several elements in combination to define modular information
classes, descriptions, and properties. These elements include:

* ModInfo

* ModInfoDef
* Mod

* Modltem

* ModItemDef

The following example illustrates how to use these elements to define modular
information. See the reference section entries for the elements used in the example
that follows for more information about these elements.

<PROLOG>
<PROPDEFS>

<MODINFODEF CLASSNAME="payobj">
<DESC>This class of modular information should be used to
describe payroll objects on a data entry screen.
</DESC>
<MODITEMDEF CLASSNAME="exempt">Exemptions
<DESC>Contains the number of exemptions the employee claims.
<MODITEMDEF CLASSNAME="rate">Hourly Rate
<DESC>Contains the amount, in dollars and cents, the employee is
paid per hour.
</MODINFODEF>

© Copyright IBM Corp. 1992, 2001 175

</PROPDEFS>

</PROLOG>

After defining the payobject, exemptions, and rate classes, they can be used as
shown in the following example.

<MODINFO CLASS="payobj">

<MOD ID="empinf'">

<MODNAME>Employee Pay Information</MODNAME>

<MODITEM CLASS="exempt">

<P>Enter the number of exemptions that the employee claims.</P></MODITEM>
<MODITEM CLASS="rate">

<P>Enter the employee's hourly rate of pay.</P></MODITEM>

</MOD>

</MODINFO>

Examples of Using Modular Information

Defining modular information allows the information to be displayed in a variety
of ways, including a table presentation style. The example that follows contains
modular information elements and a formatted example of one way to express the
meaning of the modular information in a table presentation.

Here are the modular information definitions:

<propdefs>

<modinfodef classname="CUST"><desc>Customer information
</desc>

<moditemdef classname="NAME"><title>Name</title><desc>
This is the first and last name of the customer</desc>
</moditemdef>

<moditemdef classname="CUSTID"><title>ID</title><desc>
This is their customer id number</desc></moditemdef>
<moditemdef classname="INC"><title>Income</title>
<desc>This is their annual estimated income</desc>
</moditemdef>

<moditemdef classname="LPD"><title>Last purchase date
</title><desc>This is their last purchase date</desc>
</moditemdef>

<moditemdef classname="NOTES"><title>Notes</title>
<desc>Personal notes</desc></moditemdef>

</modinfodef>

</propdefs>

Here is the mudular information section:

<modinfo class="cust" style="table">

<mod cTass="CUST">

<modname class="NAME">Fred Smith</modname>

<moditem class="CUSTID"><p><num base="10">1000</num></p></moditem>
<moditem class="INC"><num base="10">40000</num></moditem>

<moditem class="LPD"><p><date>12/25/93</date></p></moditem>
<moditem class="NOTES"><p>Big spender</p></moditem>

</mod>

<mod class="CUST">

<modname class="NAME">Suzanne Stanley</modname>

<moditem class="CUSTID"><p><num base="10">1001</num></p></moditem>
<moditem class="INC"><p><num base="10">50000</num></p></moditem>
<moditem class="LPD"><p><date>11/22/92</date></p></moditem>
<moditem class="NOTES"><p>Likes game software</p></moditem>

</mod>

176 1D Workbench: IBMIDDoc User’s Guide and Reference

<mod cTass="CUST">

<modname class="NAME">Jeff George</modname>

<moditem class="CUSTID"><p><num base="10">1002</num></p></moditem>
<moditem class="INC"><p><num base="10">60000</num></p></moditem>
<moditem class="LPD"><p><date>12/02/93</date></p></moditem>
<moditem class="NOTES"><p>Likes DVD movies</p></moditem>

</mod>

<mod class="CUST">

<modname class="NAME">Mike Gidento</modname>

<moditem class="CUSTID"><p><num base="10">1003</num></p></moditem>
<moditem class="INC"><p><num base="10">35000</num></p></moditem>
<moditem class="LPD"><p><date>12/12/92</date></p></moditem>
<moditem class="NOTES"><p>Likes 8-track tapes</p></moditem>

</mod>

</modinfo>

The result looks like the following:

Name ID Income Last purchase Notes
date
Fred Smith 1000 40000 12/25/93 Big spender
Suzanne Stanley |1001 50000 11/22/92 Likes game
software
Jeff George 1002 60000 12/02/93 Likes DVD
movies
Mike Gidento 1003 35000 12/12/92 Likes 8-track
tapes

Chapter 17. Defining Modular Information

177

178 1D Workbench: IBMIDDoc User’s Guide and Reference

Chapter 18. File, text, and character entities and reusing
information

Where multiple output documents contain common information, or a single
document repeats the same information, the only way to ensure that the common
information is the same is to take the information in each case from the same
source file. At its simplest level, where the common information is in a few, largish
blocks, the way to do this is to put each block of the common information in a file
of its own and imbed it in the multiple output documents that use it.

IBMIDDoc allows you to reuse elements and information defined in entities; see
[‘Eile_and text entities”. You can also reuse information from within the document,

see ['Reusing_elements from an object library” on page 191,

File and text entities

Entities can be used to retrieve document fragments. An entity is any information
that is referred to as a unit from a document. All entities are declared at the
beginning of a document. Entities cannot be redefined within a document. Entity
names are also case sensitive. Thus, product, PRODUCT, and Product refer to
different entities.

There are two different types of entities for holding reusable information: file
entities and text entities.

File entities
These are sometimes referred to as external entities or imbeds. These are
files of markup and text to include in the document. They can be a large as
a chapter (or even larger), or as small as a word (though this will drive
translation centers nuts). The declaration points at the file. We
recommended that these entities contain complete elements.

When you save your file entity, give it a meaningful file name. The file
extension needs to be IDE (or ide), to ensure the ID Workbench processes
properly recognize the file. Use only letters and numbers in the file name;
we recommend starting the file name with a letter. Do not include special
characters in the file name (such as +, —, %, and so forth).

Text entities
These are sometimes referred to as symbols or internal entities. These
entity declarations include the replacement text. A text entity can specify
up to 2400 characters of information and markup.

The content should be a noun string. You should not mix verbs and nouns
in a text entity, because this will make that entity non-translatable. If you
do this, the translation centers need to split apart the verbs from the
nouns. If you need to do this, make an entire sentence an entity.

To include a text or file entity, use an entity reference. An entity reference requests
the entity data to be processed at the place where the reference occurs. Any entity
can be referenced in this way, but they must be valid in the context in which they
are referenced.

© Copyright IBM Corp. 1992, 2001 179

The following example shows how text and file entities are defined and used. The
entities product, PRODUCT, and Prod are all text entities; the preface is a file
entity.

<!ENTITY product "ABC Pgm.">

<!ENTITY PRODUCT "PQR Component.">

<!ENTITY Prod "XYZ Pgm">

<IENTITY preface SYSTEM "xyzlOpre.ide">

This book teaches you how to use &product;.

&preface;

<D>Using the &PRODUCT; of the &product;

<D>Using &product; with &Prod;

Special characters

180

Sometimes you need to specify characters that can be printed on the printer but
cannot be typed at your keyboard. An example of that would be the bullet, which
looks like this: ¢

No matter how hard you look, you can’t find a key on your keyboard with one of
those on it (unless you have a special keyboard). All symbols are entered the same
way: an ampersand (&), followed by the symbol name, followed by a semicolon.
So our symbol for the bullet, which is named “bul”, would look like this:

&bul;

The IBMIDDoc DTD has several symbols for characters you cannot type. These are
called character entities. The only SGML-sensitive characters are less-than (<) and
ampersand (&) These, when typed in the editor, are automatically converted to
&1t; and & Other characters can be typed if you have them on your keyboard;
others you cannot type directly and will need to be entered as character entities.

Cahle 19 shows the character entities defined in IBMIDDoc.

Table 18. IBMIDDoc Character Entities. All characters are supported in the hardcopy
processes. For the online XHTML, HTML, BookManager, and other processes, please
check your output for proper appearance and the process logs for messages.

Symbol Appearance Description
aa a a acute

Aa A A acute

ac a a circumflex
Ac A A circumflex
acute ’ accent acute
ae a a umlaut
Ae A A umlaut
aelig ® ae ligature
AElig A AE ligature
ag a a grave

Ag A A grave
aleph N aleph

all v all

alpha o alpha
Alpha A Alpha

amp & ampersand
and A and symbol

ID Workbench: IBMIDDoc User’s Guide and Reference

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description

angle Va angle

angstrom A angstrom

ao a a overcircle

Ao A A overcircle

apos ’ apostrophe

app = approximately
approx = approximately
approxid = approximately identical
arc < arc

asterisk * asterisk

at a a tilde

At A A tilde

atsign @ at sign

aus N underscored a
ballot O ballot box

because because

beta B beta

Beta B Beta

bin B’ binary

blank b blank (b with slash)
box] ballot box

BOX [| solid box

BOXBOT = solid box bottom half
BOXLEFT | solid box left half
BOXRIGHT | solid box right half
BOXTOP u solid box top half
box12 i shaded box 1/2 dots
box14 o shaded box 1/4 dots
box34 E shaded box 3/4 dots
bs backspace

bsl \ back slash

bslash \ back slash

bul . bullet

bullet . bullet

bxas L box ascender

bxbj L box ascender

bxgj + box cross

bxcr + box cross

bxde T box descender

bxh - box horizontal

bxle F box left junction
bx]j F box left junction
bxll L box lower-left

bxlr 4 box lower-right
bxri 1 box right junction
bxtj] box right junction
bxtj T box descender

bxul r box upper-left

bxur 1 box upper-right
bxv | box vertical

bx0012 3 ASCII code 184

Chapter 18. File, text, and character entities and reusing information

181

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description
bx0021 m ASCII code 183
bx0022 1 ASCII code 187
bx0120 T ASCII code 214
bx0121 T ASCII code 210
bx0202 = ASCII code 205
bx0210 F ASCII code 213
bx0212 T ASCII code 209
bx0220 T ASCII code 201
bx0222 T ASCII code 203
bx1002 d ASCII code 190
bx1012 4 ASCII code 181
bx1200 L ASCII code 212
bx1202 L ASCII code 207
bx1210 E ASCII code 198
bx1212 + ASCII code 216
bx2001 4 ASCII code 189
bx2002 4 ASCII code 188
bx2020 [ASCII code 186
bx2021] ASCII code 182
bx2022 i ASCII code 185
bx2100 L ASCII code 211
bx2101 1 ASCII code 208
bx2120 3 ASCII code 199
bx2121 4 ASCII code 215
bx2200 L ASCII code 200
bx2202 i ASCII code 202
bx2220 Ik ASCII code 204
bx2222 i ASCII code 206
caret A caret

cc ¢ ¢ cedilla

Cc C C cedilla

cdot O} circled dot

cdq ” close double quote
cdqf » French close double quote
cdqg ” German close double quote
cedilla N cedilla

cent ¢ cent

cequal e circled equals
char ' character

check I checkmark

chi X chi

Chi X Chi

circ O circle

circle O circle

CLUB * club solid
cminus S) circled minus
colon : colon

comma , comma

concat I concatenate
congruent = congruent

cont continuation character

182 1D Workbench: IBMIDDoc User’s Guide and Reference

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description
contains D) contains as a subset
copr © copyright

copyr © copyright

cplus ® circled plus

csq ’ close single quote
csqg ’ German close single quote
ctimes ® circled times
currency a currency international
cursor - fat cursor

dagger t dagger

dahead v down arrowhead
darrow \ll down arrow

date October 30, 2001 date

dbldag i double dagger

dbls § double S

dblus _ underscore double
dblxclam I double exclamation point
dblxclm I double exclamation point
decrease N decrease

def BE definition/defined as
deg ° degree

degree ° degree

del \% del

delta 6 delta

Delta A Delta

determines — determines

diam & diamond wide
diamond ¢ diamond
DIAMOND . diamond solid

div + divide

divide + divide

divslash / division slash
dollar $ dollar

dot . dot

dotdot . double dot
doubleC C double C

doubleN N double N

doubleP P double P

doubleQ Q double Q

doubleR R double R

doubleZ VA double Z

Dstroke b Eth or D stroke

ea é e acute

Ea E E acute

ebin ' binary end

ec é e circumflex

Ec E E circumflex

echar ' character end

ee é e umlaut

Ee E E umlaut

eg e egrave

Chapter 18. File, text, and character entities and reusing information

183

184

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance

N

Eg E
egml
ehex
ellip
ellipsis .
emdash —
endash
epsilon €
Epsilon E

eq =
eqsym =
equals =

eqv ~
eserver_logo @server
eserver_logo_TM @server
eta
Eta
eth
Eth
euler

euro
eurochar
eurotext
exists
FACE
face

Mmoo TS

t
C
~

factorial
female

ff

ffi

ffl

fi
finespace
fl

florin

ERER R © -0 @ W

=

fnof
fracl2
fracl4
fracl8
frac34
frac38
frac58
frac78
gamma
Gamma
ge
gerank
gesym
gml
grave
gt >

vV oy v T =< N oV B AR o A N S

Description

E grave

gml end tag delimiter
end quoted hex string
ellipsis

ellipsis

em dash

en dash, dash

epsilon

Epsilon

equals

equals

equals

equivalent
e(logo)server
e(logo)server, trademarked
eta

Eta

eth, Icelandic small
eth, Icelandic capital
Eulers

Either Euro glyph or EUR
Either Euro glyph or E
Always EUR

exists

face solid

face

factorial

female symbol

ff ligature

ffi ligature

ffl ligature

fi ligature

finespace

fl ligature

florin

function of

one half

one quarter

one eighth

three fourths

three eighths

five eighths

seven eighths

gamma

Gamma

greater than or equal to
greater than or equal rank
greater than or equal to
gml delimiter

accent grave

greater than

ID Workbench: IBMIDDoc User’s Guide and Reference

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,

please check your output for proper appearance and the process logs for messages.

Symbol
gtequiv
gtgt

gtlt
gtrank
gtsym
hamilton
hat

hbar
HEART
hex
house
hyphen
ia

Ia

ic

Ic

Icap
identical
idotless
ie

Ie

iff

ig

Ig

ij
increase
infinity
intbot
integral
intersect
inttop
inve
invellip

invq
iota

Iota
isubset
isuperset
join
kappa
Kappa
lahead
lambda
Lambda
larrow
Ibarb
Ibrace
Ibracket
Ibrc
Ibrk

Appearance

>§5VV/\V\V/N

—.ﬁ3§;8 \c.': H,H’@ e e A N R PR S

TP ARACUINT T

—_———— —~— r

Description

greater than or equivilent
much greater than
greater than or less than
greater than rank
greater than
hamiltonian

hat

h bar

heart solid

hex

house

hyphen

i acute

I acute

i circumflex

I circumflex

I capital character
identical

i dotless

i umlaut

I umlaut

if and only if

igrave

I grave

ij ligature

increase

infinity

integral bottom half
integral

intersection of sets
integral top half
inverted exclamation
indented vertical ellipsis

inverted question mark
iota

Iota

improper subset
improper superset
join

kappa

Kappa

left arrowhead
lambda

Lambda

left arrow

left barb

left brace

left bracket

left brace

left bracket

Chapter 18. File, text, and character entities and reusing information

185

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol | Appearance Description

Ibullet o large bullet

ldarrow = left double arrow

le = less than or equal to
lerank < less than or equal rank
less = less than or equivilent
lesym = less than or equal to
liter 2 liter

Imultdot J multiply dot large
Inot - logical not

Inotrev - backward logical not
Inotusd upside down not

lor | logical or

loz I lozenge

lozenge ut lozenge

Ipar (left parenthesis
Iparen (left parenthesis
Irarrow © left-right arrow
Lsterling £ pound sterling

It < less than

ltequiv < ltequiv

1tlt < much less than
ltrank < less than rank

ltsym < less than

male 3 male symbol
mathast * mathematics asterisk
mdash — em dash

meet n meet

memberof € member of

minus - minus operation
minusop - minus operation

mp ¥ minus-plus

mu u mu

Mu M Mu

mult X multiply

ndash - en dash, dash

ne # not equal to

nearly = nearly equal

nesym # not equal to

nexists A not existant
nidentical z not identical
nisubset Z not improper subset
nisuperset 2 not improper superset
nlerank K not less or equal rank
nltrank < not less than rank
nmemberof ¢ not a member of
nnearly * not nearly equal
notel616) pair of 16th notes
notel8) eighth note

notsym - not symbol

nsubset c not a subset
nsuperset 2 not a superset

186 1D Workbench: IBMIDDoc User’s Guide and Reference

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,

please check your output for proper appearance and the process logs for messages.

Symbol

nt

Nt

nu

Nu
numsign
oa

Oa

oc

Oc

odq
odqf
odqg
oe

Oe

oelig
OElig
08

Og
omega
Omega
omicron
Omicron
or

0s

Os

0sq
0sqg

ot

Ot

ous
overline
par
parallel
partial
per
percent
period
perpend
peseta
phi

Phi

pi

Pi
planck
plus
plusend
plusmin
plusop
pm
prime
product

Appearance

T OO 00 ®kZ < A

X

N

Qe <00 RPes OYQR O

@ oo

o\o .

TH +H+ >R e R

—

Description

n tilde

N tilde

nu

Nu

number sign

0 acute

O acute

o circumflex

O circumflex
open double quote
French open double quote
German open double quote
o umlaut

O umlaut

oe ligature

OE ligature

o grave

O grave

omega

Omega

omicron

Omicron

or symbol

o slash

O slash

open single quote
German open single quote
o tilde

O tilde
underscored o
overline
paragraph
parallel

partial

period (starter set)
percent

period
perpendicular
peseta

phi

Phi

pi

Pi

h bar

plus

plus at end of line
plus-minus

plus operation
plus-minus

prime

product

Chapter 18. File, text, and character entities and reusing information

187

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description
proportion s proportion

psi P psi

Psi b4 Psi

quest ? question mark
rahead > right arrowhead
rarrow > right arrow

ratio : ratio

rbarb — right barb

rbl required blank
rbrace } right brace

rbracket] right bracket

rbrc } right brace

rbrk] right bracket
rdarrow = right double arrow
regtm ® registered trademark
revbul o reverse bullet

revcir o] reverse circle

rho p rho

Rho P Rho

riemann R riemann integral
rpar) right parenthesis
rparen) right parenthesis
rprime ' right prime

Rx B physician Rx

scriptl J script I

scriptl 2 liter

sdq ! straight double quote
sect § double S

section § double S

semi ; semicolon

shiftin H double byte shift in
shiftout double byte shift out
sigma c sigma

Sigma X Sigma

similar ~ similar

slash / slash right

slr / slash right

smultdot muliply dot small
SPADE s spade solid
splitvbar i split veritical bar
sqbul . square bullet
sqbullet . square bullet

sqrt \ square root

ss it German es-zet

ssbl syntax significant blank
ssq ' straight single quote
STAR * star solid

sublpar (subscript left parenthesis
subminus B subscript minus
subplus . subscript plus
subrpar) subscript right parenthesis

ID Workbench: IBMIDDoc User’s Guide and Reference

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,

please check your output for proper appearance and the process logs for messages.

Symbol

subset
sub0
subl
sub2
sub3
sub4
subb
sub6
sub?
sub8
sub9
suchthat
sum

sun
superset
suplpar
supminus
supn
supplus
suprpar
sup0
supl
sup2
sup3
sup4
supb
sup6
sup?7
sup8
sup9

tab

tau

Tau
telephone
TELEPHONE
therefore
theta
Theta
thorn
Thorn
tilde
time
times

tm
TRIANGLE
triangle
ua

Ua
uahead
uarrow
uc

Appearance

C

[¢]
1

~ o v & w N

~U S MU o

N o 0 r W N R O ~ + B

o o

B ey =

L T @ @ -

ER N
w
1
jo¥)
2

& = > e > >

Description

subset of, included in
subscript 0
subscript 1
subscript 2
subscript 3
subscript 4
subscript 5
subscript 6
subscript 7
subscript 8
subscript 9

such that

sum

sun

superset
superscript left parenthesis
superscript minus
superscript n
superscript plus
superscript right parenthesis
superscript 0
superscript 1
superscript 2
superscript 3
superscript 4
superscript 5
superscript 6
superscript 7
superscript 8
superscript 9

tab

tau

Tau

telephone
telephone solid
therefore

theta

Theta

thorn, Icelandic small
Thorn, Icelandic capital
tilde

time

multiply
trademark
triangle solid
triangle

u acute

U acute

up arrowhead

up arrow

u circumflex

Chapter 18. File, text, and character entities and reusing information

189

190

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol

Uc
udarrow

Appearance

udarrowus
ue

Ue

ug

Ug

ulbarb
umlaut

= G/ o (::; C > < C:>

union
upsilon
Upsilon
urbarb
us

usec
vardelta
varphi
varsigma
vartheta

T =<c C

— N 8 T |

vbar
vector
vellip

ol

weierstr

<

won
xclam
xclm
Xi

Xi

ya

Ya

ye

Ye
yen
Zero
zeta
Zeta
The following enti
Ad
Al

Ar
Au
Eb

El

Er

Et

Ju

Lh

L1

Lr

Lv

N ¢ O i A 1] o = =

(=

| ——> V A <

-

—

Description

U circumflex
up-down arrow
up/down arrow/underscore
u umlaut

U umlaut

u grave

U grave

up lef barb
umlaut

union of 2 sets
upsilon
Upsilon

up right barb
underscore
micro second
delta (variation)
phi (variation)
sigma (variation)
theta (variation)
vertical bar
vector

vertical ellipsis

weierstrass elliptic
won (Korean currency)
exclamation point
exclamation point
Xi

Xi

y acute

Y acute

y umlaut

Y umlaut

yen

zero slashed

zeta

Zeta

ies define the character graphic symbols:

arrow down
arrow left

arrow right

arrow up

end of line, bottom
end of line, left
end of line, right
end of line, top
line junction

line horizontal
lower left corner
lower right corner
line vertical

ID Workbench: IBMIDDoc User’s Guide and Reference

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol | Appearance Description

Td T T char, bar down

Tl] T char, bar left

Tr F T char, bar right

Tu L T char, bar up

Ul r upper left corner

Ur 1 upper right corner

The following entities make description of the SGML syntax easier to show:
stago < start tag open

etago </ end tag open

tage > tag close

mdo <! markup declaration open

mdc > markup declaration close

pio <? processing instruc. open

pic > processing instruc; close

pero % parm entity ref; open

ero & entity reference open

erc ; entity reference close

dso [declaration subset open

dsc] declaration subset close

msc 11> marked section close

lit ! literal delimiter

lita ' alternate literal delimiter

The following entities define typographic quote symbols which are used because the Q
element has implied citation semantics:

ctq " close typographic quote

otq “ open typographic quote

The following entities can be used by translation centers for hyphenation:
shy soft hyphen

Reusing elements from an object library

Elements that are to be reused many times throughout a document can be defined
in an object library. Object libraries are an alternative to using file or text entities.
You create object libraries by using the OBJLIB element in the prolog. You place the
elements and the content you want to reuse in that object library. The elements in
the object library must have an ID.

To use an element from the object library, use the CONLOC attribute to refer to
that element. The element in the object library must be the same as the element
with the CONLOC attribute. That is, P tags refer to P tags; LI tags refer to LI tags;a
PBLK tag cannot refer to a P tag.

The following example shows a small object library and two references to elements
in the library. This object library contains an introductory paragraph for service
needs. It also contains an ordered list of things that must be done if service is
required.

<prolog>

<objlib>

<objTibbody>

<p id="paral">If your system stops

Chapter 18. File, text, and character entities and reusing information 191

192

working, follow these instructions:</p>

<ol id="1list2">

Note the system code displayed on the front of
the unit.</1i>

<1i>Unplug the unit.</1i>

Contact your service representative.</1i>

</objlibbody>

</obj1lib>

</prolog>

<d>

<dprolog><titleblk>

<title>If you need service</title>
</titleblk></dprolog>

<dbody>

<p conloc="paral">

<ol conloc="11ist2">
</dbody></d>

When the P element with the CONLOC attribute of “paral” is processed, the
content of the P element in the OBJLIB with the “paral” attribute is used. This
markup portion:

<p conloc="paral">

Is the same as specifying this markup:

<p>If your system stops
working, follow these instructions:</p>

The content of an element defined in an object library is used only if you refer to
that element in the document content.

An element defined in an object library can be referred to only from within the
document containing the object library. If you have information that will be
re-used by other documents, the object library can be declared as a file entity and
imbedded in each document. This level of reuse allows much more flexibility and
function for reuse across documents.

Migration Note
ODbjLib can also be used as, in the Bookmaster paradigm, a DVCEF side file
that uses the include macro.

The element with the ID must be a direct child of the ObjLibBody tag. You cannot
use a CONLOC to refer to an element nested inside something else in the
ObjLibBody tag. For example, referencing the LI element “unplug”in the next
example is not correct:

<objlib>

<objlibbody>

<ol id="list2">

Note the system code displayed on the front of
the unit.</1i>

<1i id="unplug">Unplug the unit.</1i>

Contact your service representative.</1i>

</objlibbody>

</obj1lib>

ID Workbench: IBMIDDoc User’s Guide and Reference

To correct the example, you need move the LI outside the list, and include an LI
with a CONLOC. The items reused within an object library must be defined before
they are referenced, so the LI is before the list.

<objlib>

<obj1ibbody>

<1i id="unplug">Unplug the unit.</1i>

<ol id="list2">

Note the system code displayed on the front of

the unit.</1i>

<1i conloc="unplug">

Contact your service representative.</1i>

</obj1ibbody>

</objlib>

If you want to reuse content of a part of a list, containing the content you wish to
reuse within an LIBlk element makes it easy to reference the LIBLk using the
CONLOC attribute.

You can have several divisions that get reused by using the DBLK tag to contain
those divisions.

Reusing attributes in the CONLOC reference

Starting with IDWB release 3.4, patch IDWXF036: The attributes for an item in an
object library are now passed through to the reference. For example, you have a
list item with a revision ID:

<objlib>

<objTibbody>

<1i id="renew" rev="rel34a">Renew your subscription</1i>

</obj1ibbody>

</objlib>

You can refer to the list item, and the REV attribute is carried along. For example:
<1i conloc="renew">

is now the same as this:
<1i rev="rel34a">Renew your subscription</1i>

Before patch IDWXF036, you would have only gotten the text, the REV attribute
would be ignored:

Renew your subscription</1i>

If the item in the object library and its reference have the same attributes, the value
on the CONLOC reference wins.

Cross-referencing items that use CONLOC

Now, for every solution, there is a problem.7 If you want to cross-reference an item
with a CONLOC, you need to add the ID to the tag with the CONLOC. For
example, you want to reuse a division, plus cross-reference to it. You cannot
cross-reference to “service”. You need to add unique IDs to each division. This
applies to items who's parent is the ObjLibBody tag.

<obj1ib>

<objlibbody>

<d id="service">

<dprolog><titleblk>

7. Yes, I wrote that correctly.

Chapter 18. File, text, and character entities and reusing information 193

194

<title>If you need service</title>
</titleblk></dprolog>

<dbody>

<p>If you need service...
</dbody></d></obj1ibbody>
</objlib>

<d conloc="service" id="abc">

<d conloc="service" id="def">
<xref refid="abc">

<xref refid="def">

Any ID within an element who’s grandparent is the ObjLibBody tag will, when
re-used, have a reference to the first use of that item.

ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 19. Conditionally including information

Where multiple output documents contain common information, or a single
document repeats the same information, the only way to ensure that the common
information is the same is to take the information in each case from the same
source file. At its simplest level, where the common information is in a few, largish
blocks, the way to do this is to put each block of the common information in a file
of its own and imbed it in the multiple output documents that use it.

However, this process becomes cumbersome and inefficient where the common
information is strewn throughout the document, or, alternatively, where the
differences for the multiple output documents are scattered through the common
information. This approach also has the drawback that reviewers of the documents
must do redundant reviewing of the common 1nformat10n For these reasons, we
have property-based retrieval. See L = .

There are also times when you need alternative text under different conditions.
You can specify the modification text (the insertion or replacement) either in line in

the source file or out of line in an object library. See I‘Retrieval alternatives” onl

Property-Based Retrieval

Property-based retrieval allows you to structure documents such that different
versions can be produced based on a property value file (that is, a set of one or
more conditions). With property-based retrieval, you can:

¢ Insert, delete, or replace text based on conditions you specify.
* Specify conditions that are simple or complex.
* Pass the conditions at run time or inside the document itself.

In IBMIDDoc, conditional processing is done by evaluating certain attribute values
on elements to determine whether or not those elements should be processed. The
attributes are called property attributes because they define properties of elements.

Using the Props attribute to set text conditions

The Props attribute on a tag, when true, causes that content to be processed and
appear. The attribute can contain a simple condition that is either true or false, or a
complex condition of Boolean operators. The attribute’s value, the specification, can
be any valid SGML name, but should be a word or phrase that is clear and
meaningful to those who are writing or editing the information. The specification
may be a version, a software code name, or a hardware platform; for example,
v4r5, win32, or PC, respectively.

It is up to those working on a product or group of products to choose consistent
terminology for assigning occurrences of the Props attribute. The names and
meaning should be documented and available to all writers and editors involved
in the development effort to ensure consistency.

For example, each these items will format when the conditions v4r5, win32, and
PC are all true:

© Copyright IBM Corp. 1992, 2001 195

196

<1i props="v4r5">The version 4, release 5 level has
special stuff.</1i>

<1i props="win32">This software release has more special
stuff.</1i>

<1i props="PC">Is the PC going to be replaced?</1i>

Translation Center Considerations: Conditional text can be a powerful feature, but
you need to use care because of translation considerations. If you have a condition
within a sentence, ensure it is a noun string. Do not combine a noun and a verb in
the same conditional phrase. Not every language has sentence construction like
English (or whatever language you are writing in). If you need to combine nouns
and verns in the same conditionap phrase, make an entire sentence conditional.

If you have a condition within a sentence, ensure your sentence makes sense with
all possible logic conditions. Here are some examples:

* Here’s a good example:

The <ph props="0s2">0S/2</ph><ph props="#NOT 0s2">Windows</ph> operating
system runs on PCs.

This way you always get a complete sentence, as in this when “0s2” is true:
The OS/2 operating system runs on PCs.
And this when “0s2” is false:

The Windows operating system runs on PCs.
* In this next example — you get an incomplete sentence when both conditions
are false:

When <ph props="equine">horses gallop</ph><ph props="canine">dogs run</ph>
down the track, you will know the race has begun.

When both “equine” and “canine” are false, the sentence becomes:
When down the track, you will know the race has begun.

Referring to something that is conditional: Imagine you have two paragraphs (or
two somethings) that have an either condition. Now you want to refer to the
paragraph. You give each of them the same ID, and then the editor and the IDWB
processes complain because the IDs appear twice. As in this example:

<p id="cats" props="cats">Cats are nice.</p>
<p id="cats" props="#NOT cats">Cats are not nice.</p>

See <xref refid="cats" xreftext="cat feelings"> for how I feel about cats.

We have two paragraphs; they are mutually exclusive, but because they have the
same ID, SGML rules complain about the duplicate IDs.

So what to do? Put the two paragraphs in a paragraph block (Pblk), and put the
ID on the Pblk tag! For example:

<pbTk id="cats">

<p props="cats">Cats are nice.</p>

<p props="#NOT cats">Cats are not nice.</p>
</pbTk>

See <xref refid="cats" xreftext="cat feelings"> for how I feel about cats.

ID Workbench: IBMIDDoc User’s Guide and Reference

We now have one ID — no more duplicate ID problem. (But now you might have
a problem with cat owners).

Setting the properties to true or false

The properties are initially assumed to be false. When you process your document,
messages indicate that when a condition is found, false is assumed.

To set a property value, you can do the following:

e Use a VAL file to set the properties to true or false. This is described in the d
Workbench prfing Started and Lser's Guidd and in the online help for ID

Workbench. See the Transform tab in the processing option displays.

* Use a PropDesc tag in the document’s prolog; within the PropDefs section.

Here is an example showing how to set the properties “v4r5” and “PC” to true
and false, respoctively.

<prolog>
<propdefs>

<propdesc propname="v4r5" default="true">
<desc>Version 4, release 5</desc>
</propdesc>

<propdesc propname="pc" default="false">
<desc>PC platform information.</desc>
</propdesc>

</propdefs>
</prolog>

Specifying boolean properties
Sometimes you need to specify fancier conditions, called complex conditions.

Suppose we have two conditions, A and B. To have an action (insert or delete)
occur:

* When (and only when) both conditions are true, enter:
a #AND b

* When either one or both of the conditions is true, enter:
a #0R b

* When a condition is not true, enter:
#NOT a

You might have a situation where you want one sentence for one condition, and
different sentence for the opposite condition. Instead of having two properties and
setting one to true and the other to false; you can just have one property and use
the #NOT operator. For example:

Always use this item</1i>

<1i props="PC">This is a PC-only item</1i>

<11 props="#NOT PC">This item is for everything EXCEPT PCs</1i>

The order of precedence in evaluation is:

1. specifications inside parentheses are evaluated first

2. #NOT specifications are evaluated next

3. Finally, #AND and #OR operators are evaluated from left to right

Chapter 19. Conditionally including information ~ 197

These three functions, #AND, #OR, and #NOT, can be strung out to the point

where only a computer could figure out what to do. See for a set of
sample conditions and the results with different logic groupings.
Table 19. Property Truth Table. T means true; blank indicates false.
These conditions Yield these complex conditions:
A #and
A B C |A#andB| A#orB :ntng A :;:‘dc B ‘:ai‘(’ir g #not B #‘?1 :t";
#or C
T T T T T T T T T
T T F T T T T T
T F T T T T T T T
T F F T T T T T
F T T T T T T
F T F T
F F T T T T
F F F T

198

This example shows that the second paragraph applies to MVS in both versions of
the product, and to VM in only the first version of the product.

<p PROPS="(VM #or MVS) #and (V1 #or V2)">

This paragraph applies to both versions and operating systems.
</p>

<p PROPS="MVS #or (VM #and V1)">

This paragraph applies to MVS or version 1 on VM.

</p>

<p PROPS="VM #and V2">

This paragraph applies only to version 2 on on VM.

</p>

Retrieval alternatives

Sometimes you need alternative text for a condition. The RETALTS attribute can
point to one or more retrieval alternatives for the text in your document.

You need to create your alternative text in an object library in the prolog of your
document. The main element will need an ID. See L i

bhject library” an page 191 for information about creating object libraries.

To have the alternative text be used:

e The main element must have a false Props attribute, and a Retalts attribute with
one or more IDs.

¢ The Retalts attribute points at the ID of a replacement element found in the
object library. The elements must be the same type. The first true element is used
for the alternative text.

The following example illustrates this type of conditional processing.

<prolog>

<objlib>

<obj1ibbody>

<p id="vlintro" props="v1">This is an introduction for version 1...</p>
<p id="v2intro" props="v2">This is an introduction for version 2...</p>

<p id="v3intro">This is an introduction for version 3...</p>

ID Workbench: IBMIDDoc User’s Guide and Reference

</objTibbody>
</obj1lib>
</prolog>

<p props="x" retalts="vlintro v2intro v3intro">This
is an introduction...</p>

The paragraphs will print under these conditions:

* When “x” is true, this prints:
This is an introduction...

* When “x” is false and “v1” is true, this prints:
This is an introduction for version 1...

* When “x” and “v1” are false and “v2” is true, this prints:
This is an introduction for version 2...

* When “x”, “v1”, and “v2” are false, this prints:

This is an introduction for version 3...

Using Marked Sections

Marked sections provide two key functions:
1. they allow conditional inclusion or exclusion of material and

2. they control SGML delimiter recognition for documenting SGML and markup
as well as documenting other subjects that use SGML markup characters for
other purposes.

Marked sections should not be used to provide conditional processing capability.
Use the property-based retrieval function instead.

Marked sections have the following format:
<![keyword status area [marked section data]]>

keyword status area
This is specifications that control the function of the marked section. See below
for possible values.

marked section data
data to be treated based on the content of the keyword status area.

Marked sections support two keywords for conditional inclusion and exclusion:
IGNORE and INCLUDE. One or both are specified in the keyword status area
described above. If both are specified, IGNORE has higher precedence. Here is an
example:

<I[IGNORE [

This information will be ignored.

11>

<![INCLUDE [
This information will be included.

11>

Why would anyone would specify both INCLUDE and IGNORE? The keyword
status area may include parameter entity references that allow the author to
parameterize these inclusions from the document prolog without changing the
document (and marked section keyword status area) content. Examples of this
follow the parser recognition control description.

Chapter 19. Conditionally including information 199

200

Parameter entities may be used to parameterize the keywords found in a marked
section keyword status area. This is particularly useful in conditional processing
cases. For example, assuming you have material that is intended for two uses, say
reference cards and full language reference, you can encode both in the same
document and then change the parameters to include just the material for the
output currently desired. Here is an example:

<IDOCTYPE IBMIDDOC PUBLIC "-//..." [

<!ENTITY % langrefonly "include" >
<IENTITY % refcardonly "ignore" >

<P>Material that belongs in both output docs doesn't have any marked
section markup

<!I[%langrefonly; [

This is material that goes only in the language reference.

11>

<!I[%refcardonly; [

This is material that goes only in the reference card.

11>

More material that goes in both.

Controlling SGML Delimiter Recognition

There are two keywords to control SGML delimiter recognition:

CDATA
inhibits the recognition of all markup except the marked section close
delimiters "]]>’

RCDATA
supports recognition of entity references and the marked section close
delimiter.

You use this for including SGML markup examples and for including other
material that uses SGML markup delimiter characters in other ways:

<![CDATA [

<P>This is an example paragraph with an example entity reference:

dentrefs;.

11>

<I[RCDATA [
<p>This is an example paragraph of IBMIDoc coding with an example symbol
reference: &bkmsym;]]></p>

In the second case, the & SGML entity resolves to an & that gives the correct
result in documenting IBMIDoc encoding.

ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 20. Property and Class Definitions

This chapter describes how to define element properties, element classes, and
properties for element classes. Some of these definitions can also be done with DEF

tags; see Chapter 9 “Using definition tags” on page 105,

If the referenced element also has a PROPSRC specification, this reference is
followed until the end of the chain of property specification is reached. Property
specifications on the referencing element override any properties from referenced
or inherited property specifications. The hierarchy of property use is:

1. properties specified on the element,

2. properties specified on an element which is referenced using the CONLOC
attribute or properties specified on an element which is referenced using the
RETALTS attribute and whose properties were satisfied for this processing run
(the CONLOC and RETALTS referenced elements are treated as independent
elements and their properties do not interact),

3. properties from a PROPSRC referenced element, however long the reference
chain may be,

4. properties from ClassDef elements referenced by class.

5. properties specified on a PropDef element without an ID (with or without an
ELETYPES attribute)

6. properties from ancestors in the document tree

Defining Element Properties

In IBMIDDoc, you can define properties for an element, such as language, status,
and classification. You can define properties directly, by linking to another element,
through inheritance, or, for security classification, by implying it from an element’s
children. You can also define reusable sets of properties.

Defining Element Properties Directly
Properties can be defined for an element by using the property attributes.

The Propdef tag sets default properties for tags that point at them with propsrc
attributes. This allows you to set defaults once, and reference them. When
something changes, you only have to change the propdef). The only attribute
currently able to be passed from PROPDEEF to an element is STYLE. For example;
this propdef sets a style of bold for the propname fred:

<propdef propname="fred" style="bold">

Now, when a tag that supports a bold style uses the fred property, the content will
be bold:

<ph propsrc="fred">hi there</ph>

Values of the same attributes on the tags override the values on the propdef tag.
The following tag, because the style attribute is used on the tag itself, overrides the
style attribute on the propdef. It will be italic:

<ph propsrc="fred" style="italic">hi there</ph>

© Copyright IBM Corp. 1992, 2001 201

The following shows a propdef that sets a style of bold and a conditional property
of aix:

<propdef propname="fredaix" style="bold" props="aix">

Consider this tag:

<ph propsrc="fredaix" props="win">hi there</ph>

Because the attributes on the tags override the same attributes on the propdef, the
ph tag effectively becomes the following;:

<ph style="bold" props="win">hi there</ph>

This is because the props attribute on the tag overrides the props attribute on the
propdef. The style attribute on the propdef is carried through to the tag.

You can leave off the propname and propsrc to get a property default for all the
tags. For example, this propdef sets a style of bold for any tag that supports a style
of bold:

<propdef style="bold">

These will print in bold:

<ph>hi there</ph>
<term>hello again</term>

Additionally, because you can define style overrides on both propdef and classdef,
then use them together, the ID Workbench uses a rule determines which will win.
The special override rule for style and class when used together is: 1) Style on the
tag, then 2) Class on the tag, then 3) Style on Propdef.

The following example shows a paragraph with defined properties of OS/2 V2.1
only.

<P props="o0s2 #AND v21">This paragraph
is used for 0S/2 V2.1 only.

Properties defined directly take precedence over properties defined by linking or
through inheritance. The only exception is the security classification property,
which can be implied from an element’s children.

Defining Element Properties Using Inheritance

All elements inherit their parent’s properties. For example, a paragraph within a
division that has a language property value of Spanish will inherit that property
and will thus be identified as Spanish as well.

Defining Element Classes

202

You can use the ClassDef element to define classes of IBMIDDoc elements.

Typically, element classes are used to define specific phrase classes that reflect the
product being described. You can enable the various processing functions by using
the Phrase elements with the classes you define.

Usually, element classes are defined for an entire collection of documents by
someone responsible for designing the information in the collection, such as an
information designer or planner. If you are working on information for which
element classes have been defined, you do not need to understand how classes are
defined. However, you do need to know the class names and the affected elements.

ID Workbench: IBMIDDoc User’s Guide and Reference

The default IBMIDDoc templates have the following phrase classes defined. They
are enabled in the editors and appear properly when used.

Class Description

IBMGUIControl Use this for graphical user interface items; such as
menu items, pushbuttons, icons, and so forth. Press
the OK button.

Press the <ph class="IBMGUIControl">0K</ph> button.

IBMCommand Use this for command names, APIS names,
functions names, and so forth. Run the Copy
command.

Run the <ph class="IBMCommand">Copy</ph> command.

IBMEmphasis Use this for things you want to emphasize. Look
here please.

Look <ph class="IBMEmphasis">here</ph> please.

Use this for file and path names. The file name is
system.ini.

The file name is <ph class="IBMfilepath">system.ini
</ph>.

In defining element classes, first determine what classes are needed and decide the
class names. Analyze your product to identify what kinds of things you need to
write about. Classes should be meaningful and should describe real things or
aspects of real things. Classes should not relate purely to processing or
presentation effects. Thus, a class of bold is probably not meaningful. Usually, class
names should be nouns.

Next, define exactly what the classes are so that you understand when and why to
use them.

Then, define the element classes using ClassDef elements. ClassDef elements are
valid within PropDefs, which is in either the document prolog or a division prolog.
If a class applies to an entire document, put the ClassDef element in the document
prolog. Use the Sem element within each ClassDef element to describe the class.

Finally, after you define the classes, use the class names with the elements to
which they apply to assign element classes in your document.

Use ClassDef to define element classes that are specific to your information. The
most common use of ClassDef is to define new phrase classes. For example, in the
documentation of a graphical user interface, you may want to define phrase classes
for all the different types of user interface elements in order to make your markup
more precise and to enable the automatic generation of indexes for print
presentation.

You can associate presentation styles and other processing with specific element
classes. Do not define classes that are purely presentational, such as Bold or Italic.

Suppose, for example, that you are documenting software that uses two important
types of objects, Whatsits and Thingies, that are not accounted for in the base
IBMIDDoc language. Whatsits are hardware components, and Thingies are
software components. The class names for Whatsit and Thingy objects are
“Whatsit” and “Thingy”, respectively. Because the Whatsit and Thingy classes
apply to an entire document, they are defined in the prolog.

Chapter 20. Property and Class Definitions 203

The following example shows the ClassDef elements that define the Whatsit and
Thingy classes and the use of the classes with the Ph element:

<PROLOG>

<PROPDEFS>
<CLASSDEF CLASSNAME="whatsit">
<SEM>Identifies whatsit objects. Whatsits are hardware
components.
</CLASSDEF>
<CLASSDEF CLASSNAME="thingy">
<SEM>Identifies thingy objects. Thingies are software
components.
</CLASSDEF>
</PROPDEFS>

</PROLOG>

<D>Hardware Problems
<P>Hardware problems are usually caused when
the <PH CLASS="whatsit">famtoozler</PH>
gets out of adjustment.
Readjust it using the <PH CLASS="thingy">famtoozlometer</PH>
component of the &prodname; analyzer.

204 1D Workbench: IBMIDDoc User’s Guide and Reference

Chapter 21. Making some things bigger or smaller

Need to change the type size of something? Have we got a deal for you. These
topics describe the following:

You can also scale the number or bullets in lists; see BcaJm.g ing list dingbats” od

Scaling text up or down

You can make some things bigger or smaller. The SCALEPCT attribute on the
Table, Fig, Syntax, and MsgList tags allow you to scale the text larger or smaller.
Here’s a sample of a table with larger type:

Large Type Table 150% normal size.

<table scalepct="150"> Easy on the Eyes

Here’s a table with smaller type:

Small Type Table 70% normal size.

10 pounds of stuff in a 5 pound sack

<table scalepct="70">

The scale value needs to be a positive, whole number that is 1 or greater. There is
a limit to the sizes of fonts that are available. Your scale value will be rounded to
the closest available font. This currently works for hardcopy formatted hardcopy.

Automatically scaling text for examples and such

For automatic scaling down of wide examples, screens, and character graphics, you
can use the LINELENGTH attribute. You specify the width of the widest line, and
the formatter automatically scales down the text, if needed, to fit within the
current column or page width. Here’s an example with a width of 96 characters;
the formatter automaticaly scaled the text down to fit across the page:

<xmp Tinelength="96">
This has a width of 95 characters, and the formatter automatically scales the text down for us.
</xmp>

This currently works for hardcopy formatted hardcopy.

Making things page-wide

You can also use the PGWIDE attribute on tables, figures, syntax diagrams, and
examples to force them to be page wide. PGWIDE=1 causes the item to be
page-wide. For example:

© Copyright IBM Corp. 1992, 2001 205

<xmp pgwide="1">

Here's
</xmp>

206

a really wide example. This could be for a listing of sample programming code.

This currently works for hardcopy formatted hardcopy.

ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 22. Creating maintenance analysis procedures

IBMIDDoc provides a handy format for writing step-by-step procedures to help
isolate the cause of a symptom. These procedures are called Maintenance Analysis
Procedures (MAPs). If you are familiar with flowcharts, you know how they lead
you through a sometimes complex series of steps by having you make one simple
yes-or-no decision at a time. However, flowcharts can be difficult to work with
because the flowcharting symbols contain so little space for writing questions,
directions, or other text. We solve this space problem while keeping the technique
of using simple yes-and-no answers to lead people through their procedures.

Procedures consist of several parts:

* procedure entry (see {Lsing PracEntry for Entry Requirements” on page 209d)

* procedure steps and commands (see LLISJ.n.g_RtocStep_a.n.d_BnmC.mnd_to_Descnbd
[Each Step” on page 209)

* decision points (see Iﬂism.g_DemsmnEn.LEoLDutcmn&Dep.endenLA.auoﬂ
Descrinfions” 210)

* reference keys (see ['Llsing RefKeys to Refer to Tabels in a Graphic” on page 210)

. %rocedure exit (see Llsing PracExit to Complete a Pracedure or Subh-Pracedure”]

The following shows a sample map some father made for caring for his little one.
Xyvision and Frame2000 currently do not draw vertical rules from steps to link
points; BookMaster does draw these rules.

© Copyright IBM Corp. 1992, 2001 207

MAP 0010: Baby Johnny is crying
Six-month-old Baby Johnny was sleeping peacefully; suddenly he began to cry.

001
— Check Johnny’s diaper.

Is the diaper wet?
Yes No

Continue at w
002
— Change the diaper.

Johnny was uncomfortable.

003
(From step 001)

Is Johnny hungry?
Yes No

— Rock Johnny to sleep.

Johnny was sleepy.
005

Does Johnny have teeth?
Yes No

— Warm a bottle.
— Feed Johnny.

Johnny needed a bottle.

007
Johnny can eat solid food.

Continue at LM-AP_QDZQ._ﬂJe_Stea.k.Ls_Emzen_an_pa.ge.ZDQ

208 1D Workbench: IBMIDDoc User’s Guide and Reference

MAP 0020: The Steak is Frozen
001

Do you have a microwave oven?
Yes No

002

— Johnny can’t wait for it to thaw.

Continue at Etep_ﬂ%.gn_pagelﬂﬂ

003
— Thaw the steak.

Using ProcEntry for Entry Requirements

The ProcEntry element contains a description of the entry point to the procedure. It
contains the description, and references to any prerequisite or related procedures.
Related and prerequisite procedures are referenced by ID using the RELPROCS
and PREREQPROCS attributes.

<PROCENTRY PREREQPROCS="proca" RELPROCS="procl proc2 proc3">

SIX-MONTH-OLD BABY JOHNNY WAS SLEEPING PEACEFULLY;

SUDDENLY HE BEGAN TO CRY.
</PROCENTRY>

Using ProcStep and ProcCmnd to Describe Each Step

The ProcStep element contains the actions to take and the expected results of
taking the actions. The title for each ProcStep is contained in the required TitleBlk
elements. The Desc element contains the description of the action that must be
performed.

The ProcCmnd element contains specific instructions that the user must follow in
order to complete the step.

<proc id="babymap" style="BKM: (STYLE=BASE SEP=INLINE COMPACT)">
<titleblk><title>Baby Johnny is Crying</title></titleblk>
<procentry>Six-month old baby Johnny was sleeping
peacefully. Suddenly he began to cry.</procentry>
<procstep>

<proccmnd>

<desc>Check Johnny's diaper.</desc>

</proccmnd>

<decisionpnt>

<cond>Is the diaper wet?</cond>
<then><procstep><proccmnd>

<desc>Change the diaper.</desc>
</proccmnd><procexit>Johnny was uncomfortable.</procexit>
</procstep>

</then>

<else>

<desc>Continue at <xref refid="hungry">.</desc>

</else>

</decisionpnt>

</procstep><procstep id="hungry">

<decisionpnt>

<cond>Is Johnny hungry?</cond>

Chapter 22. Creating maintenance analysis procedures 209

<then><procstep><decisionpnt>

<cond>Does Johnny have teeth?</cond>
<then><procstep><stepnotes><1li>Johnny can eat solid
food.</1i>

Continue at <xref refid="frozstk"></1i>
</stepnotes></procstep>

</then>

<else><procstep id="bottle"><proccmnd>

<desc>Warm a bottle.</desc>

</proccmnd><proccmnd>

<desc>Feed Johnny.</desc>
</proccmnd><procexit>Johnny needed a bottle.</procexit>
</procstep>

</else>

</decisionpnt></procstep>

</then>

<else><procstep><proccmnd>

<desc>Rock Johnny to sleep.</desc>
</proccmnd><procexit>Johnny was sleepy.</procexit>
</procstep>

</else>

</decisionpnt>

</procstep><procstep id="frozstk">

<proccmnd>

<desc>Thaw and broil a steak for Johnny. Include a
baked potato with butter and sour cream.</desc>
</proccmnd>

<procexit>Johnny was really hungry.</procexit>
</procstep></proc>

Using DecisionPnt for Outcome-Dependent Action Descriptions

The DecisionPnt element defines one or more condition/action (Then/Else) pairs
that describe actions that must be completed under certain conditions.

<DECISIONPNT>
<COND>IS THE DIAPER WET?</COND>
<THEN>
<PROCSTEP>
<PROCCMND>
<DESC>CHANGE THE DIAPER.</DESC>
</PROCCMND>
<PROCEXIT>JOHNNY WAS UNCOMFORTABLE.</PROCEXIT>
</PROCSTEP>
</THEN>
<ELSE>
<DESC>CONTINUE AT <XREF REFID="HUNGRY">.</DESC>
</ELSE>
</DECISIONPNT>

Using RefKeys to Refer to Labels in a Graphic

The RefKey element contains a reference to a label in a graphic. When processed,
this label provides a visual link to a spot in, for example, a graphic containing a
chart or table.

<P>The current 1995 Sales chart column
<REFKEY>4</REFKEY>

shows that sales

are up 10%, but operating expenses grew by 13.2%.</P>

210 1D Workbench: IBMIDDoc User’s Guide and Reference

Using ProcExit to Complete a Procedure or Sub-Procedure

The ProcExit element contains the expected result of performing the task, and
describes what to do after completing the procedure tasks.

<PROCSTEP>

<PROCCMND>

<DESC>ROCK JOHNNY TO SLEEP.</DESC>
</PROCCMND>

<PROCEXIT>JOHNNY WAS SLEEPY.</PROCEXIT>
</PROCSTEP>

Procedure Markup Examples

The examples that follow illustrates the use of procedure elements in IBMIDDoc.

Starting the Procedure

All Proc elements must contain a TitleBlk element, and a Desc element that
contains a description of the procedure’s purpose. The STYLE attribute on the Proc
element in the example that follows specifies a value of STEPLIST
<PROC STYLE="steplist" id="procl">
<TITLEBLK><TITLE>Installing the ISDN Whantoozler</TITLE></TITLEBLK>
<DESC>This procedure describes the steps one must perform or follow

in order to successfully install the ISDN Whantoozler.
</DESC>

Describing the Entry Point for the Procedure

The ProcEntry element contains the description of the entry point for the
procedure. In the next portion of the example, the ProcEntry element contains
RelProcs and PreReqProcs attributes, which reference related and prerequisite
procedures. It also includes a prose description of the entry point for the
procedure.

Note that the format in which related and prerequisite procedures are presented is
style and processing dependent.

<PROCENTRY PREREQPROCS="procla" RELPROCS="proc3 proc2">
This procedure assumes that you already have your

ISDN Tline installed, and that there is no
thunderstorm activity in the area.

</PROCENTRY>

Entering the Procedure Steps

Each procedure step is contained in a ProcStep element, which contains the title of
the step and the step instructions. ProcStep may also contain:

 StepNotes, which allow you to make general notes about the step
* DescisionPnt which contain decision-making information for the step.

<PROCSTEP>
<TITLEBLK><TITLE>Pre-Configuring ISDN Whantoozler</TITLE></TITLEBLK>
<PROCCMND><DESC>Set the 4 DIP switches on the ISDN Whantoozler

to correspond to the hemispheric location of your ISDN server.</DESC>
</PROCCMND>

<STEPNOTES>

NA-ISDN Server: SW1234 ON ON ON ON

SA-ISDN Server: SW1234 ON ON ON OFF

Chapter 22. Creating maintenance analysis procedures 211

EU-ISDN Server: SW1234 ON ON OFF OFF
AU-ISDN Server: SW1234 ON ON OFF ON
</STEPNOTES>
<DECISIONPNT>
<COND>Do you know your hemispheric location?</COND>
<THEN>
<PROCSTEP>
<PROCCMND><DESC>Continue to step <XREF REFID="nextstep">.</DESC>
</THEN>
<ELSE>
<PROCSTEP>
<PROCCMND><DESC>Find out the information and retry this step.</DESC>
</PROCSTEP>
</ELSE>
</DECISIONPNT>
</PROCSTEP>

Exiting the Procedure

The end of the procedure is described in the ProcExit element. You must include a
description. You can also include the RECOVERYPROC attribute.

<PROCEXIT ID="pxita" RECOVERYPROC="rcl">
<P>The ISDN Whantoozler should have installed without problems.
The machine should have powered up
successfully. If so, you may continue to <XREF REFID="okl1">.
<P>If the machine smoked when you applied power,
see <XREF REFID="rcl"> for troubleshooting information.
</PROCEXIT>

Controlling Procedure Output Styles

Future Enhancement
Control of procedure output styles may be implemented in future release.
These are presented for proposals only; they are not presently working. They
are not slated for inclusion in any furture release. If you need these sorts of
output, please submit a requirement.

The default style for procedures is a MAP style. A typical MAP style output is
illustrated in the formatted example that follows.

There is limited HTML and IPF support for Maintenance Analysis Procedures.
When outputting to RTF, IPF, or Windows Help, MAPS/PROC become nested
divisions. For hardcopy, the output is placed in a “flowchart” type mode.

The three proposed styles are :

Plaintext
results in a procedure with headings as the step numbers, and the step
descriptions contained in paragraphs

Steplist
looks like an ordered list with Step 1, Step 2, Step 3, and so forth, as the
numbering scheme.

1. This is the first step description.
2. This is the second step description.
3. This is the third step description.

Procedure exit description.

212 ID Workbench: IBMIDDoc User’s Guide and Reference

Table presents the procedure information in a table format, as shown in the

following example.

Table 20. Test of Prereq and Coreq

Step

Description

Reference Keys

1

This is the first step description. It contains several
paragraphs of information.

This is the procedure entry.

This is some more information about the
procedure.

And here is even more information.

This is the second step description. This step
contains both a decision point and a step notes
section.

To continue:

IF: The step worked.
THEN: Continue to step 3.

IF: The step did not work.

THEN: Ensure that all cables are connected, and
repeat the step again.

Notes:
1. This is the first note
2. The second note.

This is the third step description. This step
includes explicit reference key elements.

Proc Exit:

Procedure exit description.

Chapter 22. Creating maintenance analysis procedures

213

214 1D Workbench: IBMIDDoc User’s Guide and Reference

Chapter 23. Creating parts catalog lists

A list of parts in a catalog is presented in conjunction with an illustration that
shows where the parts fit in an assembly (a collection of parts that make up a unit
of a machine or other product). The parts (also called component items) in the
component list are keyed to numbered callouts on the artwork. IBMIDDoc
provides an effective way to present both the component list in a parts catalog and
the artwork associated with it. Component lists are usually presented in one of two
ways: with the artwork on the top of a page followed by the list with the artwork
showing the assembly on the left, (even-numbered page), and the list on the right,
(odd-numbered page).

© Copyright IBM Corp. 1992, 2001 215

Assembly 1: Bicycle

S~

e \}

A\
N
A

—
Asm- Part
Index Number | Units | Description
1-1 4563423 1| Bike
-1 1230987 1|+ Frame
-2 1238475 1|+ Wheel assembly, front

For detailed breakdown, see [“Assembly 2: Wheel, front” on page 219

-3 1234939 1|+ Wheel assembly, rear

Markup source

<partasm id="bike" style="bkm: (Tayout=same)"><title>
Bicycle</title><mmobj><objref obj="bike">
<textalt>Bicycle</textalt>

</mmobj><comp1>

<ci idxnum="1" partnum="4563423"
<compl>

<ci idxnum="1" partnum="1230987"
<ci idxnum="2" partnum="1238475"
<compcmt>For detailed breakdown,
<ci idxnum="3" partnum="1234939"

upa="1">Bike</ci>

upa="1">Frame</ci>

upa="1">Wheel assembly, front</ci>
see <xref refid="wheelxmp">.</compcmt>
upa="1">Wheel assembly, rear</ci>

</comp1>
</comp1>
</partasm>

Creating the heading for a component list

Use the PartAsm (part assembly) tag to begin a component list. You need to enter
a title for the assembly. You can get the heading of the bicycle example by entering
these lines of markup:

<partasm id="bike" style="bkm:(Tayout=same)">
<title>Bicycle</title>

216 1D Workbench: IBMIDDoc User’s Guide and Reference

The formatter provides the following parts of the heading: the prefix, “Assembly”
the number of the assembly, beginning with 1 and continuing with increments of 1
in succeeding assembly numbers the colon following the assembly number.
“Bicycle” is the name we chose for our assembly. There are other things you can
do with the PartAsm tag to make your component list easier to use; we used the
BookMaster LAYOUT of SAME to tell BookMaster to place the artwork and as
much of the component list as will fit on the same page.

A word about the artwork: Use the MMObj tag to include the drawing of your
assembly. We use it after the Title tag. Here’s what it looked like in our bicycle
assembly markup:

<mmobj><objref obj="bike">

<textalt>Bicycle</textalt>

</mmobj>

For more information about artwork, see IIncluding artwork in documents” or

Developing the component list

Now that we’ve discussed the beginning of a parts list, let’s take a look at the
markup we used to create the component list for Assembly 1.

<compl>

<ci idxnum="1" partnum="4563423" upa="1">Bike</ci>

<compl>

<ci idxnum="1" partnum="1230987" upa="1">Frame</ci>

<ci idxnum="2" partnum="1238475" upa="1">Wheel assembly, front</ci>

<ci idxnum="3" partnum="1234939" upa="1">Wheel assembly, rear</ci>

</comp1>

</comp1>

Use the Compl (component list) tag to begin each component list. It has no
attributes and no text, so it looks quite simple. When the formatter encounters the
first Compl tag after a PartAsm tag, it supplies the column headings and the lines
that make up the framework that encloses the catalog list and separates the
columns.

Often an item in a component list is made up of other items. In order to show this
hierarchy, you must nest them in your markup. That is, you must put component
lists within other component lists. Component lists may be nested up to three
deep. Remember, each component list must begin with its own Compl tag.

Use one CI (component item) tag for each item you want in your list. Whenever
we use parts catalogs, we expect to find certain standard information, like a
catalog number for ordering parts, a callout number so we can locate the part on
the assembly drawing, and a number telling us how many of these items are in the
assembly. We use attributes on the CI tag to add that information to our
com-ponent lists, so the CI tag with all its attributes looks a lot more complicated
than it really is. Here’s what one of the CI tags from our example looks like:

<ci jdxnum="1" partnum="4563423" upa="1">Bike</ci>

Now let’s look at each of the attributes and how to use them:

ID Use the ID attribute when you need to identify a component item so that cross
references can be made to it.

IDXNUM
Use the IDXNUM attribute to assign to the item a number that matches an

Chapter 23. Creating parts catalog lists 217

artwork index (callout) number. The number you assign with the IDXNUM
attribute shows up in the “Asm-Index” column and is prefixed with a dash
character. The number to the left of the dash is the same assembly number that
the formatterused in the heading prefix.

PARTNUM
Use the PARTNUM attribute to assign the item’s part number. The number
you assign with the PARTNUM attribute shows up in the “Part Number”
column. Part numbers are limited to seven alphanumeric characters (A-Z, a-z,
0-9), with no intervening blanks.

UPA
Use the UPA (units per assembly) attribute to tell how many of this particular
item there are in the assembly. The number you assign with the UPA attribute
shows up in the “Units” column.

Including comments in the component list

You can use the CompCmt (component comment tag) to include helpful
information that is not part of a component description. Just enter the text of your
comment inside CompCmt tag. The comment text you enter appears indented in
the “Description” column. Here’s what the CompCmt tag line from our front
wheel example on page R1d 1ooks like.

<compcmt>For detailed breakdown, see <xref refid="wheelxmp">.
</compcmt>

Cross-referencing part assemblies and component lists

218

Often we need to tell the readers of our component list where to find other related
component lists or component items. Usually we want to point them to another
assembly that shows a more detailed breakdown of a particular item. Sometimes
we want to point them to another component that shows where a particular item
fits in a larger assembly. In both cases, we must first use the ID attribute to
identify.the target (what we’re referring to), then use either the CIREF or the XREF
tag to point to the target. Because we need another component list to show you
how to refer from one component list to another, here’s the markup for a second
assembly and component list.

<partasm id="wheelxmp" style="bkm:(Tayout=same)">

<title>Wheel, front</title><compl>

<ci partnum="56-2345">Wheel assembly, front</ci>

<compcmt>For next higher assembly see <xref refid="bike">.</compcmt>

<ci idxnum="1" partnum="33-5234" upa="1">Tire, clincher 27 x 1.125</ci>
<ci idxnum="2" partnum="56-4352" upa="1">Tube, 27 x 1.125</ci>

<ci idxnum="3" partnum="56-3489" upa="1">Rim Tiner</ci>

<ci idxnum="4" partnum="56-6534" upa="1" id="wheel2a">Wheel assembly</ci>
<compl>

<ci idxnum="5" partnum="56-3476" upa="1">Rim, aluminum alloy 27 x 1.125</ci>
<ci idxnum="6" partnum="56-8393" upa="36">Spoke, 298mm</ci>

<ci idxnum="7" partnum="56-9845" upa="36">Spoke bolt</ci>

</comp1>

<ci idxnum="8" partnum="56-9874" upa="1">Hub assembly, front</ci>
</comp1></partasm>

ID Workbench: IBMIDDoc User’s Guide and Reference

Assembly 2: Wheel, front

Asm- Part
Index Number | Units | Description
2- 56-2345 Wheel assembly, front
For next higher assembly see l’/Assembly 1: Bicycle” on page 214,
-1 33-5234 1| Tire, clincher 27 x 1.125
-2 56-4352 1|Tube, 27 x 1.125
-3 56-3489 1 |Rim liner
—4 56-6534 1| Wheel assembly
-5 56-3476 1|+ Rim, aluminum alloy 27 x 1.125
-6 56-8393 36 |+ Spoke, 298mm
-7 56-9845 36| Spoke bolt
-8 56-9874 1| Hub assembly, front

Keeping track of assemblies and parts

The AsmList (assembly list) tag and the PNIndex (part number index) tag help you
find each assembly and part.

Getting an assembly list

The AsmlList tag works much like a partial table of contents; it gives you an
alphabetical listing of the headings from your PartAsm tags, along with the page
numbers on which their headings appear.

If you want to put your assembly list in the front matter of your document, here is
how you might enter your markup:

<frontm style="display="'tipage cover'">
<toc><gendtitle></toc>

<d>

<dprolog><titleblk>

<title>List of assemblies</title>
</titleblk></dprolog>

<dbody>

<asmlist>

</dbody></d>

</frontm>

You can put your assembly list at the beginning of a chapter instead of in the front
matter, like so:

<d>

<dprolog><titleblk>

<title>Parts catalog</title>

</titleblk></dprolog>

<dbody>

<p>This portion contains the parts and assembly instructions
for your Mark-21 Super Bi-Pedal Tricycle.</p>

<d>

<dprolog><titleblk>

<title>List of assemblies</title>

</titleblk></dprolog>

<dbody>

<asmlist>

</dbody></d>

<partasm>

</partasm></dbody></d>

Chapter 23. Creating parts catalog lists 219

But wherever you put it, remember, only one AsmList tag is allowed per
document.

Note: ASMLIST is not supported in the HTML output transform.

Getting a part number index

An index of part numbers can help in retrieving individual parts in your
document. If you enter the PNIndex tag in the back matter of a document, the
formatter sorts the part numbers you entered with the CI tag’s PartNum attribute
and prints them and their page numbers.

Part numbers from sample parts assemblies are excluded from the part number
index. The part number sort sequence is different than that of the regular index; all
one-digit part numbers are listed, followed by all two-digit part numbers, and so
on. Here’s the markup used to get the part number index in this book.

<pnindex id="partnumindex">

<gendtitle>
</pnindex>

220 ID Workbench: IBMIDDoc User’s Guide and Reference

Part 3. IBMIDDoc Markup Reference

Chapter 24. Reference Explanation
Element and Attribute Descriptions .
How to Read the Syntax Diagrams .
Common Element Attributes (large set).
Common Element Attributes (small set)

Chapter 25. IBMIDDoc Elements
Abbrev (abbreviations)

Abstract (abstract) .

Address (address) .

Annot (annotation)

AnnotBody (annotation body)

APL (APL data) .

Appendix .

Approvers (document approvers)
AreaDef (defines graphic hot spot area)
AsmlList (list of parts assemblies).
Attention (safety notice) .

Author .o

Authors .

BackCover (back Cover)

BackM (back matter) .

BibEntry (bibliographic entry) . .
BibEntryDefs (contains bibliographic entr1es) .
Bibliog (bibliography) . Lo
BibList (bibliography entry llst)

Bin (binary data) .

Body (document body) . .
BOFNum (bill of forms number) .
Bridge (bridge between concepts).

Cap (caption) . .
Caution (caution notice) .

CGraphic (character graphic) .

Char (character data) .

CI (component item) .

Cit (document citation) .

ClassDef (element class def1n1t10n)
CLE (content list entry) .

Code (message code number) .
ColSpec (column specification)
CompCmt (component comment)
CompL (component list).

Cond (procedure result) .

ContainedDocs (documents in IBMleEntry and

LibEntry).

CopyR (copyrlghts) .
CopyRDefs (copyright def1n1t1ons)
Corp (enterprise name and address).
CorpName (corporation name)
CoverDef (cover definition). .
CritDate (critical date for a document)
CritDates (set of critical dates).

D (hierarchical division) .

Danger (danger notice) .

Date

DBIk (Division block)

© Copyright IBM Corp. 1992, 2001

. 225
. 225
. 225
. 227
. 228

. 231
. 231
. 232
. 233
. 233
. 234
. 235
. 235
. 236
. 236
. 237
. 238
. 238
. 239
. 239
. 240
. 241
. 241
. 242
. 243
. 244
. 244
. 245
. 245
. 246
. 247
. 247
. 248
. 248
. 249
. 250
. 251
. 253
. 253
. 254
. 255
. 255

. 257
. 257
. 258
. 259
. 259
. 260
. 260
. 261
. 261
. 263
. 264
. 265

DBody (division body)

Dec (decimal number)

DecisionPnt (decision point)

Defn (definition of a term) .

DefnHd (definition description headmg)
Delim (syntax delimiter). .o
Desc (element description) .

DIntro (division introduction) .

DL (definition list).

DLBIk (definition list block)

DLDef (Definition list definition) .
DLEntry (definition list entry) .
DocTitle (document title)

DProlog (division prolog)

DSum (division summary) .

DVCFObj (DVCF Migration Element)
EdNotices (edition notices) .

Else (other procedure path to follow)
Entry (table entry). .
ExternalFileName .

Fig (figure) .

FigDef (Figure def1n1t1on)

FigList (list of figures)

FigSeg (figure segment) .

FileNum (file number)

Fn (footnote)

FNList (footnote l1st)

Formula (math formula).

Fragment (syntax fragment)

FragRef (syntax fragment reference) .
FrontCover .

FrontM (front matter)

GendTitle (default title spec1f1cat1on)
GL (glossary list) . . .o
GLBIk (glossary list block)

GLDef (Glossary list definition)

GlDefs (glossary definitions)

GlEntry (glossary list entry)

Glossary . S

Group .

Hex (hexadec1mal) .

IBMBibEntry (IBM b1bl1ograph1c entry)
IBMBOFNum (bill of forms number)
IBMDocNum (IBM document number) .
IBMFeatNum (IBM feature number) .
IBMIDDoc (IBM-specific product documentat1on)
IBMLibEntry (IBM document library definition)
IBMMail (IBMMail e-mail address) . .
IBMPartNum (IBM part number) .
IBMPgmNum (IBM program number) .
IBMProdInfo (IBM product information)
IBMSafety (IBM safety notices) .
IdxDefs (central index entries).
IdxTerm (index term).

Index . .

Internet (internet e-mall address)

. 266
. 266
. 267
. 268
. 269
. 269
. 270
. 271
. 272
. 273
. 274
. 275
. 276
. 276
. 277
. 277
. 278
. 278
. 279
. 280
. 281
. 282
. 283
. 284
. 284
. 285
. 285
. 286
. 287
. 288
. 289
. 289
. 290
. 290
. 292
. 293
. 294
. 294
. 295
. 296
. 296
. 297
. 298
. 298
. 299

299
306

. 307
. 308
. 308
. 309
. 309
. 310
. 311
. 311
. 312

221

IRef (index entry reference).

ISBN (document ISBN number)

I1 (primary index entry).

12 (secondary index entry) .

I3 (tertiary index entry) .

Kwd (syntax keyword) .

L (explicit link) . .

LDescs (link descrlptlons)

LE (language element) .
LeDesc (language element descrlptlon)
LEDI (language element description item).
Legend .o

LEN (language element name)

LERS (language element reference sectlon)
LERSDef (LERS property definition).

LI (list item). .

LibEntry (document hbrary def1n1t10n)
LIBIk (list item block)

Library .

Lines (text with hne boundarles)
Litdata (literal data) .

LQ (excerpt quotation) .
Maintainer (reader comment) .

Mark (marked note definition).
MarkList (marked note list).
MasterIndex (master index).

MasterIndexInfo (master index information) .

MasterIndexObj (master index object)
MasterIndexPrefix (master index prefix)
MD (marked deletion)

MetaData (information archltecture)
MkAction (marked note action definition) .
MkClass (marked note class definition).
MkDesc (mark description).

MkNote (marked note) .

MMODbj (multi-media object; artwork)
MMODbjLink (multi-media object link)
Mod (information module) .

ModDesc (modular content descrlptlon)
ModInfo (modular information) .
ModInfoDef (modular information property
definition) o .
ModlItemDef (item class deﬁnltlons)
ModlItem (module description item) .
ModLvl (modification level)

ModName (modular information element name)

Msg (message or code description) .
Msgltem (message description item).

MsgltemDef (definition of message description

items) . .

MsgLDef (Message hst def1n1t10n)
MsgList (list of message or code descriptions)
MsgNum (message identifier) .
MsgText (message text) .

MYV (message variable) .

Name (person’s name)

NameLoc (named location) .

NItem (notice item)

NMList (named list of IDs or ent1t1es)
Note

NoteBody (note body)

. 313
. 313
. 314
. 315
. 316
. 317
. 318
. 319
. 320
. 321
. 322
. 324
. 325
. 325
. 328
. 330
. 331
. 332
. 333
. 333
. 334
. 335
. 336
. 337
. 338
. 339
. 340
. 341
. 342
. 342
. 343
. 344
. 345
. 347
. 348
. 350
. 352
. 352
. 353
. 354

. 356
. 357
. 358
. 359

359

. 361
. 362

. 363
. 364
. 366
. 368
. 368
. 369
. 370
. 371
. 372
. 373
. 375
. 375

222 1D Workbench: IBMIDDoc User’s Guide and Reference

NoteList (ordered note list).
Notices (contains notices) .
Notloc (notation-specific location)
Num (number) .

ObjLib (object library) .
ObjLibBody (object library body) .
ObjRef (object reference). .
Oct (octal number)

OL (ordered list)

OLDef (Ordered list def1n1t10n)
Oper (syntax operator)
OrderNum (order number) .

OrigIBMDocNum (or1g1na1 IBM document number)

o386
. 386
. 387
. 388
. 388
. 390
. 391
. 392
. 392
. 393
. 393
. 395
. 395
. 396
. 397
. 397
. 398
. 400
. 400
. 401
. 402
. 402
. 403
. 403
. 403
. 404
. 404
. 405
. 406
. 406
. 407
. 408
. 408
. 409
. 409
. 410
. 411
. 412
. 412
. 413
. 414
. 414
. 415
. 415
. 416
. 417
. 418
. 419

Owners

P (paragraph)

Parm (parameter list entry)

ParmBIlk (parameter list block)
ParmL (parameter list)

Part (major document part).
PartAsm (part assembly)
PartAsmSeg (part assembly segment)
PBlk (paragraph block) . .
Person (person’s name and address)
Ph (Phrase) .

Phone (telephone number)

PK (programming keyword)
PNIndex (part number index) .
PostalCode (postal or zip code)
Preface .

Proc (procedure) .
ProcCmnd (procedure command)
ProcEntry (procedure entry point)
ProcExit (procedure exit point)
ProcIntro (procedure introduction)
ProcStep (procedure step)
ProcSumm (procedure summary).
ProcSummlItem (procedure summary 1tem)
ProdInfo (product information)
ProdName (product name) .

Prolog (document metalnformatlon)
PropDef (property set definition) .
PropDefs (property definitions)
PropDesc (property description) .
PropGroup (property group)

PrtLoc (country where printed)
PublicID (public identifier) .
Publisher (document publisher)

PV (parameter variable) .

Q (quotation phrase) .

Qualif (qualification) . L
QualifDefs (qualification definitions)
RCF (reader comment form)

RefKey (reference key)

Release (product release 1dent1f1er)
RepSep (syntax repeat separator) .
RetKey (retrieval key)

Rev (revision) .

RevDefs (revision trackmg 1nformatlon)
Row (table row)

Safety (safety notices)

Screen (display screen)

. 376
. 376
. 377
. 378
. 378
. 379
. 380
. 381
. 382
. 383
. 384

. 385
385

ScreenDef (Screen definition) .
Sem (semantic meaning).

Sep (syntactic separator). .
SOA (summary of amendments) .
SpanSpec (span specification) .

SpecDProlog (special section division prolog)

StepNotes (step notes) .
StepRef (procedure step reference)
STitle (shortened title)

SubTitle (descriptive subtitle) .
SynBlk (syntax block).

SynNote (syntax note)

SynPh (syntax phrase)

Syntax (syntax diagram).
SyntaxDef (Syntax definition) .
Tableo

TBody (table body)

Term . .

TermHd (term headmg)

TextAlt (text alternative).

TFoot (table footer)

TGroup (table group).

THead (table heading)

Then (procedure action to take)
Title

TitleBlk (title 1nformat10n)

TList (list of tables)

TM (Trademark)

TOC (table of Contents)

UL (unordered list)

ULDef (Unordered list def1n1t10n)
Var (syntax variable) .

Version (product version nurnber)
VNet (IBM VNet mail address)
Volid (volume identifier)
Warning (warning notice)
WebPage .

Xmp (example).

XmpDef (Example deflnltlon)
XPh (example phrase)

XRef (cross reference).

. 420
. 421
. 421
. 422
. 423
. 424
. 425
. 425
. 425
. 426
. 426
. 427
. 428
. 428
. 430
. 431
. 434
. 434
. 435
. 436
. 436
. 437
. 438
. 439
. 440
. 440
. 441
. 442
. 443
. 444
. 445
. 446
. 447
. 447
. 448
. 448
. 449
. 449
. 450
. 451
. 451

Part 3. IBMIDDoc Markup Reference

223

224 1D Workbench: IBMIDDoc User’s Guide and Reference

Chapter 24. Reference Explanation

This chapter lists the type of information that is provided for each element or

attribute in

“ ”

and describes how to

read the syntax diagrams.

Element and Attribute Descriptions

The elements and attributes are listed in alphabetical order. For each element or
attribute, the following information is provided:

Name The name and a short description of the element or attribute.

Purpose

The purpose of the element or attribute.

Examples

One or more examples showing how the element or attribute is used.

Attributes and contained elements

Descriptions of attributes, contained elements, and attribute values.

Usage Description of how to use the element or attribute.

Contexts

A list of the elements that can directly contain the element or have the
attribute, or a description of where the element or attribute can be used.

How to Read the Syntax Diagrams

This section describes how to read and use the syntax diagrams, which define the
rules for typing element markup in a text-editing environment such as XEDIT or

EPM. For more information about markup, see 'Markup Rules” on page 11.

Read the diagrams from left-to-right, top-to-bottom, following the main path
line. Each diagram begins on the left with double arrowheads (>>) and ends on
the right with two arrowheads facing each other (><).

If a diagram is longer than one line, each line to be continued ends with a single
arrowhead (>) and the next line begins with a single arrowhead.

A word that is not in italics is an operand or value you must spell exactly as
shown. However, you can enter it using any case.

»>—O0PERAND ><

If an operand or value can be abbreviated, the abbreviation is discussed in the
text associated with the syntax diagram.

A word in italics is a variable. Where you see a variable in the syntax, you must
replace it with one of its allowable names or values, as defined in the text.

»»—variable »<

Single-word attribute values are not shown with quotation marks (but any
attribute value can be entered with quotation marks around it). Multiple-word

© Copyright IBM Corp. 1992, 2001 225

226

attribute values and any attribute value that contains special characters must be
enclosed in quotation marks. Quotation marks are always shown as double
quotation marks ("), but single quotation marks (') can be used unless the value
contains single quotation marks or an apostrophe. For more information about
markup with quotation marks, see L “

Required operands and values appear on the main path line. You must code
required operands and values.

»>—REQUIRED_OPERAND

A\
A

If several mutually exclusive required operands or values exist, they are stacked
vertically in alphanumeric order.

v
A

REQUIRED_OPERAND_OR_VALUE_1 8
REQUIRED_OPERAND OR_VALUE 2

Optional operands and values appear below the main path line. You can choose
not to code optional operands and values.

|—OPERAND—|

If several mutually exclusive optional operands or values exist, they are stacked
vertically in alphanumeric order below the main path line.

i:OPERAND_OR_VALU E_I:‘
OPERAND_OR_VALUE_2

Default operands and values appear above the main path line. If you omit the
operand entirely, the default is used.

DEFAULT
]
|—OPERAND—|

An arrow returning to the left above an operand or value on the main path line
means that the operand or value can be repeated. The comma means that each
operand or value must be separated from the next by a comma. If a space is
shown, each operand or value must be separated from the next by a space.

»»—Y REPEATABLE_OPERAND >

An arrow returning to the left above a group of operands or values means that
more than one can be selected or that a single one can be repeated.

ID Workbench: IBMIDDoc User’s Guide and Reference

\
Y
A\
A

L[REPEATABLE_OPERAND_OR_VALUE_l ||
REPEATABLE_OPERAND_OR_VALUE 2

* References to syntax notes appear as numbers enclosed in parentheses above the
line. Do not code the parentheses or the number.

»»—OPERAND ,e

Notes:

1 An example of a syntax note.

* Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in
mixed case and are shown in the diagram. The fragment is placed either below
the main diagram or in a separate description.

A\
A

»—| Syntax Fragment i

Syntax Fragment:

|—1$T_0PERAND,2ND_0PERAND,3RD_OPERAND I

Common Element Attributes (large set)
Several elements are defined to use this set of attributes:

Class
The Class attribute associates an element class with an element. This attribute
must contain an SGML name that has been defined as a class name in a
ClassDef element. This attribute only applies to elements specified on the
ClassDef’s ELETYPE attribute. Element classes are defined with ClassDef

elements within PropDefs. See Chapter 20, “Property and Class Definitions” ol

for more information.

Conloc
The CONLOC attribute specifies that the content of another element of the
same type is to be used as the content of the referencing element. This enables
reuse of information. When the CONLOC attribute is specified, you cannot
specify the element’s end tag. The result of using CONLOC is exactly the same
as if the element being referred to had occurred at that point in the document.

See 'Reusing elements from an object library” on page 191.

Attributes on the element are now passed to the element with the CONLOC;
this is a feature that began with IDWB release 3.4, patch IDWXF036.

HyTime
ignored by processes

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be

Chapter 24. Reference Explanation 227

unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

InfoMast
A fixed attribute used to classify the element.

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See L. =

PropSrc

Points to an element whose properties are to be used as the propertles of the
referencing element. See Z “

Qualif
The QUALIF attribute refers to the ID of a qualification element. See

”

Reftype
ignored by processes

RetAlts
The RETALTS attribute points to one or more elements whose content may be
used in place of, or in addition to, the referencing element’s content. This
attribute must reference one or more elements of the same element type. This
attribute usually references elements in an object library. See mﬁ

”

Rev
The REV attribute references the Rev element which describes the last revision

level of the information. See [1lsing Revisions” an page 109.

Status
ignored by processes

Style
The Style attribute contains either a reference to a separate style specification
for an element or a set of element-specific presentation style definitions when
the processing system does not support separate styles for elements. Assigning
a value to the STYLE attribute modifies how an element is presented when it is
output.

XrefText
The XRefText attribute defines the text to be used when an element is the

“ 7

tariet of a link that generates a reference. See =

Common Element Attributes (small set)

Several elements are defined to use this set of attributes:

Class
The Class attribute associates an element class with an element. This attribute
must contain an SGML name that has been defined as a class name in a
ClassDef element. This attribute only applies to elements specified on the

228 ID Workbench: IBMIDDoc User’s Guide and Reference

ClassDef’s ELETYPE attribute. Element classes are defined with ClassDef
elements within PropDefs. See il "
for more information.

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be
unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See L. =

PropSrc

Points to an element whose properties are to be used as the propertles of the
referencing element. See Z Z

Rev
The REV attribute references the Rev element which describes the last revision

level of the information. See [llsing Revisions” on page 109.

Status
ignored by processes

Style
The Style attribute contains either a reference to a separate style specification
for an element or a set of element-specific presentation style definitions when
the processing system does not support separate styles for elements. Assigning
a value to the STYLE attribute modifies how an element is presented when it is
output.

HyTime
ignored by processes

InfoMast
A fixed attribute used to classify the element.

Reftype
ignored by processes

Chapter 24. Reference Explanation 229

230 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 25. IBMIDDoc Elements

This section describes the elements and attributes in the IBMIDDoc language.

Abbrev (abbreviations)

Purpose

The Abbrev element is a special division, and contains an explanation of
abbreviations used in the document. The best way to create a list of abbreviations
is to use the DL element.

Examples

<abbrev>

<specdprolog><gendtitle></specdprolog>

<dbody>

<d1>

<dlentry><term>IBMIDDoc</term>

<defn>IBMIDDoc is the name of IBM's implementation

of the SGML standard for software documentation.</defn>
</dlentry>

</d1>

</dbody></abbrev>

Attributes

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

LAYOUT=Default-Layout | OneCol | OffsetCol | TwoCol
Specifies the column-style for the book.

Default-Layout
The section uses the default layout for the document style.

OneCol
The headings and text format across the entire page.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

TwoCol
The text formats in two columns. Headings format across the page or
with the two-column text.

See

© Copyright IBM Corp. 1992, 2001 231

Abbrev (abbreviations)

Usage

See

4 . . ”

Contexts

Children: DBody), DIntrd, [DSum, BpecDProlog.
Parents: w, m

Abstract (abstract)

232

Purpose

The Abstract special division element contains a short description of the content of
the document. Use Abstract to contain a brief description of the document.

Examples

<abstract>
<specdprolog><gendtitle></specdprolog>
<dbody>

<p>This describes how to...</p>
</dbody></abstract>

Attributes

LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol
Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

ID Workbench: IBMIDDoc User’s Guide and Reference

Abstract (abstract)

Contexts
Children: DBady, DIntrd, IDSum, BpecDProlog.

Parents: E, m, Bad.

Address (address)

Purpose

The Address element contains the address of a person or corporation. Address is
normally used within the context of an Author element but may be used
elsewhere. Enter the address text in the form you want it to be displayed. The text
will not be reflowed when the markup is processed. Contained elements will be
processed according to the styles used by the processing application.

Examples

<authors>

<author><person>

<name>Fred Mertz</name>

<address>

125 West Hollywood Blvd

Tinseltown, CA <postalcode>90210</postalcode></address>
</person></author>

</authors>

Attributes

OB]J=file-entity-name
The OBJ attribute names a file entity that contains the text for the address.

See ‘'Comman Flement Attributes (];\rgp set)” on page 227

Usage
See L ”

Contexts
Children: text (#pcdata), [BMMail, Internel, [, PH, Phond, PostalCodd, Ternd, M,
VNET, WebPaged.

ParenslAn.n.oLB.ud_% i Cautiod, CompCm, Dange, [Defn,
| Ed, IMkNoidMQdDedethfeniNoieBadgiE

%MEWM

Annot (annotation)

Purpose

Use Annot to annotate the content of its containing element, such as notes to
reviewers or editors. Annotations can be presented or suppressed, depending on
the options given to the processing system.

Chapter 25. IBMIDDoc Elements 233

Annot (annotation)

Migration Notes
e Annot cannot be used to comment out information.

* Unlike the BookMaster Annot element, Annot cannot span document
structures. It is an element in the document hierarchy, like any other
element.

Examples

<P>This text is a paragraph before the annotation.</p>
<ANNOT>

<ANNOTBODY>

<P>This is an annotation, the first paragraph.

<P>This is the second paragraph of the annotation
</ANNOTBODY>

</ANNOT>

<P>This is a paragraph after the annotation.</p>

Attributes

Usage

’ . ”

See

’ . ”

See

Contexts

Children: |A.n.u.gﬂigdgl, Titld.

Parents: Attention, Bri , Caution), [Danged, DBody) Defn DIntrd, DSuwm, En.f.t% @,
EigSed, Ed, LED], L3, Ld bMiNotd ModDesd, Moditend, Msglten], NoteBady)

AnnotBody (annotation body)

Purpose

7 . 7

Use AnnotBody to contain the body of the annotation; see

Examples

<P>This text is a paragraph before the annotation.</p>
<ANNOT>

<ANNOTBODY>

<P>This is an annotation, the first paragraph.

<P>This 1is the second paragraph of the annotation
</ANNOTBODY>

</ANNOT>

<P>This is a paragraph after the annotation.</p>

Attributes

Usage

See I'Common Flement Attributes (]argp set)” on page 227

See [Annatations” on page 49.

234 1D Workbench: IBMIDDoc User’s Guide and Reference

AnnotBody (annotation body)

Contexts

Children: text (#pcdata) |Ad.dr_ess| APIl, Attentiod, Bid, B.l:l.d.gel ta.u.ti.m:l id,
_M.kNoJ;d N@@,N@&L@,M,@,E %m

BB, by Bezeed, BympH, | [anid, Teend, M,
@,@Q lﬂ@ﬁi’eﬂ@# SynPH, Byntad

Parents: m

APL (APL data)

Purpose

Use the APL element to identify data that is part of an APL program. The content
of the element may be APL data or other elements that make sense in the APL
context. This data is encoded in the document source using the character encoding
used for APL data and programs, not necessarily the character encoding used for
the data everywhere else in the document. The content of this element is typically
presented using the same font as is conventionally used for APL, which will also
probably differ from that used to present the other data found in the document.
An external entity containing the APL data may be referred to using the OBJ
attribute, which must contain the name of a data entity. Character entities can also
be used to represent APL characters.

Examples

<p>A matrix is defined with the string:
<APL>2 3pl 2 3 4 5 6</APL></p>

Attributes

OBJ=file-entity-name
The name of the file entity that contains the APL data.

Notation=apl
Specifies that the notation of the content is in APL format.

See ‘'Commaon Element Attribuites (]argp set)” on page 227

Usage
See

7 . 0 n 77

Contexts
Children: text (#pcdata).

Parents: [AnnotBody) I ttentiod, Bridgd, Cautiod, CompCmi, Danged Detd, Desd,
%EEEMEMMM@MM@MWW

B, Byaniotd, Femd, Marnind

Appendix

Purpose

The Appendix element contains division-like elements that are to be considered
appendixes. Appendixes are not considered part of the content of the main body of

Chapter 25. IBMIDDoc Elements 235

Appendix

the SGML markup. They usually contain reference information. In the default
presentation style, appendixes are numbered with letters rather than digits.

Examples

<backm>

<appendix>

<d>

<dprolog><titleblk>
<title>Special stuff</title>
</titleblk></dprolog>
<dbody></dbody></d>
</appendix></backm>

Attributes

7 . ”

See

Usage

See

G : L

Contexts
Children: O, DRIY, [ERY, Madintd, Msglist, [PartAsm, Prod, RetKeyl

Parents: BackM,

Approvers (document approvers)

Purpose

Approvers contains the elements that identify the person or organization who must
approve a document or division for publication.

Examples

<approvers>
<person><name>Ethel Mertz</name></person>
</approvers>

Attributes

See

v . ”

Contexts
Children: @, Bersod.

Parents: [DProlog, Prolog, BpecDProlog.

AreaDef (defines graphic hot spot area)

Purpose

This is currently not working in the ID Workbench transforms.

The AreaDef element contains the specifications of a graphic hot spot. The
geometry of graphic hot spots is specified according to to the shape of the hot
spot. The numbers specified represent pels in the bitmap for bitmaps, and
represent quanta in the underlying grid used in specifying points in a vector

236 1D Workbench: IBMIDDoc User’s Guide and Reference

AreaDef (defines graphic hot spot area)

graphic. Multiple AreaDef elements can be used in a single MMObjLink element to
indicate that more than one area in the graphic can be used to invoke the link.

Examples

<mmobj><objref obj="bear"><mmobjlink 1inkend="a">
<areadef shape="circle" coords="10 15 20"></areadef>
</mmobj1ink>

<textalt>One teddy bear.</textalt>

</mmobj>

Attributes

SHAPE = rectangle | circle | polygon
describes the shape of the graphic hot spot.

COORDS = numbers
contains the coordinates for the graphic hot spot. Values are blank delimited.

rectangle
left x axis, top y axis, right x axis, bottom y axis.

circle
center x, center y, radius, with center specified relative to the origin of the

graphic.

polygon
1st x, 1st y, 2nd x, 2nd y, Nth x, Nth y with automatic closure if the first

and last point are not identical. It must be an error if a line drawn between
any two adjacent points intersects with any other line drawn between any
other two adjacent points in the specification.

See I'Cammon Element Attribiites (]argp set)” on page 227

Contexts
Children: TextAld.

Parents: LDescd, MMObilinK.

AsmList (list of parts assemblies)

Purpose

The AsmList element is a specialized list element that contains a list of all parts
assembly lists in the document.

Examples
<ASMLIST>

Attributes

SPEC=AUTO | MAN
This attribute has a fixed value of AUTO, generate the list from the assemblies
in the document.

7 . ”

See

Chapter 25. IBMIDDoc Elements 237

AsmList (list of parts assemblies)

Usage

See

4 : Tat

Contexts
Children: empty.

Parents: [DBody, Dintrd, DSuml, LEDY, Msgltend, PBIK, [Procintrd,

Attention (safety notice)

Purpose

Use an Attention notice to indicate the possibility of damage to a program, device,
system, or data.

Examples

<attention>Here's a way to get someone's attention.
</attention>

Attributes

See

7 . ”

Usage

See

” . A R . . 173

Contexts

Children: text (#pcdata), [Addresd, Annat, IAPI], Bid, C%pb;d Chad i,
m&m%w&mﬂww

MMOR), Modinid, MV, Nurd, Bel, B, B Parml], PRI, B, X, BV §, RefiKay)
Eereed, GynpH, Byntad, Cabld, ered, M, [, K, &PH, KRed.

Parents: [AnnotBodyl Brided, DBadyl Defd, Dintrd, DSum, bntry, LEDI, 0l g,

Author

Purpose

Use Author to contain information about an author, such as name, title, and so
forth.

Examples

<authors>

<author><person>

<name>Fred Mertz</name>

<address>125 West Hollywood Blvd

Tinseltown, CA <postalcode>90210</postalcode></address>
</person></author>

</authors>

Attributes
See 'Common Flement Attributes (large set)” on page 227,

238 1D Workbench: IBMIDDoc User’s Guide and Reference

Author
Usage

See

v ”

Contexis
Children: Corgl, Berson, [Titld.

Parents: M, @

Authors
Purpose
The Authors element contains information about one or more authors of the
document.
Examples
<authors>
<author><person>
<name>Fred Mertz</name>
<address>125 West Hollywood Blvd
Tinseltown, CA <postalcode>90210</postalcode></address>
</person></author>
</authors>
Attributes
See [‘Comman Element Attributes (];\rgp set)” on page 227
Usage
See ’ 7
Contexts

Children: m, Desd.
Parents: BibEntry, DProlog, BMBibEntry BpecDProlag.

BackCover (back cover)

Purpose

The BackCover element contains a reference to the art used for the document’s
back cover.

Examples

<ibmbibentry><doctitle><titleblk>

<title>My Document</title>

</titleblk></doctitle>

<ibmdocnum></1ibmdocnum>
<coverdef><frontcover><mmobj><objref obj="frontl">
<textalt></textalt></mmobj></frontcover>
<backcover><mmobj><objref obj="backl">
<textalt></textalt></mmobj></backcover>
</coverdef></ibmbibentry>

Chapter 25. IBMIDDoc Elements 239

BackCover (back cover)

Usage
See [i ”

Contexts
Children: BibLisd, ICCraphid, DU, Lined, LitDatd, Moy, by, B fanid, i, kead.
Parents: m

BackM (back matter)

Purpose

The BackM element contains the material that follows the body of a document. It
may include appendixes, a glossary, and an index. The output transforms
automatically provide a part separator for the back matter when the body of the
document contained a Part tag. If you want to suppress this part separator, use the
following coding on the Backm tag:

<backm style="xpp: (nopart)">

Examples

<BACKM>
<APPENDIX>
<D>
<DPROLOG>
<TITLEBLK>
<TITLE>WHANTOOZLER TECHNICAL SPECIFICATIONS
</TITLE>
</TITLEBLK>
</DPROLOG>
<DBODY>
<P>THIS SECTION DESCRIBES THE ELECTRICAL CONFIGURATION

</p>
</DBODY>
</D>
</APPENDIX>
</BACKM>

Attributes

v . ”

See

Usage

See

7 ”

Contextis

Children: |A.bbxes.z|,|A.ppend.Lx| Bihliod, O DRI, Clossary) Inded, MasterInded,
PNIndex, RCH BOAl.

Parents: w

240 1D Workbench: IBMIDDoc User’s Guide and Reference

BackM (back matter)

BibEntry (bibliographic entry)

Purpose

The BibEntry element contains information about a document. The IBMBibEntry
element is used to define bibliographic entries for IBM documents. You can use
this to create bibliographic information for non-IBM bibliographies and title
citations.

Examples

To create a bibliography definition:

<bibentrydefs><bibentry docname="dislike"><doctitle>
<titleblk><title>Things I Dislike</title></titleblk>
</doctitle></bibentry></bibentrydefs>

Attributes

DOCLINK=ID
The DocLink attribute specifies the ID of the URL defined on a Notloc element.

DOCNAME-=entity_name
Contains a reference to the ID or name of an entity that is defined in the
document that must also be referenced by a NameLoc element. This indicates a
cross-document target with the specified ID value.

7 . ”

See

Usage

See

Contexts
Children: Authord, IDesd, [DacTitld, ExternalFileNamd, ISBNl, DrderNum, [Prtl od,
Parents: IBj.b_En.thDefsl, [BiblList, Gil.

BibEntryDefs (contains bibliographic entries)

Purpose

Use the BibEntryDefs element to contain BibEntry and LibEntry elements. When
used in a DProlog element, BibEntryDefs contains elements used within that
division. When used in the Prolog element, BibEntryDefs contains elements used in
the document.

Examples

To create a bibliography definition:

<bibentrydefs><bibentry docname="dislike"><doctitle>
<titleblk><title>Things I Dislike</title></titleblk>
</doctitle></bibentry></bibentrydefs>

Attributes

See 7 . ”

Chapter 25. IBMIDDoc Elements 241

BibEntryDefs (contains bibliographic entries)

Usage

See

Contexts
Children: BibEntryl [IBMBibEntry) [BMLibEntryl [LibEntryl
Parents: [DProlog, Prolog, BpecDProlog.

Bibliog (bibliography)

Purpose

The Bibliog special division contains lists of documents and other materials
relevant or related to a document. You can use BibList elements within Bibliog to
contain or generate bibliography lists.

Examples

<bibliog>

<specdprolog><gendtitle></specdprolog>

<dbody>
<bibTist><bibentry><doctitle><titleblk><title>My Nice
Book</title></titleblk></doctitle></bibentry>
<bibentry><doctitle><titleblk><title>Your Nice Book
</title></titleblk></doctitle></bibentry>

</biblist>

</dbody></bibliog>

Attributes

LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol
Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

See I'Common Element Attributes (large set)” on page 227,

242 1D Workbench: IBMIDDoc User’s Guide and Reference

Bibliog (bibliography)
Usage

See

7 n T . n 77

Contexts

Children: DBody)}, DIntrd, [DSum, BpecDProlog.
Parents: w, m

BibList (bibliography entry list)

Purpose

The BibList element either generates or contains a list of bibliography entries.

You can create an explicit bibliography list by building it out of any combination of
bibliography entries, library entries, or Cit elements.

Examples
<bibliog>
<specdprolog><gendtitle></specdprolog>
<dbody>
<biblist><bibentry><doctitle><titleblk><title>My Nice
Book</title></titleblk></doctitle></bibentry>
<bibentry><doctitle><titleblk><title>Your Nice Book
</title></titleblk></doctitle></bibentry>
</biblist>
</dbody></bib1iog>

Attributes

SPEC= AUTO
Specifies that the content of the element is generated from bibliographic
references from the body of the document.

ENTRYTYPE=DOC | LIB | DOCORLIB
Indicates whether or not the generated list is to contain BibEntry entries or
LibEntry entries. If DOCORLIB is used, a list that includes both can be
generated. DOC is the default value.

FORM= NORMAL | FULL | TITLE | DOCNUM
Defines the form of the generated bibliography entries. The specific meaning of
FULL and NORMAL is defined by the active style. NORMAL is the default
value.

7 . ”

See

Usage

See

Contexts
Children: BibEntry] [Cid, [BMBibEntry] [BMLibEntry} LibEntryl
Parents: BackCaves, DBody, DIntrd, DSun, ErontCoved, LEDI, Msgltend, PBIY,

Chapter 25. IBMIDDoc Elements 243

BibList (bibliography entry list)

Bin (binary data)

Purpose

The Bin element contains text representing binary data.

Examples
<BIN>11000001</BIN>

Attributes

See

7 . ”

Usage

See

” . . . 7

Contexts
Children: text (#pcdata).

Parents: [AnnotBody) Ittention, Brided, Caution, CompCmi, Danged, Defr, Desd,
%Eﬂﬂwmmwwwww

B EyaNotd, Eerd, arming

Body (document body)

244

Purpose
Use Body to contain the main body of your document.

Examples
<body>

<d>

<dprolog><titleblk>
<title>Introduction</title>
</titleblk></dprolog>

<dbody>

<p>Please type your text here. Thank-you.</p>
</dbody></d>

<d>

<dprolog><titleblk>

<title>Caring for your fruit bat</title>
</titleblk></dprolog>

<dbody>

<p>This contains all sorts of information</p>
</dbody></d>

</body>

Attributes

See

7 . ”

Usage

See

4 . 7

ID Workbench: IBMIDDoc User’s Guide and Reference

Body (document body)

Contexts
Children: O, DBIY, LERY, ModInfd, MsgLisfl Part, [PartAsm, [Prod.

Parents: [BMIDDod.

BOFNum (bill of forms number)

Purpose

The BOFNum element contains the bill of forms number assigned to the library
described by the LibEntry element.

Examples

<libentry>

<library><titleblk><title>My Title</title></titleblk>
</Tibrary>

<bofnum>SBOF-1234</bofnum>

</1libentry>

Attributes

See

s . ”

Contexts
Children: text (#pcdata), Bd.

Parents: M

Bridge (bridge between concepts)

Purpose

Use the Bridge element to link two locations in a document together and to explain
the linkage. The simplest use of Bridge is to create a bridging title between items
in a list. A good example of bridges are the titles used throughout magazine
articles to bridge a reader from one topic to the next. Such titles do not define
hierarchical divisions, but serve merely as a transition from one part to the next.

Examples

This example shows bridging of two sets of list items:

Saute the shallots and chopped mushrooms until

the shallots are tender and the liquid from the mushrooms
has cooked away.</1i>

<1i>Brown the sausage and add to the mushroom mixture.
</1i>

<bridge><p>The above may be prepared several hours in
advance and refrigerated. Then, 30 minutes before
serving time, finish the dish</p></bridge>

<1i>Mix one can of tomato sauce with the mushroom

and sausage mixture and bring to a slow simmer.

</1i>

Add the heavy cream and immediately pour into

a casserole.</1i>

<1i>Pop into 350-degree oven for 15 minutes.</1i>

Chapter 25. IBMIDDoc Elements 245

Bridge (bridge between concepts)

Attributes

LINKENDS=clement_id1 element_id2
The element_ids are optional identifiers of the element locations that are to be
linked or bridged. If the IDs are not specified, the element to be linked is
defaulted. For element_id1, the default is the element preceding the Bridge
element. For element_id2, the default is the element following the Bridge
element. If you specify only one of the link ends explicitly, you must specify
the keyword #IMPLIED for the other element.

See L i 7

Usage
See I - — — ~

Contexts
Chlldren text (#pcdata) IA.d.d.tesé |A.nno.ﬂ, AP [Attention), E, Caution, id,
mm@maww | Bymta), [Eabld, (eeed, Giad, ond, I,
Kengl, iH, KRed

Parents: AnnotBody |Aitenhod l:au.uod Da.n.geﬂ, DBody |D.e£d D].n.h:d ﬁl D.LB].k|
DSmdbnfrd@IEJgSeg]EElbLBlleED]ElLlBudmh&deModDad
Modlterd, Msglterd, NoteBody] Notelisd, DIl B ParmBIM, Parm], PRIY, ProcIntrd,

BtepNoted, BynNotd, 1], Warning

Cap (caption)

Purpose

The Cap element contains a caption for Figure or Table element. The caption text
can appear in figure and table lists. It should be a relatively short description of
the figure or table.

Examples

<fig id="pubhist">

<cap>History of Publishing within IBM</cap>
<mmobj><objref obj="pubhist">

<textalt>First, there was the pencil, which begat

the pen and the typewriter. Then came ATMS, Script/DCF,
ISIL, BookMaster, and IBMIDDoc.</textalt>
</mmobj></fig>

Attributes

See

4 : ”

Usage

See 'Figure captions and descriptions” on page 54 and LTable captions and
l] : I' 17 Eg-

246 1D Workbench: IBMIDDoc User’s Guide and Reference

Cap (caption)

Contexts
Children: text (#pcdata), ﬂ, E, Mernd, M.

Parents: @, Canld.

Caution (caution notice)

Purpose

Use Caution to create a caution notice, consisting of one or more paragraphs or
other paragraph-level elements. Cautions are normally used to warn about actions
that may cause damage to equipment.

Examples

<CAUTION>Running your engine without oil may cause irreparable damage.
</CAUTION>

Attributes

See

7 . ”

Usage
See

” 77

Contexis

Children: text (#pcdata), [Addresd, Annat, IAPT], @ | Chad Ci,
Datd, Ded, DU, Eig Earmuld, GL, Hey, I, Lined, LitDatd % %

MMOR], Modingd, MY, Nuzd, Bel, 01, B Parmd, BEH I@I@Em
Bereed, BynPH, Bynta, Tabld, Mernd, M, [T, Ky, kPH

Parents: [AnnotBody] Brided, DBady] Defd, Dintrd, DSudd, Enty] LEDI, [, LG,
ModDesd, , Msgltem, , ProcEntryl, Pracintrd, Bafetyl

CGraphic (character graphic)

Purpose

The CGraphic element contains a graphic created with box and line characters. See
[Entities” on page J for information about declaring external data entities.

Migration Note
BookMaster CGraphics can contain characters that are not part of the
IBMIDDoc document character set and thus must be made into external
entities.

Examples
<lentity mygraphic SYSTEM "mygraph.cgr" ndata Tinespec>
<FIG>
<CAP>Simple box and Tine graphic</CAP>

<CGRAPHIC OBJ="mygraphic">
</FI1G>

Chapter 25. IBMIDDoc Elements 247

CGraphic (character graphic)

Attributes

OBJ=data-entity-name
Specifies the SGML file that contains the character graphic. When you specify
OB]J, do not include the CGraphic end tag. You must use a notation of
LINESPEC for a CGraphic.

LINELENGTH=characters
This specifies the number of characters in widest line. If the number of
characters does not fit in the column or page width, the text size is reduced.

See 'Common Element Attributes (large set)” on page 227,

Usage

See

7 : ”

Contexis
Children: text (#pcdata), E, [LitData E, IRF_'EKe#, [Cerm.

Parents: [AnnotBadsl IA.t.ten.tmd BackCoven Brided, Caution, Danged DBodyl Defn,
Dintrd, DSun) Entry [Eid, EEonisze:lLED]lﬂkaNoidlModDesd,

ModItem), Msgltem, NoteBodyl B PBIK, Pracintrd, BynNotd,

Char (character data)

Purpose

Use the Char element to identify literal character data.

Examples

<P>Enter this character string to indicate
cartoon cussing: <CHAR>%#$@!@#</CHAR>.

Attributes

See ‘'Commaon Element Attribiites (]argp set)” on page 227

Usage
SeeLHJ.gh.h.gh.‘r_mg_(m_p.a.gp_éﬂ" ichting” .

Contexts
Children: text (#pcdata).

Parents: ﬂﬂw%mﬁwwwwww
%Ewww e, Meglexd, loteBods)

Cl (component item)

Purpose

The CI element contains a component item in an assembly list.

248 1D Workbench: IBMIDDoc User’s Guide and Reference

Cl (component item)

Examples

<comp1>

<ci idxnum="1" partnum="4563423" upa="1">Bike</ci>

<compl>

<ci idxnum="1" partnum="1230987" upa="1">Frame</ci>

<ci idxnum="2" partnum="1238475" upa="1">Wheel assembly, front</ci>
<ci idxnum="3" partnum="1234939" upa="1">Wheel assembly, rear</ci>
</comp1>

</comp1>

Attributes

See

IDXNUM
Use the IDXNUM attribute to assign to the item a number that matches an
artwork index (callout) number. The number you assign with the IDXNUM
attribute shows up in the Asm-Index column and is prefixed with a dash
character. The number to the left of the dash is the same assembly number
used in the heading prefix.

PARTNUM
Use the PARTNUM attribute to assign the item’s part number. The number
you assign with the PARTNUM attribute shows up in the Part Number
column. Part numbers are limited to seven alphanumeric characters (A-Z, a-z,
0-9), with no intervening blanks.

UPA
Use the UPA (units per assembly) attribute to tell how many of this particular
item there are in the assembly. The number you assign with the UPA attribute
shows up in the Units column.

7 . ”

Usage

See

Contexts
Children: text (#pcdata), ﬂ, E, m, .

Parents: m

Cit (document citation)

Purpose

The Cit element contains a citation to another document.

Examples
Simple citation:

<cit><bibentry><doctitle><titleblk><title>Huckleberry
Finn</title></titleblk></doctitle></bibentry></cit>,
by Mark Twain, is a most excellent book.

Complex citation:

See this book <cit bibid="fruitybat"> and that book
<cit bibid="vampbat" form="full"> for serious bedtime reading.

Chapter 25. IBMIDDoc Elements 249

Cit (document citation)

Attributes

Bibld=entry_id
Specifies the ID of a bibliographic or library entry defined elsewhere. When
BIBID is specified, it is an error to specify any content or the Cit end tag.

FORM=NORMAL | FULL | TITLE | DOCNUM
Specifies the form of the citation, as follows:

NORMAL
Specifies that the record is to be presented as defined by the active
presentation style.

FULL
Specifies that the full range of information in the BibEntry is to be
presented.

TITLE
Specifies that only the title is to be presented.

DOCNUM
Specifies that the document number is to be presented.

See 'Common Element Attributes (large set)” on page 221,

Usage

See ['Si i itations” and [Lsing title citations” an page 142
Contexts

Children: BibEntryl IBMBibEntry) [BMI ibEntry, [LihEntry

Parents: A ttention], BibLisf, Brided, Caution, CompCmi, Danged, Defnl,

Desd, Enind B4, [, mmmwwwwﬁ
B, @, ExaNotd, Warning,

ClassDef (element class definition)

Purpose

The ClassDef element defines an element class. ClassNames are defined for the
document in which the ClassDef element occurs.

Examples

This example shows te common IBM class definitions

<classdef classname="ibmcommand" eletypes="ph" style="bold">
<sem>Command names. For example: COPY command</sem>
</classdef>
<classdef classname="1ibmemphasis" eletypes="ph" style="italic">
<sem>Text the writer wants to emphasize.</sem>
</classdef>
<classdef classname="ibmfilepath" eletypes="ph">
<sem>File path names. For example: c:\config.sys</sem>
</classdef>
<classdef classname="ibmguicontrol" eletypes="ph" style="bold">
<sem>GUI control names: menu names, menu choices, entry fields,
icons, folders. Tist boxes, push buttons,

radio buttons, spin buttons, or check boxes; NOT:

windows or notebooks.</sem>
</classdef>

250 ID Workbench: IBMIDDoc User’s Guide and Reference

ClassDef (element class definition)

Here’s a sample use of IBMGuiControl:
Press <ph class="IBMGuiControl">0K</ph> to continue."

Attributes

See

CLASSNAME-=classname
The name of the class being defined.

ELETYPES=element names
Defines those element types (generic identifiers) to which this ClassDef applies.
Use ELETYPES when a ClassDef is only meaningful for a specific set of
element types.

STYLE=styles
Specifies the style of the element to assign to the class name.

a . ”

OutputClass=css-style-class
The outputclass specifies the class style name in the CSS file; see m

”

SEM
Defines the semantic meaning of a given class. Sem is intended to document
what a given element class means to the author that defined it.

Usage

See

7 C 7

Contexts
Children: [dxTerm, Beml, [Titld.

Parents: [PropDefd, PropGroug.

CLE (content list entry)

Purpose
CURRENTLY NOT SUPPORED BY ANY OUTPUT TRANSFORMS.

The CLE tag contains an explicit table of contents, figure list, or table list entry to
be used in a content list. The CLE element can also refer to an item to be used in a
content list. CLE is used to create entries in content lists manually, when you need
a different order or hierarchy than the document. You can use these methods:

* The CLE element can generate a table of contents entry completely by reference.
Use this when all of the material is present and the titles are correct; but you
want to re-order the entries. This method also allows specific entries to be
created or included that are not created during automatic processing.

<TOC SPEC="man">
<CLE REFID="div3">
</T0C>

<D ID="div3">Division Three Title
<DProlog>

Chapter 25. IBMIDDoc Elements 251

CLE (content list entry)

252

<TitleBlk>
<Title>Division Three Title</Title>
</TitleBlk>
</DProlog>
* You can provide the text for the CLE, but refer to the material that it represents.

Use this to specify a different title in the table of contents than division being
referenced. In this case, page number is generated from the object reference. The
division’s STitle could also have been used with a pure reference (the preceeding
example).

<TOC SPEC="man">
<CLE REFID="div3">Division Three
</T0C>

<D ID="div3">
<DProlog>
<TitleBlk>
<Title>Division Title Number 3</Title>
</TitleBlk>
</DProlog>
* The CLE may contain the entire entry information, directly in its content. This
text may include the leader dots and page numbers. If the CLE is a table of
contents entry, the LVL attribute may be used to set the level in the table of
contents that the entry should take. If the page number is not included in the
CLE content, it may be specified in the STYLE attribute using the Bookmaster
page attribute.

<TOC SPEC="man">
<CLE LVL="2" STYLE="BKM: (page=134)">entry text shown at level 2
</T0C>

Each of the three methods illustrated here may be used in any combination when
creating a manual table of contents.

Attributes

See I'Common Element Attributes (largp set)” on page 2217

REFID=clement_name
Contains the ID of the element to which the CLE is referring.

%Title
Contains the entry text, or one of the %Title elements.

The LVL attribute is used only when the CLE element is used in a TOC, and
when the REFID attribute is not used. The LVL attribute contains a number,
and is used to specify the level of the TOC entries presented.

Usage

Contexts
Children: text (#pcdata), ﬂ, E, @, M.

Parents: lEi.g.Lisﬂ, [[List, CQd.

ID Workbench: IBMIDDoc User’s Guide and Reference

CLE (content list entry)

Code (message code number)

Purpose

The Code element contains the number of the code being described by the Msg
element.

Examples

<MSG><CODE>00C4</CODE>

<MSGITEM CLASS="xp1">

Occurs when the auto-framatizing circuit blows out.</MSGITEM>
</MSG>

Attributes

See

7 . ”

Usage
See

7 : ”

Contexts
Children: text (#pcdata), BH.

Parents: @

ColSpec (column specification)

Purpose
The ColSpec element contains the specification for a column.

Examples

<TABLE FRAME="ALL">
<TGROUP COLS="4" COLSEP="1" ROWSEP="1" ORIENT="PORT" PGWIDE="0">
<COLSPEC COLWIDTH="68+">
<COLSPEC COLWIDTH="127+*">
<COLSPEC COLWIDTH="195%">
<COLSPEC COLWIDTH="66%">

Attributes

See

COLNUM-=col_number
This value indicates the number of the column.

COLNAME-=col_name
Specifies the column name. This name can be referenced by other table
elements.

ALIGN=LEFT | RIGHT | CENTER | JUSTIFY | CHAR
This attribute specifies the horizontal positioning of the text contained in the
column:

LEFT
Specifies left alignment (the default).

a . ”

Chapter 25. IBMIDDoc Elements 253

ColSpec (column specification)

RIGHT
Specifies right alignment.

CENTER
Specifies center alignment.

JUSTIFY
Specifies that the contained column text is justified,

CHAR
Specifies the character that is used for alignment.

CHAR
specifies the character that is used for alignment.

CHAROFF=number
Specifies the character offset for Entry elements in the column.

COLWIDTH=measure
Specifies a fixed, proportional, or mixed measure for the column width.

Migration Note
At this time, mixed measures are not supported. You should use
proportional measures.

COLSEP=0 | 1
This attribute’s value specifies that the internal column rules should be:

* drawn to the right of each cell’s content (1)
* not displayed at all (0)
ROWSEP=0 | 1
This attribute’s value specifies that the internal row rules should be:
¢ drawn below each Entry element that ends a row (1)
* not displayed at all (0)

Usage

Contexts
Children: empty.

Parents: IthE

CompCmt (component comment)

Purpose

The CompCmt element contains a comment about a component item in an
assembly.

Examples

<ci idxnum="2" partnum="1238475" upa="1">Wheel assembly, front</ci>
<compcmt>For detailed breakdown, see <xref refid="wheelxmp">.</compcmt>

254 1D Workbench: IBMIDDoc User’s Guide and Reference

CompCmt (component comment)
Attributes

See

a . ”

Usage

See

Contexis

Children: text (#pcdata), |Addresd, IAPLl, @, Chad @, Datd Ded Eormuld, Hex, ﬂ,
S0 R b o i, D], B3] B oo oo (e,), b2 K]

Parents: m

CompL (component list)

Purpose
The CompL element contains a component list for an assembly.

Examples

<partasm id="bike" style="bkm: (Tayout=same)"><title>
Bicycle</title><mmobj><objref obj="bike">
<textalt>Bicycle</textalt>

</mmobj><comp1>
<ci jdxnum="1" partnum="4563423" upa="1">Bike</ci>
<comp1>

<ci idxnum="1" partnum="1230987" upa="1">Frame</ci>

<ci idxnum="2" partnum="1238475" upa="1">Wheel assembly, front</ci>
<compcmt>For detailed breakdown, see <xref refid="wheelxmp">.</compcmt>
<ci idxnum="3" partnum="1234939" upa="1">Wheel assembly, rear</ci>
</comp1>

</comp1>

</partasm>

Attributes

See I'Cammon Element Attributes (]argp set)” on page 227

Usage

See

Contexts
Children: 1, CompCmi, Compll

Parents: bgm.pﬂ, PartAsml, lEa.r.tAsm.Seg

Cond (procedure result)

Purpose

The Cond element is half of the Condition/Action pair of elements that is used in
the DecisionPnt element. The Cond element contains a description of a condition
that requires that some action be taken by the person following the procedure.

Chapter 25. IBMIDDoc Elements 255

Cond (procedure result)

Examples

<PROC ID="BABYMAP" STYLE="BKM: (STYLE=BASE SEP=INLINE COMPACT)">
<TITLEBLK><TITLE>BABY JOHNNY IS CRYING</TITLE></TITLEBLK>
<PROCENTRY>SIX-MONTH OLD BABY JOHNNY WAS SLEEPING
PEACEFULLY; SUDDENLY HE BEGAN TO CRY.</PROCENTRY>
<PROCSTEP>

<PROCCMND>

<DESC>CHECK JOHNNY'S DIAPER</DESC>

</PROCCMND>

<DECISIONPNT>

<COND>IS THE DIAPER WET?</COND>
<THEN><PROCSTEP><PROCCMND>

<DESC>CHANGE THE DIAPER.</DESC>
</PROCCMND><PROCEXIT>JOHNNY WAS UNCOMFORTABLE.</PROCEXIT>
</PROCSTEP>

</THEN>

<ELSE>

<DESC>CONTINUE AT <XREF REFID="HUNGRY">.</DESC>
</ELSE>

</DECISIONPNT>

</PROCSTEP><PROCSTEP ID="HUNGRY">

<DECISIONPNT>

<COND>IS JOHNNY HUNGRY?</COND>
<THEN><PROCSTEP><DECISIONPNT>

<COND>DOES JOHNNY HAVE TEETH?</COND>
<THEN><PROCSTEP><STEPNOTES>JOHNNY CAN EAT SOLID
FOOD.

CONTINUE AT <XREF REFID="FROZSTK">.
</STEPNOTES></PROCSTEP>

</THEN>

<ELSE><PROCSTEP ID="BOTTLE"><PROCCMND>

<DESC>WARM A BOTTLE.</DESC>

</PROCCMND><PROCCMND>

<DESC>FEED JOHNNY.</DESC>
</PROCCMND><PROCEXIT>JOHNNY NEEDED A BOTTLE.</PROCEXIT>
</PROCSTEP>

</ELSE>

</DECISIONPNT></PROCSTEP>

</THEN>

<ELSE><PROCSTEP><PROCCMND>

<DESC>ROCK JOHNNY TO SLEEP.</DESC>
</PROCCMND><PROCEXIT>JOHNNY WAS SLEEPY.</PROCEXIT>
</PROCSTEP>

</ELSE>

</DECISIONPNT>

</PROCSTEP></PROC>

Attributes

See

g . ”

Usage
See

Contexts
%r% Itexmt .(#pcdata), EI, @, El, M.M.D.bj, Notd, NoteLisd, E‘, E, @, E, @,

4

Parents: DecisionPni|

256 1D Workbench: IBMIDDoc User’s Guide and Reference

Cond (procedure result)

ContainedDocs (documents in IBMLibEntry and LibEntry)

Purpose

The ContainedDocs element is used within IBMLibEntry and LibEntry elements to
contain IDs of IBMLibEntry and LibEntry elements.

Examples
<CONTAINEDDOCS BIBIDS="bkl bk2 bk3 bk4 bk5">

Attributes

See

7 . ”

ID=clement _id
Contains the ID of a BibEntry or LibEntry element.

Usage
For more information about the ContainedDocs element, see ‘Defining libraryl

I&Dﬁﬂ.es_ﬂn_pagﬂ_m' i’ .

Contexts
Children: empty.

Parents: [BMI ihEntryj, [ibEntryl
CopyR (copyrights)

Purpose

The CopyR element defines the copyright information that must be referenced. Use
the COPYR attribute to reference the CopyR element.

Specify one CopyR for every copyright holder for the document or division. You
must specify at least the copyright holder and the first date. The presentation of
the copyright statement in the final document is a function of the output style.

Examples
<IB!VIIDDOC COPYR="ibmprimary">

<PROLOG>
<COPYRDEFS>
<COPYR ID="YR1994">©r; COPYRIGHT INTERNATIONAL BUSINESS
MACHINES CORPORATION 1994. ALL RIGHTS RESERVED.
<P>This text is added to the end of the generated notice.</P>
<P>Note to U.S. Government Users -- Documentation related to
restricted rights -- Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with
IBM Corp.
</P>
</COPYR>
</COPYRDEFS>

Attributes

See

7 . ”

Chapter 25. IBMIDDoc Elements 257

CopyR (copyrights)
ID=copyright_id
The ID of the CopyR element. Contains the ID for CopyR element.

Usage
See I'Using CopyRDefs” on page 91l

Contexts
%r% ,te&t '(#pcdata), EI, @, ﬂ, M.M.ij, Notd, NoteLisi, E, E, @, E, @,

4

Parents: W
CopyRDefs (copyright definitions)

Purpose

The CopyRDefs element defines copyright attributions for a document or division.
Copyright attributions define the intellectual property rights held in the
information contained by the document.

Use CopyRDefs to contain the copyright ownership information for the document
or division. Put copyrights at the highest level to which they apply. For example,
the primary author of the document should always have a copyright attribution at
the document level, but a portion of a document may be copyrighted by someone
else.

In order for the copyright to apply, it must be referenced within the document.

Examples

<PROLOG>
<COPYRDEFS>
<COPYR ID="ibmprimary">
© COPYRIGHT INTERNATIONAL BUSINESS
MACHINES CORPORATION 1994. ALL RIGHTS RESERVED.
<P>This text is added to the end of the generated notice.</P>
<P>Note to U.S. Government Users -- Documentation related to
restricted rights -- Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with
IBM Corp.</P>
</COPYR>
</COPYR>
</COPYRDEFS>

Attributes

See 7 . ”

CopyR
Contains copyright attributions for the document or division.

Usage

See

0 : ”

258 1D Workbench: IBMIDDoc User’s Guide and Reference

CopyRDefs (copyright definitions)
Contexts

Children: Capyd
Parents: [DProlog, Prolag, BpecDProlog.

Corp (enterprise name and address)

Purpose

Corp contains CorpName and address pairs for use in contexts like Author,
Approvers, and Owners where either a person or an enterprise could be
meaningful.

Examples

<authors>

<author><corp>

<corpname>International Business Machines</corpname>
</corp></author>

</authors>

Attributes

See

’ . ”

Usage

See

0 : 7 ”

Contexts
Children: IAddresd, CorpNamd.

Parents: Appraverd, IAuthad, Maintained, Dwnerd.

CorpName (corporation name)

Purpose

The CorpName simply contains the otherwise unstructured name of an enterprise,
such as a company, government agency, or non-profit organization.

Examples

<authors>

<author><corp>

<corpname>International Business Machines</corpname>
</corp></author>

</authors>

Attributes

See

7 . ”

Usage

See

7 : 7 ”

Chapter 25. IBMIDDoc Elements 259

CorpName (corporation nhame)

Contexts
Children: text (#pcdata).

Parents: @, Published

CoverDef (cover definition)

Purpose

The CoverDef element contains elements that reference to the art used for the
document’s covers.

Examples

This example shows how to define the artwork for the front and back covers.

<lentity frontl system "frontl.eps" ndata graphics>
<lentity backl system "backl.eps" ndata graphics>

<prolog><ibmbibentry><doctitle><titleblk>
<title>Sample Cover</title>
</titleblk></doctitle>

<coverdef>

<frontcover><mmobj><objref obj="frontl">
<textalt>System/X cover artwork</textalt>
</mmobj></frontcover>
<backcover><mmobj><objref obj="backl">
<textalt>System/X back cover artwork</textalt>
</mmobj></backcover>

</coverdef>

</ibmbibentry></prolog>

Attributes

See

v . ”

Usage

See

v . ”

Contexts
Children: BackCover ErontCovet, IMMOQb.

Parents: m

CritDate (critical date for a document)

Purpose

The CritDate element a date for the document. This currently does not reset the
date symbol; the draft title page always shows the current date.

Examples

<CRITDATE>

<DATE>12 June 95</DATE>

<DESC>The date the document was approved for publication.</DESC>
</CRITDATE>

260 1D Workbench: IBMIDDoc User’s Guide and Reference

CritDate (critical date for a document)
Attributes

See

a . ”

Usage
See

7 4

Contexis
Children: @, Desd.

Parents: [CritDated.

CritDates (set of critical dates)

Purpose
The CritDates element contains a date in the life of the document.

Examples

<CRITDATES>

<CRITDATE>

<DATE>12 June 94

<DESC>The date the document was approved for publication.</DESC>
</CRITDATE>

</CRITDATES>

Attributes

See

y . ”

Usage

See

’ 2

Contexts
Children: CritDatd.

Parents: IDProlag, Prolag, BpecDProlag.

D (hierarchical division)

Purpose

The D (division) element defines the hierarchical organization of the information.

Migration Note
FD replaces all the Hx elements from BookMaster.

You must explicitly end the D element in order to start another D at the same
hierarchical level. This is because the hierarchical level of each division is defined
by the containment structure, not by explicit tag names.

Examples

A simple markup example of the D element is:

Chapter 25. IBMIDDoc Elements 261

D (hierarchical division)

262

<d>

<dprolog><titleblk>

<title>About Hierarchical Divisions</title>
</titleblk></dprolog>

<dbody>

<p>Hierarchical divisions define the logical organization
of a document.</p>

</dbody></d>

Attributes

CHAPTERNUM-=chapter-number
You can use the CHAPTERNUM attribute on any first-level division tag to
assign the chapter number or appendic letter. For example, this markup:

<d chapternum="5"><dprolog><titleblk><title>End of the Tine

would cause the chapter number for the “End of the line” chapter to be 5. In
an appendix, the appendic letter would be E.

COPYR=copyrinf
IBMCOPYR=ibmcopyrinf
Specifies the IBM or non_IBM copyright information.

IBMSEC=sec_level
SEC=sec_level
Specifies the security classification of the D content.

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

LANGUAGE=lang_name
Specifies the language in which the division is written.

LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol
Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

STARTPAGE-=starting-page-number
The STARTPAGE (starting page) attribute allows you to assign the beginning
page number to a section by using the that attribute on its division tag. It can
be used with all first-level division tags. The STARTPAGE attribute value can
be any positive integer, starting with 1. For example, if you use the following
markup:

ID Workbench: IBMIDDoc User’s Guide and Reference

D (hierarchical division)

<d startpage="101"><dprolog><titleblk><title>Help information

<d startpage="201"><dprolog><titleblk><title>Safety information

the first chapter “Help information” starts on page 101, and the next chapter
“Safety information” starts on page 201.

style=bkm:(BookManager overrides)
IBMIDDoc and IDWB support BookManager override attributes that you can
use when building books.

TopicID
You can substitute a topic identifier for the one that is automatically
generated for BookManager books by using the TOPICID attribute on
the heading or implied heading tag whose topic identifier you want to
change. Here’s how:
<d style="bkm: (topicid="Contents-1')">
<dprolog><titleblk>
<title>Contents of Part I</title>
</titleblk></dprolog>
<dbody></dbody></d>

The value of TOPICID must be a string of characters with no blanks.

TopicSel
You can prevent a heading or implied heading from being used as a
topic by using the TOPICSEL attribute, like this:
<d style="bkm: (topicsel=no)">
<dprolog><titleblk>
<title>Contents of Part I</title>
</titleblk></dprolog>
<dbody></dbody></d>

The value of TOPICSEL can be either YES or NO.

See I'Common Flement Attributes (]argp set)” on page 227

Usage
See —— —
Contexts
Children: [Abstracfl, DBody, DIntrd, IDProlog, DSuml.
Parents: ix, BackM, Body] IDBIK, DBody, DIntrd, [DSum, FrontM, LEDI,

Danger (danger notice)

Purpose

Use Danger to create a danger notice, consisting of one or more paragraphs or
other paragraph or phrase-level elements. Danger elements are normally used to
contain warnings about actions that may cause injury or death to a person.

Chapter 25. IBMIDDoc Elements 263

Danger (danger notice)

Examples

<danger>

Working under an automobile supported only

by the jack may result in injury or death. Always
use jack stands or ramps in axle pairs to support
your vehicle.

</danger>

Attributes

Contexts
Children: text (#pcdata), [Addresd, Annod, IAPL, m, i , CGJ:apbid, Chad, E,
Datd, Ded, DIJ, %

| Eormuld, G, Hed, [Dined, Dithadd, L4, MO, MkNotd,
MMOb], Modinfd, by Nund, Bel, DU, B Parmil, PRI, PH, PK, 2V @, RefKey]
Bereed, bynPH, Byntad, Mabld, Mernd, M), 1, Kmyp, &PH, KRel.

Parents: [AnnotBodyl Brided, DBadyl Defn, Dintrd, DSum, bntry, LEDI, ﬂ, m,

Date

Purpose

Use the Date element to contain a date. IBMIDDoc does not define the format of
the date element, but processing systems can define format constraints for Date
element content.

Examples

<ANNOT>
<P>This change was made on <DATE>August 14, 1994</DATE>.
</ANNOT>

<ANNOT>
<P>This document was formatted on <DATE SPEC="AUTO">.
</ANNOT>

Attributes

See

SPEC=AUTO
Indicates that the presented date is to be defined by the presentation system
and the defined document style. By default, this is the system date at the time
the document is processed. When AUTO is specified, the element must be

empty.

v . ”

Usage

See

7 ”

Contexts
Children: text (#pcdata).

264 1D Workbench: IBMIDDoc User’s Guide and Reference

Date

Parents , Caution, CompCmf, CritDatd, Danged, Defn,
Ed, [, mm IMkNoidMQdDedeletedNoieBad;zlE

DBIk (Division block)

Purpose

The DBIk element is used to organize divisions. A common use is to include two
or more divisions from an object library.

Examples

<objlib>

<objTibbody><dbTk id="somechapters">
<d>

<dprolog><titleblk>

<title>A heading</title>
</titleblk></dprolog>

<dbody>

<p>some interesting information</p>
</dbody></d>

<d>

<dprolog><titleblk>

<title>Another heading</title>
</titleblk></dprolog>

<dbody>

<p>more interesting information.</p>
</dbody></d>

</db1k></obj1ibbody>

</objlib>

<dbTk conloc="somechapters" props="novice">

Attributes

Conloc
The CONLOC attribute specifies that the content of another element of the
same type is to be used as the content of the referencing element. This enables
reuse of information. When the CONLOC attribute is specified, you cannot
specify the element’s end tag. The result of using CONLOC is exactly the same
as if the element being referred to had occurred at that point in the document.

See [‘Reusing elements from an object library” on page 191l.

Attributes on the element are now passed to the element with the CONLOC;
this is a feature that began with IDWB release 3.4, patch IDWXF036.

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be
unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See I'Property-Based

RettlElLal_ﬂn_Pa.geJ.g.d' ” .

Chapter 25. IBMIDDoc Elements 265

DBIk (Division block)

PropSrc
Points to an element whose properties are to be used as the properties of the

referencing element. See Chapter 20, “Property and Class Definitions” onl

Rev
The REV attribute references the Rev element which describes the last revision

level of the information. See !Using Revisions” on page 10d.

Status
ignored by processes

Contexts
Children: O.

Parents: Appendi, BackM, Body) [DBody, ErontM, LEDI, Msgltem.

DBody (division body)

Purpose

DBody contains the content of a hierarchical division; that is, the main content of a
chapter or topic.

Attributes

v . ”

See

Usage

See

” 173

Examples

<d>

<dprolog><titleblk>

<title>About Hierarchical Divisions</title>
</titleblk></dprolog>

<dbody>

<p>Hierarchical divisions define the logical organization
of a document.</p>

</dbody></d>
Contexts
Chﬂdren Annot, Asmlisy [Attention BibList, IBn.d.gd Cautiod, CCraphid O,
bew DI Ed @ E U, Cerd CitDard, £ Mackiisd Micod,
MMQbJModlnf.d Notdblatehsi E,IEa.rmL“Zaa;tAsxdlZBlthZmd

Parents: [Abbrey [Abstract, [B.ib.l.i.ngl, E, blassa.ryl, Legen.c', Rard, Prefacd, BOQA.

Dec (decimal number)

Purpose

Use the Dec element to identify decimal data, which is data that is encoded in a
base-10 numbering system.

266 1D Workbench: IBMIDDoc User’s Guide and Reference

Dec (decimal nhumber)
Examples
<BIN>11000001</BIN> = <DEC>193<DEC>

Attributes

See

7 . ”

Usage
See [[able 1 on page 44.

Contexts
Children: text (#pcdata).

Parents: AnnotBads) Attention, Brided, Cautiod, CompCmi, Danged, Defd, Desd,
%&Eﬂ, U, Cined LQ MO, MiNotd, ModDesd, Modlten], MsgTexd, NoteBady)
B b, § EymNatd, Fernd, Waming.

DecisionPnt (decision point)

Purpose

The DecisionPnt element defines one or more condition-action pairs that define the
next step in a procedure.

Attributes

See

Cond
Defines the condition which, if satisfied, indicates the action that should be
taken.

Then
What action to take if the condition is satisfied.

Else
What action to take if the condition is note satisfied.

s . ”

Usage

See

Examples

<PROC ID="BABYMAP" STYLE="BKM: (STYLE=BASE SEP=INLINE COMPACT)">
<TITLEBLK><TITLE>BABY JOHNNY IS CRYING</TITLE></TITLEBLK>
<PROCENTRY>SIX-MONTH OLD BABY JOHNNY WAS SLEEPING
PEACEFULLY; SUDDENLY HE BEGAN TO CRY.</PROCENTRY>
<PROCSTEP>

<PROCCMND>

<DESC>CHECK JOHNNY'S DIAPER</DESC>

</PROCCMND>

<DECISIONPNT>

<COND>IS THE DIAPER WET?</COND>
<THEN><PROCSTEP><PROCCMND>

<DESC>CHANGE THE DIAPER.</DESC>
</PROCCMND><PROCEXIT>JOHNNY WAS UNCOMFORTABLE.</PROCEXIT>
</PROCSTEP>

</THEN>

<ELSE>

Chapter 25. IBMIDDoc Elements 267

DecisionPnt (decision point)

<DESC>CONTINUE AT <XREF REFID="HUNGRY">.</DESC>
</ELSE>

</DECISIONPNT>

</PROCSTEP><PROCSTEP ID="HUNGRY">

<DECISIONPNT>

<COND>IS JOHNNY HUNGRY?</COND>
<THEN><PROCSTEP><DECISIONPNT>

<COND>DOES JOHNNY HAVE TEETH?</COND>
<THEN><PROCSTEP><STEPNOTES>JOHNNY CAN EAT SOLID
FOOD.

CONTINUE AT <XREF REFID="FROZSTK">.
</STEPNOTES></PROCSTEP>

</THEN>

<ELSE><PROCSTEP ID="BOTTLE"><PROCCMND>

<DESC>WARM A BOTTLE.</DESC>

</PROCCMND><PROCCMND>

<DESC>FEED JOHNNY.</DESC>
</PROCCMND><PROCEXIT>JOHNNY NEEDED A BOTTLE.</PROCEXIT>
</PROCSTEP>

</ELSE>

</DECISIONPNT></PROCSTEP>

</THEN>

<ELSE><PROCSTEP><PROCCMND>

<DESC>ROCK JOHNNY TO SLEEP.</DESC>
</PROCCMND><PROCEXIT>JOHNNY WAS SLEEPY.</PROCEXIT>
</PROCSTEP>

</ELSE>

</DECISIONPNT>

</PROCSTEP></PROC>

Contexts
Children: Cand, Elsd, [Chen.

Parents: m

Defn (definition of a term)

Purpose

The Defn element contains the definition of a term.

Examples

<d1>

<dlentry><term>gopher</term>

<defn>A burrowing rodent that feeds on roots of plants.
</defn>

</dlentry>

<dlentry><term>lawn</term>

<defn>Gopher highway. <p>Can be identified by dinner-plate-sized
mounds of dirt where grass used to be.</p></defn>
</dlentry>

<dlentry><term>agapanthus</term>

<defn>Lovely flowering plant, the roots of which are
the preferred food of gophers. <p>If your flourishing
agapanthus suddenly keels over, it means a gopher

has had a feast.</p></defn>

</dlentry>

</d1>

Attributes

See

4 . ”

268 1D Workbench: IBMIDDoc User’s Guide and Reference

Defn (definition of a term)

Usage

See

7 . sge N 77

Contexts

Chlldren text (# data) IA.d.d.nesd %@a%%ﬂ%@
%gﬁ mma RNotd, NoteLisd, Mund, Del, BT,
a Refkey] Bereed, Byl Byntay, [2bld, Texad, M,

Parents: ID.L.En.qul GLEntryl Parnl.

DefnHd (definition description heading)

Purpose

The DefnHd element contains the heading for the description portion of a
definition or parameter list.

Examples

<d1><termhd>Setting</termhd>
<defnhd>Description</defnhd>
<dlentry><term>Low</term>

<defn>A good setting for simmering soups.</defn>
</dlentry>

<dlentry><term>Medium</term>

<defn>After the water has boiled, use this setting
for cooking the spaghetti.</defn>

</dlentry>

<dlentry><term>High</term>

<defn>Use this setting to get water boiling fast.
</defn>

</dlentry>

</d1>

Attributes

See

v . ”

Usage

See

7 . egc n 77

Contexts
Children: text (#pcdata), ﬂ, E, @, oM.

Parents: E, m

Delim (syntax delimiter)

Purpose

The Delim tag specifies a delimiter that is to indicate the start or end of keywords,
variables, operators, or groups. The delimiter can consist of one or more characters.

Chapter 25. IBMIDDoc Elements 269

Delim (syntax delimiter)

Examples

<syntax>

<group>
<kwd>FRED</kwd>
<deTim>+</delim>
<kwd>WILMA</kwd>
</group>
</syntax>

Attributes

OPTREQ=REQ | OPT
Indicates whether or not the delimiter is optional or required. REQ (required)
is the default.

STARTEND=START | END
The STARTEND attribute has a value of START or END, depending upon
whether the Delim element is the starting or ending delimiter in the syntax.

CONVAR=CONSTANT | VAR
Indicates whether the content of the element is a constant or a variable in the
context where is it used.

LINKEND=reference-id
Contains an ID reference that enables a link to an arbitrary location in the
document.

See I'Common Flement Attributes (laroe set)” an page 227
[@) I (o]

Usage

See 'The Delim (delimiter) element” an page 154

Contexts
Children: text (#pcdata).

Parents: m, m

Desc (element description)

Purpose

The Desc element contains a description of an element. Many elements allow Desc
in their content, usually as the first element, or following the title. Desc is intended
to contain a description of the content of the element within which Desc appears.
The presentation effect of a given Desc element is determined by the style of the
element that contains the Desc. For example, within a figure or table, the Desc may
be presented as part of the caption; in another element the Desc may not be
presented at all.

Examples

<fig ID="figa">

<cap>Your CPU with the Whantoozler 3.0 Installed</cap>

<desc>This figure shows the elegance of the Whantoozler when properly
installed.</desc>

</FIG>

270 ID Workbench: IBMIDDoc User’s Guide and Reference

Desc (element description)
Attributes

See

a . ”

Contexts

Children: text (#pcdata), IA.d.d.nesd IA.EIJ @
Ranion), My Notd, NoteLisd, Neod aa m @;J
BtepRed, KsmbH, [erd, M, D1, pH, KRl oo B EEE

Parents: [Authord, BibEntry) CritDatd, Elsd, Eig [BMBibEntry [BMLibEntry)

LERSDef, [LibEntry Mard, ModInfd, ModInfoDef, ModltemDed, ’
QbjLil, Prod, ProcCmnd), PropDef, PropDesd, PropGroug), Qualif, [Cabld, Thed

DiIntro (division introduction)

Purpose
The DIntro element contains the introduction to a hierarchical division D.

Note that regular D elements are used to subdivide the DIntro section, but that
they are not numbered like the divisions in the division body. This is possible
because the divisions within the division introduction are structurally
distinguished from the divisions in the division body.

Examples

<d>

<dprolog><titleblk>

<title>My Little Chapter</title>
</titleblk></dprolog>

<dintro>
<p>My little division introductory sentence.</p>
</dintro>
<dbody>
<p>Here's the beginning of my chapter.</p>
Attributes
See I'Common Flement Attributes (]argp set)” on page 227
Usage
See Mvision —;
Contexts
Children: [Annod, IA.SLI:LLISiI (Attention), BibList, | ICaution, CGraphid E
Danged D1, @ @ IEI Lined, LitDatd, EQ MarkLis), MicNotd, MMOL),

0, Kengd
lﬁms; (Abbrey [Abstract, IBi.b].i.ogl, E, Classa:.yl, Le.genci, MasterInde, Part, Prefacd,

Chapter 25. IBMIDDoc Elements 271

Dintro (division introduction)

DL (definition list)

272

Purpose

The DL element contains a list of pairs of terms and definitions. Use definition lists
as a generic definition structure for defining things other than glossary terms.
Entries can be organized within a definition list using DLBIk elements. Bridge
elements can also be used to create transitions or connections between blocks of
entries.

Examples

<d1>

<dlentry><term>gopher</term>

<defn>A burrowing rodent that feeds on roots of plants.
</defn>

</dlentry>

<dlentry><term>lawn</term>

<defn>Gopher highway. <p>Can be identified by dinner-plate-sized
mounds of dirt where grass used to be.</p></defn>
</dlentry>

<dlentry><term>agapanthus</term>

<defn>Lovely flowering plant, the roots of which are
the preferred food of gophers. <p>If your flourishing
agapanthus suddenly keels over, it means a gopher

has had a feast.</p></defn>

</dlentry>

</d1>

Attributes

TermWidth= Small | Meduim | Large | 1 | 2
You can use the TERMWIDTH attribute to determine the indentation size of
the definition list. The valid choices are: small (.5 inch, the default), medium (1
inch), and large (2 inches). The value “1” is for 1-character width; “2” is for a
2-character width.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as

defaults for this tag. See Chapter 9_“Ilsing definition tags” on page 103 for

more information.

HeadStyle=base_h | italic_h | bold_h | monospaced_h | underlined_h |
bold_italic_h | italic_underlined_h | bold_underlined_h |
bold_italic_underlined_h
Specifies the highlighting to use for the list’s TermHd and DefnHd heading
tags. The default is bold.

All values work for Xyvision, XHTML, HTML, and BookMaster. For IPF or
RTF, there are some inconsistencies due to the limitations of those formats:
“monospaced” is ignored, and the default style (bold) is used for terms and
headings. “bold_italic_underlined” does not exist in IPF or RTF; this is treated
the same as bold_underlined. “base” works on everything but definition terms;
there is no plain style in IPF, so the default bold will not be over-ridden.

ID Workbench: IBMIDDoc User’s Guide and Reference

DL (definition list)

TermStyle=base | italic | bold | monospaced | underlined | bold_italic |
italic_underlined | bold_underlined | bold_italic_underlined
Specifies the highlighting to use for the list’s Term tags. The default is bold.

’ . ”

See

Usage

See

s e ege . 17

Contexts
Children: Bridgd, DefnHd, DLBIK, DLEntry, TermHd.

Parents: AnnotBods), ittentiod, BackCoved, Bridgd, Cautiod, Cond, Copyd, Danged,
Defd, Desd, Dintrd, DS, EdNoticed, bntry Eigl, FigSed, Ed, ErontCoved

Noticed, E@&mﬂgenm BrocExid, ww%ﬁw E

DLBIk (definition list block)

Purpose

The DLBIk element is used to organize definition list entries within a definition
list.

Examples

<d1>

<dTbTk>

<dlentry><term>Cat</term>

<defn>A house pet

that purrs when happy.</defn></dlentry>
<dlentry><term>Dog</term>

<defn>A house pet that wags

its tail when happy.</defn></dlentry>
</d1bTk>

<d1blk>

<dlentry><term>Fish</term>

<defn>A house pet

with scales that swims.</defn></dlentry>
<dlentry><term>Turtle</term>

<defn>A house pet with

scales that swims and walks slowly.</defn></dlentry>
</d1blk>

</d1>

Attributes

See

7 . ”

Usage
See

” e _ege . 17

Contexts
Children: B.r.i.d.gd, b.L.E.n.tt.yl, [Titld.

Parents: DI,

Chapter 25. IBMIDDoc Elements 273

DLBIk (definition list block)

DLDef (Definition list definition)

274

Purpose

The DLDef element sets attribute defaults for definition lists and parameter lists.
DLDef goes within the document prolog to set definitions for the entire document;
or within a division prolog to set definitions for just that division. The DLDef tag
goes inside a PropDefs tag.

Examples

<propdefs>
<dldef defname="mega" termwidth="large" termstyle="bold italic">
</propdefs>

<d1 def="mega">
<dlentry><term>zebra</term>
<defn>Striped horsie.</defn>
</dlentry>

</d1>

Attributes

DEFNAME-=definition-name
The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

TermWidth= Small | Meduim | Large | 1 | 2
You can use the TERMWIDTH attribute to determine the indentation size of
the definition list. The valid choices are: small (.5 inch, the default), medium (1
inch), and large (2 inches). The value “1” is for 1-character width; “2” is for a
2-character width.

HeadStyle=base_h | italic_h | bold_h | monospaced_h | underlined_h |
bold_italic_h | italic_underlined_h | bold_underlined_h |
bold_italic_underlined_h
Specifies the highlighting to use for the list's TermHd and DefnHd heading
tags. The default is bold.

All values work for Xyvision, XHTML, HTML, and BookMaster. For IPF or
RTF, there are some inconsistencies due to the limitations of those formats:
“monospaced” is ignored, and the default style (bold) is used for terms and
headings. “bold_italic_underlined” does not exist in IPF or RTF; this is treated
the same as bold_underlined. “base” works on everything but definition terms;
there is no plain style in IPF, so the default bold will not be over-ridden.

ID Workbench: IBMIDDoc User’s Guide and Reference

DLDef (Definition list definition)

TermStyle=base | italic | bold | monospaced | underlined | bold_italic |
italic_underlined | bold_underlined | bold_italic_underlined
Specifies the highlighting to use for the list’s Term tags. The default is bold.

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See thper@uBased

Eﬂtﬂ.exal-an-pa.ge_‘lﬁa” .

Usage

See

Contexts
Children: empty.

Parents: PropDefd, PropGroug.

DLEntry (definition list entry)

Purpose

The DLEntry element contains a single term and its definition. Use the DLEntry
element within a definition list (DL) to define information that is not glossary
information. Glossary entries (GLEntry) should be used for formal, dictionary-style
definitions of words.

Examples

<d1>

<dlentry><term>gopher</term>

<defn>A burrowing rodent that feeds on roots of plants.
</defn>

</dlentry>

<dlentry><term>Tawn</term>

<defn>Gopher highway. <p>Can be identified by dinner-plate-sized
mounds of dirt where grass used to be.</p></defn>
</dlentry>

<dlentry><term>agapanthus</term>

<defn>Lovely flowering plant, the roots of which are
the preferred food of gophers. <p>If your flourishing
agapanthus suddenly keels over, it means a gopher

has had a feast.</p></defn>

</dlentry>

</d1>

Attributes

See

7 . ”

Usage

" e ege . 17

See

Contexts
Children: @, E

Parents: ﬁ', Dreu.

Chapter 25. IBMIDDoc Elements 275

DLEntry (definition list entry)

DocTitle (document title)

Purpose

The DocTitle element contains document title information. You should always
provide a short title for IBM documentation. The short title will be used in places
like bookshelf lists, citations, and the book’s spine. The complete title that appears
on the document title page or cover page is defined by the document style and
may include data from other prolog elements.

Examples

<prolog>
<ibmbibentry><doctitle><titleblk>
<title>My Cute, Little Document</title>
</titleblk></doctitle>
<ibmdocnum>SC99-1234-01</1ibmdocnum>
<authors>

<author><person>

<name>Fred Mertz</name>
<address>East Overshoe, SD</address>
</person></author>

</authors>

</ibmbibentry>

</prolog>

Usage
See

7 . ”

Contextis
Children: m MitleRIY.

Parents: BibEntry}, [BMBibEntryl
DProlog (division prolog)

Purpose

The DProlog element contains metainformation about a division, which is
information that describes the division, such as the division title, the author, and so
on. It also contains many different types of markup definitions used to define
classes and properties for the division.

Examples

<d>

<dprolog><titleblk>

<title>My Little Chapter</title>
</titleblk>

<revdefs>

<rev id="v3r4" ident="use">

<date>June 5th</date>

<desc>Something happened...</desc>

</rev>

</revdefs></dprolog>

<dbody>

<p>Here's the beginning of my chapter.</p>
<p rev="v3r4">Something that changed on June 5th.
</p>

</dbody></d>

276 1D Workbench: IBMIDDoc User’s Guide and Reference

DProlog (division prolog)
Attributes

See

a . ”

Usage
See

STNG s 7y

Contexts
Children: |Approverd, [Authord IBJ.b.En,tr.\LDe.fd CopyrDefd, CritDated, lee.fsl

Parents: E, @

DSum (division summary)

Purpose

DSum contains a summary of the informational content of the division.

Examples

<d>

<dprolog>

<titleblk><title>Wantoozler features</title>
</titleblk>

</dprolog>

<dbody>

</dbody>

<dsum>

<p>In summary, the Whantoozler can triple the
normal operating speed of your system.</p>
</dsum>

</d>

Usage

See

7 .) 173

Contexts
Children: [Annol, AsmTis, [Attention, BibLisf, Brided, ICautior, CGraphid, 3,
m-mmmﬂwwmww%
%mwumsj B Parmil, PBIY, Bereed, Bynta, abld, MitleBIY

lﬁmsz ([Abbrey [Abstract, IBi.b.Li.a.gl, B, Clgssa.ryl, Lagem:i, MasterInded, [Part, Prefacd,

DVCFObj (DVCF Migration Element)

Purpose

This element should only be temporarily used when migrating BookMaster DVCF
coding to IBMIDDoc. Do not continue to use this; you will be warned with
messages when your document is processed.

Chapter 25. IBMIDDoc Elements 277

DVCFObj (DVCF Migration Element)
Contexts

Children: any element.

Parents:.

EdNotices (edition notices)

Purpose

The EdNotices element contains the edition notices for the document, including
any legally required statements about intended use, updates, and the like.

Examples
<ibmiddoc ibmcopyr="1996, 1999">

<ednotices><title>First Edition (June 1997)</title>
<p>This edition applies to the IBMIDDoc language,
Version 4.2, and to all subsequent releases

and modifications until otherwise indicated in new
editions.</p>

</ednotices>

Attributes

SPEC=MAN
Specifies whether the edition notice is generated automatically or manually. At
this time, MAN is the only supported value.

v . ”

See

Usage

See "Natices and Edition notices” on nage 94
I [&]

Contexts
Children: DI, Eid, [, MMORj, Notd, NoteTisl, D1, B PBIY, Fahid, Mird, Gl

Parents: FrontM

Else (other procedure path to follow)

Purpose

The Else element contains the step or steps to follow if the Then condition is not
met.

Examples

Usage

See

Contexts
Children: Desd, Prad, Emrﬁiepl

Parents: DecisionPni

278 ID Workbench: IBMIDDoc User’s Guide and Reference

Else (other procedure path to follow)

Entry (table entry)

Purpose

The Entry element contains an entry within a row.

Examples

<table pgwide="0" id="tablesample">
<cap>Sample table caption</cap>

<tgroup cols="1">

<colspec colname="coll">

<tbody>

<row>

<entry colname="coll">my little</entry>
</row>

<row>

<entry colname="coll">sample table</entry>
</row>

</thody>

</tgroup>

</table>

Attributes

COLNAME=column_name
Specifies the column name to which the Entry belongs.

NAMEST=start_name
Specifies the name of the leftmost column of a horizontal span.

NAMEEND=¢end_name
Specifies the name of the rightmost column of a horizontal span.

SPANNAME=span_name
Specifies the name of a horizontal span in a TGroup.

MOREROWS=number
Specifies the number of additional rows to add in a vertical span.

VALIGN=TOP |MIDDLE | BOTTOM
This attribute specifies the vertical alignment of the text contained in the Entry
elements.

TOP
specifies alignment of the text at the top of the Entry elements.

MIDDLE
specifies alignment of the text at the middle of the Entry elements.

BOTTOM
specifies alignment of the text at the bottom of the Entry elements (the
default).

ALIGN=LEFT | RIGHT | CENTER | JUSTIFY | CHAR
This attribute specifies the horizontal positioning of the text contained in the
column:

LEFT
specifies left alignment (the default).

RIGHT
specifies right alignment.

Chapter 25. IBMIDDoc Elements 279

Entry (table entry)

CENTER
Specifies center alignment.

CHAR
Specifies the character that is used for alignment.

CHAROFF=number
Specifies the character offset for Entry elements in this column.

COLSEP=0 (NO) 11 (YES)
This attribute’s value specifies that the internal column rules should be:
* drawn to the right of each Entry element that ends a column (1)
* not displayed at all (0)
ROWSEP=0 (NO) |1 (YES)
This attribute’s value specifies that the internal row rules should be:
¢ drawn below each Entry element that ends a row (1)
* not displayed at all (0)

ROTATE=0 (NO) 11 (YES)
Specifies whether the entry should be rotated.

Shade=NOShade | XLight | Light | Meduim | Dark | XDark
Use the Shade attribute to specify the shading. This table example shows the
shading values used in table cells:

Table 21. Cell entry shading. In the editor, use the modify attributes icon or Ctrl-A to set the
Shade attribute for the cell’s Entry tag.

noshade (0%) |xlight (5%) light (26%) medium dark (74%) xdark (100%)
(50%)
the quick brown | fox
Usage
See “" ”
Contexts

Chﬂdren text (#%iata) (Addresd, Annad, IAPL [Attention] @, %d, Caution,
WMEEEM@ | L, Lined,

LJ.tDa.ta| IMiNord, MMQOL], M Notd, NateTisl, Nudd, B, 1, B Parm1),

%ﬂ, mawwwwwmmm,@,

Parents: IEI

ExternalFileName

Purpose

This specifies the file name of this document. This is used for PDF
cross-referencing.

Examples

<externalfilename>iddugref</externalfilename>

280 1D Workbench: IBMIDDoc User’s Guide and Reference

ExternalFileName

Contexts

Children: text (#pcdata), PH.

Parents: BibEntry, [BMBibEntryl

Fig (figure)

Purpose

The Fig element contains and identifies figures, such as images, examples, and
formulas. The figure serves to contain the exhibits and associate a caption and a
description with them. It also allows those exhibits to be referenced.

Use FigSeg elements to break long figures into smaller chunks to enable breaking
of figures at logical points. In a code sample, for example, you can use one FigSeg
for each subroutine to ensure that no subroutines are broken in the middle.

Examples

<fig style="bkm:(place=inline width=column)">
<lines>Here are some lines

in the sample, simple figure.</lines>

</fig>

Attributes

FRAME=NONE | BOX | RULES
Causes the figure to have a frame. The default is none — no frame.

Box Causes a box to be placed around the figure.

Rules Causes a line to be placed above and below the figure; to visually
separate it from the surrounding text.

PGWIDE=0 | 1
This specifies the width of the figure. 1 is for a page-wide figure; 0 uses the
current column width (0 is the default).

ScalePct=scale-percent
You can use the ScalePct attribute to scale the text up or down in the element.
The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:

scalepct="80"

STYLE="bkm:(place=inline)”
This style override ensures the following:

place=inline
This causes the figure to be placed inline for BookMaster. Normally,
BookMaster formats figures by floating them to the top of the next
page.
DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as
defaults for this tag. See “1sj initi Z for
more information.

7 . ”

See

Chapter 25. IBMIDDoc Elements 281

Fig (figure)

Usage

See

Contexts

Children: [Annol, Bridgd, ICad, [CGraphid, Desd, DU Eormuld I, U Lined,
mmwwwwm | BRI, RefiKes] Bezeed,
Eymtad), 0L, hamgd

Parents: AnnotBods) Attention, Bridgd, Cautiod, Cond, ta.p;ul
Defd, Desd, Dintd, DSund, EdNoticed, batry [, [EDesd %%

ModDesd, Modlten], Msgltend, Nitend, NoteBods] Noticed, EEBJ.H ProcEntry)
wwwwww

282

FigDef (Figure definition)

Purpose

The FigDef element sets attribute defaults for figures. FigDef goes within the
document prolog to set definitions for the entire document; or within a division
prolog to set definitions for just that division. The FigDef tag goes inside a
PropDefs tag.

Examples

<propdefs>
<figdef defname=colfigs pgwide=0 frame=box scalepct=120>
<propdefs>

<fig id=jk1 def=colfigs>

Attributes

DEFNAME-=definition-name
The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

FRAME=NONE | BOX | RULES
Causes the figure to have a frame. The default is none — no frame.

Box Causes a box to be placed around the figure.

Rules Causes a line to be placed above and below the figure; to visually
separate it from the surrounding text.

PGWIDE=0 | 1
This specifies the width of the figure. 1 is for a page-wide figure; 0 uses the
current column width (0 is the default).

ScalePct=scale-percent
You can use the ScalePct attribute to scale the text up or down in the element.

ID Workbench: IBMIDDoc User’s Guide and Reference

FigDef (Figure definition)

The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:

scalepct="80"

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See L =

”

Usage

See

Contexts
Children: empty.

Parents: PropDefd, PropGroug.

FigList (list of figures)

Purpose

The FigList element causes a figure list to be generated.

Examples
<figlist><gendtitle></figlist>

Attributes

SPEC= AUTO | MAN
Specifies that the content of the element is generated. If SPEC=AUTO is
specified, a list of all figures in the document is generated.

LAYOUT=Default-Layout | OneCol | TwoCol
Specifies the column-style for the section.

Default-Layout
The section uses the default layout for the document style.

OneCol
The headings and text format across the entire page.

TwoCol
The text formats in two columns. Headings format across the page or
with the two-column text.

Usage

See

72 i . 7

Contexts
Children: CLE, GendTitld, RetKey [TitleBIK.

Parents: w

Chapter 25. IBMIDDoc Elements 283

FigList (list of figures)

FigSeg (figure segment)

Purpose

The FigSeg element organizes the content of a figure into logical segments. The
primary intent of FigSeg is to contain parts of a figure that must be kept together
when the figure is presented.

Use multiple figure segments to break long figures into smaller chunks to enable
breaking of figures at logical points. In a code sample, for example, you might use
one figure segment for each subroutine, ensuring that no subroutines will be
broken in the middle.

Examples

<fig id="samplefigdesc" style="bkm:(place=inline width=column)">
<cap>Here's a sample figure with a caption and description
</cap>

<desc>This figure has a description. Note that descriptions
have punctuations like sentences.</desc>

<figseg>

<xmp>Here is the first part

of a coding example</xmp>

</figseg>

<figseg>

<xmp>Here is the second part

of a coding example</xmp>

</figseg>

</fig>

Attributes

See

4 . ”

Contexts

Children: [Annol, Brided, ICGraphid, DI, Barmuld, G, [, Lined, CitDatd, £Q,
E%E%%oid,bdbdﬁlbi Notd, Notelist, OIl, B Parmll, PBIY, RefKey] Bereed, Byntad, [,

Parents: @

FileNum (file number)

Purpose

The FileNum element contains the file number of the document. File numbers are
unique to the IBMBibEntry element, and are only used for IBM products.

Examples

<FileNum>
444-4444-44
</FileNum>

Attributes

See

4 . ”

284 1D Workbench: IBMIDDoc User’s Guide and Reference

FileNum (file humber)

Usage

See

v : ”

Contexts
Children: text (#pcdata), Bd.

Parents: W

Fn (footnote)

Purpose

Use Fn to annotate text with notes that are not appropriate for inclusion in-line or
to indicate the source for facts or other material used in the text. Footnotes are
associated with the content of the element containing the footnote.

Examples

<p>There's a footnote<fn>While some folks do not Tike
footnotes; they sometimes contain a nugget of priceless
lore. Did you know IBMIDDoc's grandmother was named
ISIL?</fn> around here somewhere.</p>

Attributes

refid=id
Refers to another footnote identifier. If this attribute is specified, this footnote
must be empty.

a . ”

See

Usage
See

0 ”

Contexts
Children: text (#pcdata), [Addresd, Annod, [APT], Bid, Brided, C%p.hid, Chad Cid,
Datd, Ded, DI, Eig), [Farmuld, GI, Hey [, Lined, LitDatd, LJ, MO, MMQH],
Modintd, MV Notd, Notelisd, Nund, Dcd, 01, B Parm1], PRI, PH, PKI, PM @,
RefKey] Bereed, BynPH, Byntad, [abld, Ternd, M), [T, Kmy, XPH, KRef.

Parents: EnLisd.

FNList (footnote list)

Purpose

The FnList element contains a list of footnotes.

Examples
<FNLIST spec="auto">

Chapter 25. IBMIDDoc Elements 285

FNList (footnote list)

Attributes

SPEC=AUTO
Specifies that the content of the element is generated. If SPEC=AUTO is
specified, all Fn elements in the document are presented.

4 : ”

See

Contexts

Children: Ed.
Parents: DBody, DIntrd, DSum, LEDI, Msgltem, PBIK, ProcIntrd.

Formula (math formula)

286

Purpose

The Formula element contains or references a mathematical formula.

The NOTATION attribute must not be used when the OBJ attribute is used. If
neither the OBJ or NOTATION attribute is specified, the SGML processor assumes
that the inline formula data is encoded using the Script Mathematical Formula
Formatter (SMFF) mathematics formula language. Although SMFF is implied if the
notation type is not specified, the preferred IBMIDDoc form is to explicitly specify
the NOTATION=SMFEF, when applicable.

The content of Formula must be inspected and any occurrences of </ must be
modified to use a symbol name < s1 to insure the formula element is not
prematurely ended by an unintended end tag delimiter in the data.

Examples

The first example illustrates how the entity is encoded. The second example shows
how to use a formula element that contains the wavel entity reference.

<IENTITY wavel PUBLIC '+//ISBN 0-933186::IBM//ENTITY formula//EN' SDATA SMFF >

<FORMULA ID="pwavel" O0BJ="wavel">

The next example shows a formula element that contains a formula using SMFF
notation.
<FORMULA NOTATION="smff">

integral from 0 to infinity of d x
</FORMULA>

Attributes

OBJ=file-entity-name
Refers to an external file that contains mathematical formula specifications. The
attribute value is the name of a declared entity. This attribute is only used
when the formula data is in an external file, and the Formula element must be
empty when it is used. Note that the entity declaration must include the
notation of the mathematical formula information.

ID Workbench: IBMIDDoc User’s Guide and Reference

Formula (math formula)

When using the OB]J attribute, the formula element must be empty. The entity
declaration that defines the entity referred to by this attribute must include the
notation used to encode the mathematical formula information.

Notation=SMFF
Refers to the notation that is used to encode the mathematical formula data
that is included inline in the document. It should be specified if the formula
data is inline in the document. It should not be specified if the Object attribute
is used to refer to an external entity containing the formula data.

Future Enhancement
At this time, only the SMFF is supported. Other formats will be
supported at a later date.

s . ”

See

Contexts
Children: text (cdata).

Parents: Attention, , Caution, CompCmt), , Defn), bniryl
%,w Ed, 0, L, Cined, IZI | Mo, ModDesd, , NoteBody B
'3, EmNotd, Fexnd,

Fragment (syntax fragment)

Purpose

The Fragment element contains a labeled subpart of a syntax definition. Use syntax
fragments to organize subparts of a large syntax definition that either appear
multiple times or are recursively defined, or parts that are too complicated to
appear in place. Fragments are referred to with the FragRef element.

Examples

<syntax>

<fragref><title>Common attributes</title></fragref>
<fragment><title>Common attributes</title>
<group optreq="opt" style="bkm: (composite)">
<kwd>ID</kwd>

<oper>=</oper>

<var>identifier</var>

</group>

<group optreq="opt" style="bkm: (composite)">
<kwd>STYLE</kwd>

<oper>=</oper>

<var>style stuff</var>

</group>

</fragment>

</syntax>

Attributes

LINKEND=c¢lement_id
The ID value of the element being linked to or the ID of a NameLoc element.

s . ”

See

Chapter 25. IBMIDDoc Elements 287

Fragment (syntax fragment)

Usage
See I"'The FRAGMENT and FRAGREFE (Fragmpn’r reference) element” on page 154

Contexts

Children: ExagRef, Groug, BynNotd, [Litld.
Parents: w, w

FragRef (syntax fragment reference)

Purpose

The FragRef element provides a logical reference to a syntax definition fragment.
Use fragment references to create symbolic references to subparts of a syntax
definition or to abstract constructs that are not explicitly defined. For example, you
can reduce the complexity of a definition by replacing complex subparts with
fragment references with meaningful titles. You can also use fragment references to
define recursive constructs or to refer to abstract constructs that are not explicitly
defined.

Examples

<syntax>

<fragref><title>Common attributes</title></fragref>
<fragment><title>Common attributes</title>
<group optreq="opt" style="bkm: (composite)">
<kwd>ID</kwd>

<oper>=</oper>

<var>identifier</var>

</group>

<group optreq="opt" style="bkm: (composite)">
<kwd>STYLE</kwd>

<oper>=</oper>

<var>style stuff</var>

</group>

</fragment>

</syntax>

Attributes

OPTREQ=REQ | OPT
Indicates whether the fragment is optional or required. REQ (required) is the
default.

FRAGID=fragment_ID
Refers to a Fragment element. When FRAGID is specified, it is an error to
specify any content or the FragRef end tag.

7 . ”

See

Usage
See I'The ERAGMENT and FRAGREE (Frngmp‘nf reference) element” on page 154

Contexts
Children: [Titld.

Parents: [Fragment, Groupl, BynBIl, Syntax.

288 1D Workbench: IBMIDDoc User’s Guide and Reference

FragRef (syntax fragment reference)

FrontCover

Purpose

The FrontCover element contains a reference to the art used for the document’s
front cover.

Examples

<ibmbibentry><doctitle><titleblk>

<title>My Document</title>

</titleblk></doctitle>

<ibmdocnum></1ibmdocnum>

<coverdef><frontcover><mmobj><objref obj="frontl">
<textalt></textalt>
</mmobj></frontcover><backcover><mmobj>stago.objref obj="backl">
<textalt></textalt>
</mmobj></backcover></coverdef></ibmbibentry>

Attributes

See

7 . ”

Usage

’ : 17

See

Contexts
%dren: BibList, CGJ:a.phid, El, Lined, [LitDatd, IMJM.D.bj, ﬁl, Iﬁ, m, m, m,

Parents: CaverDef.

FrontM (front matter)

Purpose

The FrontM element contains the material that precedes the body of a document,
such as the preface or table of contents.

Examples

<ibmiddoc>
<prolog>

</prolog>
<frontm style="display='tipage cover spine'">
</frontm>
<body>
</ibmiddoc>
Attributes

STYLE="display="tipage cover spine’ "
Sets style items such as title page, covers, and spine. See

for the values to use.

Chapter 25. IBMIDDoc Elements 289

FrontM (front matter)

Usage

See

G ”

Contexts

Children: MW%@EWMM@M
[BMSafets] Legend, Noticed, Prefacd, RCH Batets) 604, [Lis), bOd

Parents: m

GendTitle (default title specification)

Purpose

The GendTitle element causes the system default title for certain specialized
divisions to be used at processing time. The GendTitle element has no content. The
processing application and document style determine the title that will be
generated.

Examples

<toc><gendtitle></toc>

Attributes

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be
unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

Style
The Style attribute contains either a reference to a separate style specification
for an element or a set of element-specific presentation style definitions when
the processing system does not support separate styles for elements. Assigning
a value to the STYLE attribute modifies how an element is presented when it is
output.

HyTime
ignored by processes

InfoMast
A fixed attribute used to classify the element.

Contexts
Children: empty.

Parents: EigLisl, [BMSafety) [nded, PNIndey, RCH Bafety) EpecDPralog, [, EOd.
GL (glossary list)

Purpose

The GL element contains glossary entries. A glossary list contains one or more
glossary entries (GLEntry), which in turn contain a term and one or more

290 ID Workbench: IBMIDDoc User’s Guide and Reference

GL (glossary list)

definitions. Entries can be organized within a glossary list using glossary block
(GLBIk) elements. Bridge elements can also be used to create transitions or
connections between blocks of entries.

Glossary entries can also be used within normal element content to be collected
automatically, or placed within document or division prologs when the terms
apply to an entire document or a to specific division.

Unlike definition list entries, glossary entries can associate multiple definitions
with a single term.

Glossary lists are normally contained by a Glossary division in the BackM.

Examples

<backm>

<glossary>
<specdprolog><gendtitle></specdprolog>
<dbody>

<gl>...</g1>
</dbody>
</glossary>

<}I.Jéckm>
Attributes

SPEC=AUTO
Specifies that the content of the element is generated.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as

defaults for this tag. See Chapter 9_“Ilsing definition tags” on page 107 for

more information.

RETKEY=None | NoDup
Use the RetKey attribute to enable automatic running headings for glossary
lists. NoDup indicates that the first and last non-blank glossary terms on the
page are to be used. The two terms are joined together, separated by a bullet
or other character, and the combined string is used as the retrieval subject for
the page. If the first and last glossary terms on the page are the same, only the
last glossary term is displayed in the running heading or footing. The values
First and FirstLast can also be coded; but they are not currently supported.

If you code any explicit RetKey elements, they are honored and will appear. If
you nest elements that can generate a running heading (for example, a MsgList
inside Lers), only the outer active generated heading is used. That is, if you
specified automated RetKey generation for LERS and MSGLIST, a Msgno
inside Lers will not be used in the RetKey area. But if you had an explicit
RetKey inside the Msg, then the RetKey is honored as an explicit override.

7 . ”

Chapter 25. IBMIDDoc Elements 291

GL (glossary list)
Usage

See bhaphﬁr 13, “Glossaries” on page 137

Contexts

Children: Bridgd, GLBIN, [GLEntryl

Parents: AnnotBodyl |A.tten,ti0ﬂ, i l:a.utmﬂ ba.n.ge.rl b.Bad.yl, Defd Dln.trd
Dsund o] Eid EigSed Ed, LED], L L, MiNotd, MadDesd, Modltend,

WM@EMWWM

GLBIk (glossary list block)

Purpose

The GLBIlk element organizes glossary list entries within a glossary list. For
example, you can use GLBIk to create logical subdivisions within a long glossary
list.

Examples

<GL>

<GLBLK>

<TITLE>A</TITLE>

<GLENTRY>

<TERM>acopy</TERM>

<DEFN>A transaction program which provides a command line interface to
the APPC File Transfer Protocol (AFTP) facility.

</DEFN>

</GLENTRY>

<GLENTRY>

<TERM>advanced program-to-program communication (APPC)</TERM>
<DEFN>The general facility characterizing

the LU 6.2 architecture and its

various implementations in products.

</DEFN>

<DEFN>Sometimes used to refer to the LU 6.2

architecture and its product

implementations as a whole, or to an LU 6.2 product feature in
particular, such as an APPC application program interface.
</DEFN>

</GLENTRY>

</GLBLK>

</GL>

Attributes
See 'Common Element Attributes (large set)” on page 227,

Usage

See

” . . 7

Contexts

Children: Bridgd, GLEntry [itld.

Parents: @

292 ID Workbench: IBMIDDoc User’s Guide and Reference

GLBIk (glossary list block)

GLDef (Glossary list definition)

Purpose

The GLDef element sets attribute defaults for glossary lists. GLDef goes within the
document prolog to set definitions for the entire document; or within a division
prolog to set definitions for just that division. The GLDef tag goes inside a
PropDefs tag.

Examples

<propdefs>
<gldef retkey="nodup">
</propdefs>

Attributes

DEFNAME-=definition-name
The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

RETKEY=None | NoDup
Use the RetKey attribute to enable automatic running headings for glossary
lists. NoDup indicates that the first and last non-blank glossary terms on the
page are to be used. The two terms are joined together, separated by a bullet
or other character, and the combined string is used as the retrieval subject for
the page. If the first and last glossary terms on the page are the same, only the
last glossary term is displayed in the running heading or footing. The values
First and FirstLast can also be coded; but they are not currently supported.

If you code any explicit RetKey elements, they are honored and will appear. If
you nest elements that can generate a running heading (for example, a MsgList
inside Lers), only the outer active generated heading is used. That is, if you
specified automated RetKey generation for LERS and MSGLIST, a Msgno
inside Lers will not be used in the RetKey area. But if you had an explicit
RetKey inside the Msg, then the RetKey is honored as an explicit override.

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See I'Property-Based

Ratu.ena.llan.pa.ge_].‘lﬂ.

Usage
See

Chapter 25. IBMIDDoc Elements 293

GLDef (Glossary list definition)
Contexis
Children: empty.

Parents: PropDefd, PropGroug.

GlIDefs (glossary definitions)

Purpose

The GlDefs element contains GLEntrys that can be referred to from other places in
the document or division.

Contexts

Children: m
Parents: [DProlog, Prolog, BpecDProlag.

GIEntry (glossary list entry)

Purpose

The GLEntry element contains a single term and its definition. Use the GLEntry
element within a glossary list (GL) to define information.

Examples

<gl>

<glentry><term>gopher</term>

<defn>A burrowing rodent that feeds on roots of plants.
</defn>

</glentry>

<glentry><term>1lawn</term>

<defn>Gopher highway. <p>Can be identified by dinner-plate-sized
mounds of dirt where grass used to be.</p></defn>
</glentry>

<glentry><term>agapanthus</term>

<defn>Lovely flowering plant, the roots of which are
the preferred food of gophers. <p>If your flourishing
agapanthus suddenly keels over, it means a gopher

has had a feast.</p></defn>

</glentry>

</g1>

Attributes

See

4 . ”

Usage
See

” e ege . 7

Contexis
Children: @, Ternd.

Parents: E', m, GlDetfd.

294 1D Workbench: IBMIDDoc User’s Guide and Reference

GIEntry (glossary list entry)

Glossary
Purpose
The DL element contains a list of pairs of terms and definitions. Use definition lists
as a generic definition structure for defining things other than glossary terms.
Entries can be organized within a definition list using DLBIk elements. Bridge
elements can also be used to create transitions or connections between blocks of
entries.
Examples
<gl>
<glentry><term>gopher</term>
<defn>A burrowing rodent that feeds on roots of plants.
</defn>
</glentry>
<glentry><term>lawn</term>
<defn>Gopher highway. <p>Can be identified by dinner-plate-sized
mounds of dirt where grass used to be.</p></defn>
</glentry>
<glentry><term>agapanthus</term>
<defn>Lovely flowering plant, the roots of which are
the preferred food of gophers. <p>If your flourishing
agapanthus suddenly keels over, it means a gopher
has had a feast.</p></defn>
</glentry>
</g1>
Attributes
LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol
Specifies the column-style for this portion of the book.
Document-Layout
The section uses the default layout for the document style.
OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.
OneCol
The text formats across the entire page.
TwoCol
The text formats in two columns.
Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.
See / : 4
Usage
See ‘" r”

Chapter 25. IBMIDDoc Elements 295

Glossary

Contexts
Children: DBady, IDIntrd, IDSum, BpecDProlog.

Parents: m, ErontM.

Group

Purpose

The Group element defines the syntax group and lets you give the group a name
in a Title element. The Title element enables the Group to be automatically
fragmented if it is too large to fit the current area.

Examples

<syntax>
<group>
<kwd>FORM</kwd>
<kwd>PROC</kwd>
</group>
</syntax>

Attributes

REPID=repeat-1D
Specifies the group repeats. the REPID points to a REPSEP element in the same
syntax diagram.

OPTREQ=DEF | REQ | OPT
Indicates whether or not the group is a default, optional, or required. REQ is
assumed.

CHOICESEQ=CHOICE | COMPOSITE | SEQ
Indicates whether the items for this group are choices (you select one of the
items), sequential (you enter each of them in order), or composite (sequential
with no space or lines between the syntax elements).

See I'Caommon Element Attributes (largp set)” on page 2217

Usage

See

s 7

Contexts
Children: Delind, EragRel, Groug, Kwd, Oped Beg, ByaNowd, [iad, £z, KRrel.

Parents: [Eragment, Group, BynBIl, Byntay.

Hex (hexadecimal)

296

Purpose

Use the Hex element to identify hexadecimal data.

Examples
<BIN>1100 0001</BIN> = <HEX>C1</HEX>

ID Workbench: IBMIDDoc User’s Guide and Reference

Hex (hexadecimal)
Attributes

See

a . ”

Usage

See [[able 1 on page 4d.

Contexts
Children: text (#pcdata).

Parents: [AnnotBods) Attention, Bridgd, Cautiod, CompCmd, Danged, IDefd, Desd
%Eﬂ,ﬁ,t@d Ld MO, MiNotd, ModDesd, Moditend, MsgTexd, NoteRods)
B b, Q EyaNatd, Fernd, Warning

IBMBIbEntry (IBM bibliographic entry)

Purpose
Use IBMBibEntry to define the bibliographic information about an IBM document.

IBMBibEntry elements can be specified in a BibEntryDefs element or object
container and used by reference from within a document, for example, from Cit
and Q elements. When IBMBibEntry is specified within Cit, Q, and LQ, the
IBMBibEntry elements are collected for use in a generated bibliography.

Contained IBMBibEntry elements and IBMLibEntry elements are normally used
within re-used information in order to ensure that the re-used information is
completely self-contained. In other words, these elements should be used within
the scope of the information that is being re-used. For example, if a Division
element is re-used, the IBMBibEntry and IBMLibEntry elements should be
contained within that same division’s DProlog element. This allows these elements
to be completely contained, and thus completely re-usable, along with the division
that is being re-used.

Examples

<ibmiddoc>

<prolog><ibmbibentry><doctitle>
<library><titleblk>

<title>My Library</title>

</titleblk></1library>

<titleblk>

<title>My Document of Interesting Things</title>
<stitle>Interesting things</stitle>
<subtitle>0r, Cool Things I Like</subtitle>
</titleblk></doctitle></ibmbibentry>

Attributes

DOCLINK=ID
The DocLink attribute specifies the ID of the URL defined on a Notloc element.

DOCNAME-=entity_name
Contains a reference to the ID or name of an entity that is defined in the
document that must also be referenced by a NameLoc element. This indicates a
cross-document target with the specified ID value.

a . ”

See

Chapter 25. IBMIDDoc Elements 297

IBMBibEntry (IBM bibliographic entry)
Usage

See

Contexts

Children: [Authord, bgmnneﬁtgaesl DocTitld, ExternalFileNamd, EileNun,
[BMDocNund, [BMPartNund QrigIBMDocNum), Prilod, Publicld, Published,
@m

Parents: ij.Enﬂ.yDefé, BibLisd, E, IEmloé

IBMBOFNum (bill of forms number)

Purpose

The IBMBOFNum element contains the IBM Bill of Forms number for the
described library.

Examples

<bibentrydefs>

<ibmlibentry>
<library><titleblk><titl1e>BS/300</title></titleblk>
</Tibrary>

<ibmbofnum>SBOF-1234-0</1ibmbofnum>

</ibmlibentry>

</bibentrydefs>

Attributes

See ‘Camman Flement Attributes (laroe set)” an page 227
[&] I (&)

Contexts
Children: text (#pcdata), bBd.

Parents: m

IBMDocNum (IBM document number)

Purpose

The IBMDocNum element contains the assigned IBM document number for the
document.

Examples

<ibmbibentry><doctitle><titleblk>
<title>My Document</title>
</titleblk></doctitle>
<ibmdocnum>SC99-1234-00</ibmdocnum>
<ibmpartnum>1234F99</ibmpartnum>
</ibmbibentry><ibmprodinfo>
<prodname>My Product</prodname>
<ibmpgmnum>1234-XX1</1bmpgmnum>
<ibmfeatnum>1754</ibmfeatnum>
</ibmprodinfo>

Attributes

See

7 . ”

298 1D Workbench: IBMIDDoc User’s Guide and Reference

IBMDocNum (IBM document number)

Usage

See

v 7

Contexts
Children: text (#pcdata), Bd.

Parents: W
IBMFeatNum (IBM feature number)

Purpose

The IBMFeatNum element contains the assigned IBM feature number for the
document.

Examples

<ibmbibentry><doctitle><titleblk>
<title>My Document</title>
</titleblk></doctitle>
<ibmdocnum>SC99-1234-00</1bmdocnum>
<ibmpartnum>1234F99</ibmpartnum>
</ibmbibentry><ibmprodinfo>
<prodname>My Product</prodname>
<ibmpgmnum>1234-XX1</ibmpgmnum>
<ibmfeatnum>1754</ibmfeatnum>
</ibmprodinfo>

Contexts
Children: text (#pcdata), Bd.

Parents: [(BMProdInfd.
Attributes

See I'Common Flement Attributes (]argp set)” on page 227

IBMIDDoc (IBM-specific product documentation)

Purpose

The IBMIDDoc element contains IBM product information. The IBMIDDoc
document type is used within IBM to create information deliverables for IBM
products. This document type conforms to the IBM InfoMast Architecture and the
HyTime standard (ISO/IEC 10744). The IBMIDDoc element contains an entire
IBMIDDoc document.

An IBMIDDoc document is divided into four main elements: Prolog, FrontM, Body;,
and BackM. Only the Body element is required. The Prolog contains all the
information that describes the document itself, such as the document title, author,
document numbers, property definitions, and so on. The other sections contain the
content of the document organized into divisions, either by D elements or by
specialized divisions, such as Preface or Bibliog.

Chapter 25. IBMIDDoc Elements 299

IBMIDDoc (IBM-specific product documentation)

Examples

<IBMIDDOC SEC="IXM Confidential" LANGUAGE="USENGLISH" "COPYR="ibmprimary" "lotus"
"IBMCOPYR="1994, 1995" ID="edflOmstv2rl">

<) iéMIDDOC>
Attributes
In addition to support for general attributes, IBMIDDoc can also have several other
attributes:
AppPrefix
Controls the automatic generation of the word "Appendix” from the heading
text.
DEFAULT-APP
Use the default for this style. (This is the default value.)
TEXT-APP
Add text and the number.
NONE-APP
Do not add any prefix.
NUMONLY-APP
Add the division number as a prefix.
ChapPrefix
Controls the automatic generation of the word "Chapter” from the heading
text.
DEFAULT-CHAP
Use the default for this style. (This is the default value.)
TEXT-CHAP
Add text and the number.
NONE-CHAP
Do not add any prefix.
NUMONLY-CHAP

Add the division number as a prefix.

Class
Has a few values for HTML-published information. No entry generates a
HTML-like book; running feet connect the pages together; headings link back
to the table of contents.

article
Specified HTML article format. A table of contents is generated. The
articles have no automatic running footing that connect the pages together.
Use this with the HTML frame option to generate a frame-based set of
articles with a “twisty” table of contents.

articles
Also specifies HTML article format. No table of contents is generated.

CLASSIF= CONFRES | RES | LIC
Identifies the classification of restricted materials.

CONFRES
Confidential restricted material

300 1D Workbench: IBMIDDoc User’s Guide and Reference

IBMIDDoc (IBM-specific product documentation)

RES
Restricted material

LIC
Licensed material

CLASSIF=LIC for the style TIV8x11, causes that Tivoli style to include the
licensed statement on each page and on the cover.

Copyr=reference-1D
References the ID for a copyright definition defined in an IBMBibEntry
element.

DOCSTYLE=document-style
Specifies the style of the document. You can specify these styles:

IBMS8X11
8-1/2 by 11 inch style. Replaces BookMaster style IBMXAGD.
IBM7X9
7 by 9 inch style. Replaces BookMaster style IBMXGGD.
IBM2COL
8.5x11 style (2 column layout)
IBMCD
4.75x4.75 style (for CD Jewel Case booklets)
IBMREFC
Reference cards (3-5/8x9in.).
IBM5X8
5.5x8.5 style (for hardware).
IBM4X6
4.25x6.25 style (for hardware).
IBM8X5
5.5x8.5 landscape style (for hardware).
IBM9X7

7x9 landscape style.

If you create a PDF from this style, the pages may switch between
landscape and portrait presentation in Adobe Acrobat Reader or
Exchange. Add the following lines to your PostScript file before
distilling it to prevent this from occurring;:

/currentdistillerparams where {pop}

{userdict /currentdistillerparams {1 dict} put} ifelse
/setdistillerparams where {pop}

{userdict /setdistillerparams {pop} put} ifelse

<< /AutoRotatePages /A1l >> setdistillerparams

IBMLAND
Printer System’s landscape books. (Not for BookMaster)

IBMXAGD
User Guides (8.5x11in., A4); old BookMaster style.

IBMXARF
Reference (8.5x11in., A4); old BookMaster style. This can be replaced by
using a style of ibm8x11 and a layout of onecol.

IBMXGGD
Summary Guides (7-3/8x9in.); old BookMaster style.

Chapter 25. IBMIDDoc Elements 301

IBMIDDoc (IBM-specific product documentation)

TIV7X9
7x9 style for Tivoli

This style creates automatic running headers for titles. The style puts
Part, Chapter, and Tivoli head 1 text in the RETKEY area. The STitle
content, if specified, replaces the Title content in the running heading.

TIV8X11
8.5x11 style for Tivoli

This style creates automatic running headers for titles. The style puts
Part, Chapter, and Tivoli head 1 text in the RETKEY area. The STitle
content, if specified, replaces the Title content in the running heading.

OBIPORT
5.5x8.5 style (for Options by IBM)

OBIWWAG6P
4.25x5.75 style (for Options by IBM)

SMALLFLG
3.625x8.5 style (for hardware)

IBMCopyr=current-year | first-year, current-year
Specifies the copyright date year for IBM publications. You enter either one
date 1999 or two 1999, 2000.

IBMSEC=UNC | IC
Specifies the IBM security classification for the document. Note that you
should use the SEC attribute instead of IBMSEC, with the security classification
typed out. If you specify both IBMSEC and SEC, the SEC attribute is used.

unc Unclassified
ic IBM Confidential

Language
Specifies the language in which the document is written.

The valid values for the Language attribute on IBMIDDoc element are:
e BDUTCH or nl_BE

* BFRENCH or fr_BE

¢ BPORTUGUESE or pt_BR
¢ BULGARIAN or bg_BG

e CATALAN or ca_ES

e CENGLISH or en_CA

* CFRENCH or fr_CA

* CROATIAN or hr_HR

* CZECH or ¢cs_CZ

e DANISH or da_DK

e DUTCH or nl NL

* ENGLISH, en_US, or USENGLISH
e ESTONIAN or et_EE

» FINNISH or fi_FI

* FRENCH or fr_FR

* GERMAN or de_DE

e GREEK or el GR

* HUNGARIAN or hu_HU
* ICELANDIC or is_IS

e ITALIAN or it_IT

* JAPANESE or ja_JP

¢ KOREAN or ko_KR

302 ID Workbench: IBMIDDoc User’s Guide and Reference

IBMIDDoc (IBM-specific product documentation)

e LATVIAN or lv_LV
 LITHUANIAN or It_ LT
* MACEDONIAN or mk_MK
* NORWEGIAN or no_NO
* POLISH or pl_PL

¢ PORTUGUESE or pt_PT
* ROMANIAN or ro_RO
e RUSSIAN or ru_RU

e SCHINESE or zh. CN

e SERBIAN or sr_SP

¢ SFRENCH or fr CH

* SGERMAN or de_CH

e SITALIAN or it CH

* SLOVAK or sk_SK

* SLOVENIAN or sl_SI

* SPANISH or es_ES

e SWEDISH or sv_SE

e TCHINESE or zh. TW

e THAI or th TH

e TURKISH or tr TR

e UKENGLISH or en_GB

LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol
Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

MAXTOC=number
Specifies the maximum heading level to be included in the table of contents.
The default for the style IBM8X11 is 3. Specifying maxtoc=4 will include
divisions to heading level 4.

MULTIVOL=0OneVol | Index-Folio
This indicates whether the book is part of a multiple-volume set. Specifying
“Index-Folio” adds “X-" as a prefix for the page numbers in the index and
starts the page numbering from 1.

PageNumber
There are three options for the PageNumber attribute: FBC, SEQ, and
Default-Folio.

SEQ
Sequential page numbering: The front matter page numbers use roman
numerals. The body and back matter use arabic numerals.

Note: The 3.2 GA version of the Xyvision code will only support
PageNumber=Seq.

Chapter 25. IBMIDDoc Elements 303

IBMIDDoc (IBM-specific product documentation)

FBC
Folio-by-Chapter numbering: The front matter page numbers use roman
numerals, body and appendixes add the chapter or appendix number as a
prefix and restart the page number at every new level-1 division. For
example, chapters and sections are numbered 1-1, 1-2, 2-1, 2-2, etc.
Appendixes are numbered A-1, A-2, etc. Non-appendix back matter
sections are numbered X-1, X-2, etc. and are not reset at new level-1
divisions.

Default-Folio
This is the default value for PageNumber. Use the default page numbering
style for this document style. Currently, all document styles default to SEQ.

PartPrefix
Controls the automatic generation of the word “Part” in the heading text.

DEFAULT-PART
Use the default for this style. (This is the default value.)

TEXT-PART
Add text and the number.

NONE-PART
Do not add any prefix.

NUMONLY-PART
Add the division number as a prefix.

SEC
Specifies the security classification. Note that you should use the SEC attribute
instead of IBMSEC, with the security classification typed out. If you specify
both IBMSEC and SEC, the SEC attribute is used.

STYLE=overrides
This allows specific style overrides.

keepblanks and removeblanks
These are used to control how blanks are treated. The default behavior
keeps blanks at the end of phrase elements (such as Ph, Address, and
Term), and literal data (such as Xmp, Cgraphic, and LitData). It will
remove trailing blanks at the end of other elements, such as
paragraphs (P). You can use the KEEPBLANKS option to keep all
blanks; both those at the end of phrases and those at the end of
paragraphs. You can use the REMOVEBLANKS option to remove all
trailing blanks, both those at the end of phrases and those at the end of
paragraphs.

As an example, the default for this markup is to keep the blanks inside
the phrase tags. So this markup:

Hi <ph style="bold"> there </ph> handsome.
Effectively becomes this when the output is formatted:
Hi there handsome.

Through migration from BookMaster or other means, several times the
phrase tags were done this way:

Hi <ph style="bold">there </ph>handsome.

If you use REMOVEBLANKS, the text concatenates like this:

304 1D Workbench: IBMIDDoc User’s Guide and Reference

IBMIDDoc (IBM-specific product documentation)
Hi therehandsome.

xpp:(bookmarks)
Causes the bookmarks in Acrobat PDF files to match the table of
contents. This creates a most excellent way of navigating the PDF. This
is now the default setting.

xpp:(justify)
For DBCS languages only, this causes the formatting for flowed text
items to be left and right-justified. The opposite setting is nojustify or
ragged.

MLSPrefix=YES | NO
Indicates the document is part of a multiple-language safety book. The page
number prefixes are determined by the document’s language attribute.

BRAND
Specifies the type of product identification branding to be used for the
document.

DefaultBrand
This is the default; no special branding information is produced.

eserver-white
For the IBM @server brand, this specifies black cover text on a white
background.

eserver-black
For the IBM @server brand, this specifies white cover text on a black
background. Don’t use this one without prior approval by SDF.

NewBrand
Indicates the value of the NEWBRAND attribute should be used.

NEWBRAND=brand-name
This is where you would enter a special brand name; as defined by the ID
Workbench team, to handle a future brand in the middle of a release.

UNMSPACE=Separate | unify
Currently not used.

ID Allows you to assign an identifier to the entire document.

Company
Specifies the company for non-IBM trademarks.

DTDVersion
A fixed attribute that indicates the level of the DTD.

Contexis

Must occur in same entity (file) as the IBMIDDoc document type declaration
(DTD) and must be highest-level element in the document.

Children: BackM, Bodyl ErontM, Prolog.

Parents:.

Chapter 25. IBMIDDoc Elements 305

IBMIDDoc (IBM-specific product documentation)
IBMLibEntry (IBM document library definition)

Purpose

The IBMLibEntry element contains an IBM-specific library definition. Library
entries contain information about a library or collection of documents.

Use IBMLibEntry to define the bibliographic information about a library or other
collection of IBM documents. You can use the Class attribute and the ClassDef
element to define different classes of LibEntry to correspond to different classes of
collection. For example, you may have product libraries that are themselves
collected into larger libraries of libraries. You could define a class of "CollectionKit"
for libraries of libraries and then use IBMLibEntry elements to define the contents
of a given collection kit.

IBMLibEntry can also be specified in a BibEntryDefs section or ObjLib and used by
reference from within a document, for example, from Cit elements.

When IBMLibEntry elements are specified within Cit. the IBMLibEntry elements
are collected for use in a generated bibliography.

Contained IBMBibEntry elements and IBMLibEntry elements are normally
specified within re-used information in order to ensure that the re-used
information is completely self-contained. In other words, these elements should be
used within the scope of the information that is being re-used. For example, if a
Division element is re-used, the IBMBibEntry and IBMLibEntry elements should be
contained within that same division’s DProlog element. This allows these elements
to be completely contained, and thus completely re-usable, within the division that
is being re-used.

Examples

<IBMLIBENTRY ID=IBMIDDocLIB>
<LIBRARY>IBMIDDoc Library</LIBRARY>
<PUBLISHER>IBM Corporation
<ADDRESS>
</ADDRESS>
</PUBLISHER>
<PRTLOC>USA
<IBMBOFNUM>SBOF-6000-00
<PUBLICID>+//ISBN 0-19-9999
//LIB SBOF-6000-00
/IBMIDDoc Library
/rickd@nando.net
/Networking Software
//EN
<CONTAINEDDOCS BIBIDS="IBMIDDocUG IBMIDDocTUT">
<DESC>Documentation for the IBMIDDoc language.
IBMIDDoc is an SGML Tanguage for creating printed and online
technical information.
</IBMLIBENTRY>

Attributes

Library
The library name.

Publisher
Contains the name of the publisher followed by an optional address element.

306 1D Workbench: IBMIDDoc User’s Guide and Reference

IBMLibEntry (IBM document library definition)

PrtLoc
Contains the name location where the document was printed.

IBMBOFNum
The IBM bill of forms (BOF) number assigned to this library.

IBMPartNum
The IBM part number assigned to this library.

ProdName
The product name with which this library is associated.

ISBN
The ISBN number assigned to this library.

PublicID
The SGML public identifier assigned to this library. This is the same public
identifier used in entity declarations for the system object that represents this
library.

ContainedDocs
Defines the documents contained in this library and the default order for
presenting the documents when the library definition is presented.

The contained documents can be identified directly using Cit elements, or
indirectly by specifying BibEntry or LibEntry IDs.

The order the contained documents are specified in ContainedDocs defines the
default order for presenting the library contents.

Desc
Contains a description of the library.

Contexts

Children: ContainedDacd, Desd, BMBOEN mI, [BMPartNuml|, [SBN], [L.ib.taq],

Parents: BibEntryDefd, BibLisd, Cid.

IBMMail (IBMMail e-mail address)

Purpose

The IBMMail element contains an IBMMail email address.

Examples

<IBMIDDOC>
<PROLOG>

<OWNERS>
<CORP>
<CORPNAME>IBM CORPORATION</CORPNAME>
<ADDRESS>INFORMATION DEVELOPMENT
IBM RTP
DEPT. E14D
500/D162
ATTN: Rick Dennis
<INTERNET>rickd@nando.net</INTERNET>
<PHONE>919-254-4062</PHONE>
<VNET>RICKD@RTPNOTES</VNET>
<IBMMAIL>IBMMail Exchange: USIBM3345 at IBMMAIL</VNET>

Chapter 25. IBMIDDoc Elements 307

IBMMail (IBMMail e-mail address)

<POSTALCODE>27614</POSTALCODE>
</ADDRESS>
</CORP>
</OWNERS>
<MAINTAINER>
<PERSON>
<NAME>Rick Dennis</NAME>
</PERSON>
</MAINTAINER>
</PROLOG>

Attributes

#PCDATA
Contains the IBMMail email address.

Contexts
Children: text (#pcdata).

Parents: M

IBMPartNum (IBM part number)

Purpose

The IBMPartNum element contains the IBM part number of the document.

Examples

<ibmbibentry><doctitle><titleblk>
<title>My Document</title>
</titleblk></doctitle>
<ibmdocnum>SC99-1234-00</1bmdocnum>
<ibmpartnum>1234F99</1ibmpartnum>
</ibmbibentry><ibmprodinfo>
<prodname>My Product</prodname>
<ibmpgmnum>1234-XX1</1bmpgmnum>
<ibmfeatnum>1754</ibmfeatnum>
</ibmprodinfo>

Attributes

See

’ . ”

Contexts
Children: text (#pcdata), Bd.

Parents: [BMBibEntry}, [BMLibEntry

IBMPgmNum (IBM program number)

Purpose

The IBMPgmNum element contains the IBM program number of an IBM program
product that is described by the document.

308 1D Workbench: IBMIDDoc User’s Guide and Reference

IBMPgmNum (IBM program number)

Examples

<ibmbibentry><doctitle><titleblk>
<title>My Document</title>
</titleblk></doctitle></ibmbibentry>
<ibmprodinfo>

<prodname>My Product</prodname>
<ibmpgmnum>1234-XX1</ibmpgmnum>
<ibmfeatnum>1754</1ibmfeatnum>
</ibmprodinfo>

Attributes

See

7 . ”

Usage

See

7 : ”

Contexts
Children: text (#pcdata), By,

Parents: m

IBMProdinfo (IBM product information)

Purpose

The IBMProdInfo element contains information about an IBM product that is
associated with the document.

Examples

<ibmbibentry><doctitle><titleblk>
<title>My Document</title>
</titleblk></doctitle></ibmbibentry>
<ibmprodinfo>

<prodname>My Product</prodname>
<ibmfeatnum>1754</ibmfeatnum>
</ibmprodinfo>

Attributes

See

s . ”

Usage
See

7 : ”

Contexts
Children: [BMEeatNum, [BMPgmNumd, ModLvl, ProdNamd, Releasd, Mersiod.

Parents: DProlag, Prolog, BpecDProlog.
IBMSafety (IBM safety notices)

Purpose

The IBMSafety element is designed to contain IBM-specific safety notices about
safe hardware practices. THis is not yet implemented.

Chapter 25. IBMIDDoc Elements 309

IBMSafety (IBM safety notices)
Examples

<frontm>
<ibmsafety spec="auto"><gendtitle></ibmsafety>
</frontm>

Attributes

LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol
Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

SPEC=AUTO | MAN
Specifies that the content of the element is generated. SPEC=AUTO is the
default value, and causes the appropriate generated text to be included.

4 . ”

See

Contexts
Children: GendTitld, RetKey), [TitleBIK.

Parents: ErontMl

IdxDefs (central index entries)

Purpose

The IdxDefs element contains central index entries for the document or division.

Examples

<prolog><ibmbibentry><doctitle><titleblk>

<title>Index test</title>
</titleblk></doctitle></ibmbibentry>

<idxdefs>

<il id="becha"><idxterm>a bechamel sauce</idxterm></il>
<il seeid="becha"><idxterm>a white sauce</idxterm></il>
</idxdefs></prolog>

Attributes

See

7 . ”

Usage

See

" 172

310 1D Workbench: IBMIDDoc User’s Guide and Reference

IdxDefs (central index entries)

Contexts
Children: [, @, (3, [Red.

Parents: [DProlog, Prolag, BpecDProlog.

IdxTerm (index term)

Purpose
The IdxTerm element contains a term that is to be included in the index.

Examples

<il><idxterm>dessert sauces</idxterm></il>

Attributes

See

7 . ”

Usage

See

Contexts
Children: text (#pcdata), By,

Parents: m, E, E, &}

Index

Purpose

The Index element contains a title for the index, if one is specified.

The normal use of Index is to contain an index that is automatically generated
from the index entries within the document content.

Examples

<backm>
<index>
<gendtitle>
</index>
</backm>

Attributes

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

Chapter 25. IBMIDDoc Elements 311

Index

SPEC=AUTO | MAN
Specifies that the content of the element is generated. SPEC=AUTO is the
default value.

LAYOUT=Default-Layout | OneCol | TwoCol | ThreeCol
Specifies the column-style for this portion of the book.

Default-Layout
The section uses the default layout for the document style.

OneCol
The entries format across the entire page.

TwoCol
The entries format in two columns.

ThreeCol
The entries format in three columns.

7 : ”

Usage

See

g : . ”

Contexts
Children: GendTitld, IR.etKe)], [MitleBIK.

Parents: w

Internet (internet e-mail address)

Purpose

The Internet element contains an Internet email address.

Examples

<address>

ATTN Dept 245

3605 Hwy 52 N

Rochester MN
<postalcode>55901-9986</postalcode>
<internet>fred@us.ibm.com</internet>
</address>

Attributes
See 'Common Element Attributes (large set)” on page 2217.

Contexts
Children: text (#pcdata).

Parents: M

312 1D Workbench: IBMIDDoc User’s Guide and Reference

Internet (internet e-mail address)

IRef (index entry reference)

Purpose

The IRef element associates an element with an index entry by referring to an
index entry defined elsewhere in the document, either in content or in an IdxDefs
element.

Index entries specified in the information content are normally used to generate a
traditional index. When index entries are specified in an IdxDefs element within
Prolog or DProlog, they define index structures that can be used by reference from
within the document content. Index entries within IdxDefs will not appear in a
generated index unless specifically referred to.

Examples
<il><idxterm>sauces</idxterm>
<i2 id="mayo"><idxterm>mayonnaise</idxterm></i2></i1>

<iref refids="mayo">

<iref refids="mayo">

Attributes

REFIDS=index_entry_ids
Refers to one or more index entries (I1, 12, or 13) to be associated with the
element that contains this IRef.

PRIMARY=PRIMARY
Indicates that this entry is a primary entry for the term. The primary term is
usually given some form of emphasis. There should be only one primary entry
for each term.

See I'Cammon Element Attributes (]argp set)” on page 227

Usage

See "Cross rpfprpnring index entries” on page 118

Contexts
Children: empty.

Parents: [dxDefd.

ISBN (document ISBN number)

Purpose
The ISBN element contains a document’s ISBN number.

Examples

<P>To better understand the intricacies of SGML, see
<CIT>

<BIBENTRY>

<DOCTITLE>

<TITLEBLK>

<TITLE>The SGML Handbook</TITLE>

Chapter 25. IBMIDDoc Elements 313

ISBN (document ISBN number)

</TITLEBLK>

<AUTHOR>

<NAME>Charles F. Goldfarb

</NAME>

</AUTHOR>

<PUBLISHER>

<CORPNAME>

Oxford University Press

</CORPNAME>

<ADDRESS>

Walton St

Oxford 0X2 6DP

</ADDRESS>

</PUBLISHER>

<PRTLOC>Printed and Bound in Great Britain
<ISBN>0-19-835737-9

<PUBID>+//ISBN 0-19-853737-9//DOCUMENT The SGML Handbook//EN
</BIBENTRY>

</CIT>

for more information.

Attributes
See 'Common Flement Attributes (large set)” on page 227,

Usage

For more information about the ISBN element, see /An example of using BihEntryl

Contexts
Children: text (#pcdata), bH.

Parents: BihEntryl, [BMBihEntry, [BMI ibEntry LibEntry

I1 (primary index entry)

Purpose

The I1 element contains an index entry and related secondary or tertiary
(third-level) entries. An index entry is associated with the element that directly
contains it.

Index entries specified in the information content will be used to generate a
traditional index. When index entries are specified in an IdxDefs element within
Prolog or DProlog, they define index structures that can be used by reference from
within the document content. Index entries within IndexDefs will not appear in a
generated index unless specifically referred to.

Examples
<il><idxterm>dessert sauces</idxterm></il>
Attributes

SEEID=i1_ids | i2_ids
Defines a SEE or SEE ALSO reference for cross-referencing. This points at one
or more IDs on I1 or 12 index tags. Multiple IDs should be separated by

314 1D Workbench: IBMIDDoc User’s Guide and Reference

I1 (primary index entry)

blanks. Using the SEEID instead of SEETEXT ensures that there are
corresponding index entries; because of the cross-reference. See

hnd See-also references” on page 1271

SEETEXT=see_also_text
Contains the text of a see or see also reference. For example, under an I1 entry
of Poultry, you can use SEETEXT="Chicken, Turkey, Quail, Duck, and Goose".
When you specify the SEETEXT attribute, you must ensure that there are index
entries for each word or phrase mentioned in the SEETEXT content. SEEID and
SEETEXT can both be specified, if desired. SEEID takes precedence over

SEETEXT. See ‘Defining See and See-also references” on page 121l

SORTKEY=sortkey text
When specified, the SortKey= text is used to sort the entry, rather than the
index entry text itself. This is not currently supported by Xyvision. See

4 7

PRIMARY=Primary
Indicates that this entry is a primary entry for the term. The primary term is
usually given some form of emphasis. There should be only one primary entry
for each term. Not supported for most of the IDWB transforms.

7 . ”

See

Usage

See

Contexts
Children: E, [xTernd.

Parents: [dxDefd.

12 (secondary index entry)

Purpose

The 12 element contains an index entry and any related tertiary (third-level) entries.
An index entry is associated with the element that directly contains it. I2 outside
the context of I1 must use the I1ID attribute to refer to an I1 element.

Index entries specified in the information content will be used to generate a
traditional index. When index entries are specified in an IdxDefs element within
Prolog or DProlog, they define index structures that can be used by reference from
within the document content. Index entries within IndDefs will not appear in a
generated index unless specifically referred to.

Examples

<jl><idxterm>dessert sauces</idxterm>
<i2><idxterm>butterscotch</idxterm></i2>
<i2><idxterm>hot fudge</idxterm>
<i3><idxterm>microwave method</idxterm></i3>
<i3><idxterm>stovetop method</idxterm></i3>
</i2>
<i2><idxterm>strawberry</idxterm></i2>
</il>

Chapter 25. IBMIDDoc Elements 315

12 (secondary index entry)

Attributes

I1ID=i1 id
Refers to the first level entry for this second level entry. I1ID is required when
I2 occurs outside the context of an I1 element.

SEEID=i1_ids | i2_ids
Defines a SEE or SEE ALSO reference for cross-referencing. This points at one
or more IDs on I1 or 12 index tags. Multiple IDs should be separated by
blanks. Using the SEEID instead of SEETEXT ensures that there are
corresponding index entries; because of the cross-reference. See

”

SEETEXT=sec_also_text
Contains the text of a see or see also reference. For example, under an 12 entry
of Poultry, you can use SEETEXT="Chicken, Turkey, Quail, Duck, and Goose".
When you specify the SEETEXT attribute, you must ensure that there are index
entries for each word or phrase mentioned in the SEETEXT content. SEEID and
SEETEXT can both be specified, if desired. SEEID takes precedence over

SEETEXT. See ‘Defining See and See-also references” on page 121

SORTKEY=sortkey text
When specified, the SortKey= text is used to sort the entry, rather than the
index entry text itself. This is not currently supported by Xyvision. See

PRIMARY=Primary
Indicates that this entry is a primary entry for the term. The primary term is
usually given some form of emphasis. There should be only one primary entry
for each term. Not supported for most of the IDWB transforms.

’ . ”

See

Usage

See

Contexts
Children: E, [dxTernd.

Parents: E, [dxDefd.

I3 (tertiary index entry)

316

Purpose

The I3 element contains a third-level index entry. An index entry is associated with
the element that directly contains it. I3 outside the context of I2 must use the 121D
attribute to refer to an I2 element.

Index entries specified in the information content will be used to generate a
traditional index. When index entries are specified in an IdxDefs element within
Prolog or DProlog, they define index structures that can be used by reference from
within the document content. Index entries within IndexDefinition will not appear
in a generated index unless specifically referred to.

ID Workbench: IBMIDDoc User’s Guide and Reference

I3 (tertiary index entry)
Examples

<jl><idxterm>dessert sauces</idxterm>
<i2><idxterm>butterscotch</idxterm></i2>
<i2><idxterm>hot fudge</idxterm>
<i3><idxterm>microwave method</idxterm></i3>
<i3><idxterm>stovetop method</idxterm></i3>
</i2>

<i2><idxterm>strawberry</idxterm></i2>

</il>

Attributes

12ID=i2 id
Refers to the first level entry for this second level entry. 12ID is required when
I3 occurs outside the context of an 12 element.

SORTKEY=sortkey text
When specified, the SORTKEY text is used to sort the entry, rather than the
index entry text itself.

PRIMARY=Primary
Indicates that this entry is a primary entry for the term. The primary term is
usually given some form of emphasis. There should be only one primary entry
for each term.

Usage

See

Contexts
Children: m

Parents: E, [dxDefd.

Kwd (syntax keyword)

Purpose

Use Kwd to define keywords within a syntax definition. Keywords are literal
values that must be specified exactly as shown in the diagram.

Examples

<syntax>

<group>

<kwd>FORM</kwd>

<kwd optreq="opt">PROC</kwd>
</group>

</syntax>

Attributes

ABBREVS=abbreviations
Lists the valid blank delimited abbreviations for the keyword.

OPTREQ=REQ | OPT | DEF
Indicates whether or not the keyword is optional. REQ (required) is the
default.

Chapter 25. IBMIDDoc Elements 317

Kwd (syntax keyword)

LINKEND=id
Contains an ID reference that enables a link to an arbitrary location in the
document.

7 . ”

See

Usage

See

7 7

Contexts
Children: text (#pcdata).

Parents: @, w
L (explicit link)

Purpose

The L element links a phrase to any place in a document, another document, or a
non-text object, such as a multimedia presentation.

L can point to either another element in the same document, or it can point to a
NameLoc element, through which it can link to almost anything. What you can
link to via NameLoc is limited only by the online presentation system you use.

Note: IBMIDDoc neither defines nor limits the types of things you can link to from
a document. The linking you can do is determined by the online
presentation system you are using.

As a rule, it is worth using NameLoc when something will be linked to more than
twice within the same document, because the indirection provided by NameLoc
makes maintaining those links easier.

Examples

<d id="xrefhyl">

<dprolog><titleblk>

<title>A11 about linking</title>

</titleblk></dprolog>

<dbody>

<p>Hypertext Tinks (we'll just call them Tinks from

now on) connect elements in one part of an online
document to elements in another part of the same document
or a separate online document. </p>

<p>Sometimes you need to <1 Tinkend="xrefhyl">Tink</1> to
other topics.</p>

Attributes

LINKEND=element_id
The ID value of the element being linked to or a NameLoc element that
ultimately locates the object or objects being linked to.

SPEC=AUTO
Currently does not work.

318 1D Workbench: IBMIDDoc User’s Guide and Reference

L (explicit link)

CLASS
You can use this to affect whether that link will replace the content of a frame;
or whether the link will launch a new browser window.

NewWindow
This opens the link in a new, unnamed window. This is the same as
the HTML coding: target="_bTank"

FullWindow
This opens the link into the full, original window, cancelling all frames.
This is the same as the HTML coding: target="_top"

SameWindow
This opens the link into the same window. This is the same as the
HTML coding: target="_self"

See L ”

Usage
See “ ”

Contexts
Chlldren text (#pc da% [Addresd, IAPTI E bha.ﬂ,m Datd, @ [Eormuld, Hey, El
vis) "B, Bl B, 3] 0, RefKes) By, Ford, [, 621, KRel
Parents: [Addresd, |[AnnotBads) IAttentiod, Brided, ICag, Caution), CGraphid, E, CLH,
EompCond, Cond, Copgd, | DBady Detd, Defatid, Desd, Dintd, DSund,
EdNam:edlonfrd@ | [, LEDesd, LEDI, L1, Lined [Ld, MO, MiNotd,

wwwwwwmmwwﬂ
BBRIY, PH, ProcEntry ProcExif, Procintrd, 3, Bafety Bcreen, Ber, STitld, BuhTitld,

LDescs (link descriptions)

Purpose

Use LDescs to contain descriptions of links that need to be referenced from more
than one place the document.

Examples

<PROLOG>
<IBMBIBENTRY ID="BOOKMSG">
<DOCTITLE><TITLEBLK><TITLE>IBM BOOKMASTER USER'S GUIDE </TITLE>
</TITLEBLK>
</DOCTITLE>
<IBMDOCNUM>S(C34-5107</IBMDOCNUM>
<DESC>DESCRIBE HOW TO USE BOOKMASTER</DESC>
</IBMBIBENTRY>
<LDESCS>
<NAMELOC ID="ABC1" OBJTYPE="BOOK">
<NMLIST></NMLIST>
</NAMELOC>
<NAMELOC ID="ABCO" OBJTYPE="HEAD">
<NMLIST DOCNAME="BOOKUG">SYMBS</NMLIST>
</NAMELOC>
</LDESCS>
<BIBENTRYDEFS>
<IBMBIBENTRY ID="BOOKUG">
<DOCTITLE><TITLEBLK><TITLE>TITLE</TITLE></TITLEBLK>

Chapter 25. IBMIDDoc Elements 319

LDescs (link descriptions)

</DOCTITLE>
<IBMDOCNUM>SN23-0059</IBMDOCNUM>
<DESC>BOOK DESCRIPTION</DESC>
</IBMBIBENTRY>
</BIBENTRYDEFS>
</PROLOG>

Attributes
See 'Commaon Element Attributes (large set)” on page 227,

Usage

See

0 : ”

Contexts
Children: |AreaDef, hamelad, hotlod.

Parents: [DProlag, Prolog, BpecDProlag.

LE (language element)

Purpose

The LE element contains the description of a computer language element, such as a
command, within the context of a language element reference section. Use LE and
LERS to create reference information for computer languages such as command
sets, programming languages, and the like. The presentation of language elements
is as headed sections.

Examples

<LERS>
<LE>
<LEN>aname
</LEN>
<LEDI CLASS="PURPOSE">
<P>Use this command to request help information on the APPC NameServer
facility.
<LEDI CLASS="FORMAT">
<SYNTAX>
<GROUP>
<KWD OPTREQ="REQ">aname
<KWD OPTREQ="REQ"> -h
</GROUP>
</SYNTAX>
<LEDI CLASS="PARMS">
<PARML STYLE="BKM: (BREAK='NONE' TSIZE='&bigt.')">
<PARM>
<TERM>-h</TERM>
<DEFN>An explicit request for help information on the ANAME command.
</DEFN>
</PARML>
<LEDI CLASS="EXAMPLES">
<P>This example requests general help on the ANAME command.
<XMP>
aname -h
</XMP>
</LE>
</LERS>

320 ID Workbench: IBMIDDoc User’s Guide and Reference

LE (language element)
Attributes

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

Contexts
Children: LEDesd, LEDI, LEN, RetKeyi

Parents: @

LeDesc (language element description)

LeDesc can contain the description of the command. This is usually a short
abstract.

Purpose

The LEDI element’s Purpose class should be used to contain the main purpose of
the language element.

Examples

<le id="LeDesc">

<len>LeDesc (language element description)</len>
<ledesc>LeDesc can contain the description of the
command. This is usually a short abstract. </ledesc>

Attributes

See

s . ”

Usage

See Chapte

Contexts
Children: text (#pcdata), Iil, @, ﬂ, M.MQbJ, INg.td, Na:te].isil, E‘, E, @, E, @,
fernd, o, L.

Parents: E

Chapter 25. IBMIDDoc Elements 321

LeDesc (language element description)

LEDI (language element description item)

Purpose

The LEDI element contains a description of one aspect of a language element
within a LERS section. Each language element can have several LEDI elements.

For each LEDI, the title text can be defined separately on a LERSDEF element.
Each LEDI class can have a different generated title or no title. The default
presentation style for language element descriptions is as normal divisions.

Examples

<LERS>
<LE>
<LEN>aname
</LEN>
<LEDI CLASS="PURPOSE">
<P>Use this command to request help information on the APPC NameServer
facility.
<LEDI CLASS="FORMAT">
<SYNTAX>
<GROUP>
<KWD OPTREQ="REQ">aname
<KWD OPTREQ="REQ"> -h
</GROUP>
</SYNTAX>
<LEDI CLASS="PARMS">
<PARML STYLE="BKM: (BREAK='NONE' TSIZE='&bigt.')">
<PARM>
<TERM>-h</TERM>
<DEFN>An explicit request for help information on the ANAME command.
</DEFN>
</PARML>
<LEDI CLASS="EXAMPLES">
<P>This example requests general help on the ANAME command.
<XMP>
aname -h
</XMP>
</LE>
</LERS>

Attributes

Class Values
Indicates the class of the LEDI. The class values define what type of
information each LEDI contains:

AUTH
Authorization level; for example, user or superuser.

COMMENTS
Comments about the language element.

CONTEXT
The context in which the language element is used.

DEFAULTS
The defaults for the language element.

ERRCOND
Error conditions.

322 1D Workbench: IBMIDDoc User’s Guide and Reference

LEDI (language element description item)

EXAMPLES
Examples of using the language element.

FLAGS
Control flags.

FORMAT
The format or syntax of the language element.

INTREP
Internal representation, such as control blocks or data structures.

MESSAGES
Any messages related to the language element.

OTHER
An open category.

PARMS
Parameters.

PROCESS
Processing related to the language element.

PURPOSE
The purpose of the language element.

RESTRICT
Restrictions on the use of the language element.

RESULTS
The results of using the language element.

RETCODES
Return codes.

SYSENV

The system environments to which the language element applies.

USAGE
How to use the language element.

VERSION
Any version information for the language element.

Contexts
Chlldren Annof, Wsmlisd, A ttention)

mehsﬂhsnd.gdtammdbcra.phdﬁ

Dew, D, Eig Ealisd, B 1, CERY, Gined CitDatd, Q) Markiis] Miiodd,
MM.ObiMod.Ln.Ed INothateLlsi EIEaxmlllza.ntAsndEBuJIEmd
Bereed, ymta), Eabld, L1, el
Parents: [LH.

Chapter 25. IBMIDDoc Elements 323

LEDI (language element description item)

Legend

Purpose

The Legend element contains an explanation of any special notations used in the
document, such as within graphics, tables, figures, or other specialized
information.

Examples

<FRONTM>
<LEGEND>
<SPECDPROLOG>
<GENDTITLE>
</SPECDPROLOG>
<DBODY>
<P>The following symbols have special meaning in this document:

</DBODY>
</LEGEND>
</FRONTM>

Attributes

LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol
Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

7 . ”

See

Usage

See

7 . : 7

Contexts
Children: DBody, Dintrd, DSum, EpecDProlog.

Parents: w

324 1D Workbench: IBMIDDoc User’s Guide and Reference

Legend

LEN (language element name)

Purpose

Use LEN for the name of the language element, for example, the command name.

Examples

<le id="len">

<len>LEN (Tanguage element name)</len>

<ledi class="PURPOSE">

<p>Use LEN for the name of the language element, for
example, the command name.</p>

</ledi>

<ledi class="EXAMPLES">

<xmp></xmp>

</ledi>

<ledi class="PARMS">

<p conloc="commattr">

</ledi>

<ledi class="USAGE">

<p>See <xref refid="langref">.</p>

</ledi>

<ledi class="CONTEXT"><pblk conloc="context len">
</ledi>

</le>

Attributes

See

Usage

See

Contexts
Children: text (#pcdata), BH, M.

Parents: LH.

LERS (language element reference section)

Purpose

Use LERS to contain reference information for computer languages such as
programming languages, command sets, and the like. Use the more generic
ModInfo elements for other sorts of modular information. A LERS section contains
one or more language element descriptions (LE). The default presentation style for
LERS is as normal divisions.

Examples

<le id="Tlen">

<len>LEN (Tanguage element name)</len>

<ledi class="PURPOSE">

<p>Use LEN for the name of the language element, for
example, the command name.</p>

</ledi>

<ledi class="EXAMPLES">

<xmp></xmp>

Chapter 25. IBMIDDoc Elements 325

LERS (language element reference section)

326

</ledi>

<ledi class="PARMS">

<p conloc="commattr">

</ledi>

<ledi class="USAGE">

<p>See <xref refid="langref">.</p>

</ledi>

<ledi class="CONTEXT"><pblk conloc="context_len">
</ledi>

</le>

Attributes

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as

defaults for this tag. See Chapter 9 “Using definition tags” on page 108 for

more information.

CLASS=classname
Deprecated — use DEF attribute. References the CLASSNAME attribute on a
LersDef element.

COMPLANG-=computer-language
Specifies the computer language described in this LERS section.

LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol
Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

RETKEY=None | First
Use the RetKey attribute to enable or disable automatic running headings for
this tag.

NONE
indicates that nothing is to be used.

FIRST
indicates that the first non-blank item on the page is to be used.

The values NODUP and FIRSTLAST are not supported at this time.

If you code any explicit RetKey elements, they are honored and will appear. If
you nest elements that can generate a running heading (for example, a MsgList
inside Lers), only the outer active generated heading is used. That is, if you
specified automated RetKey generation for LERS and MSGLIST, a Msgno
inside Lers will not be used in the RetKey area. But if you had an explicit
RetKey inside the Msg, then the RetKey is honored as an explicit override.

ID Workbench: IBMIDDoc User’s Guide and Reference

LERS (language element reference section)

classname=title_text

For each LEDI class, you can define the generated title for the LEDI elements.

AUTH
Authorization level; for example, user or superuser.

COMMENTS
Comments about the language element.

CONTEXT
The context in which the language element is used.

DEFAULTS
The defaults for the language element.

ERRCOND
Error conditions.

EXAMPLES
Examples of using the language element.

FLAGS
Control flags.

FORMAT
The format or syntax of the language element.

INTREP
Internal representation, such as control blocks or data structures.

MESSAGES
Any messages related to the language element.

OTHER
An open category; define your own title.

PARMS
Parameters.

PROCESS
Processing related to the language element.

PURPOSE
The purpose of the language element.

RESTRICT
Restrictions on the use of the language element.

RESULTS
The results of using the language element.

RETCODES
Return codes.

SYSENV
The system environments to which the language element applies.

USAGE
How to use the language element.

VERSION
Any version information for the language element.

SEP= PAGE | NORMAL | LHPAGE | RHPAGE

allows you to specify how you want the language elements separated, where:

PAGE Starts the language element on the next page.

Chapter 25. IBMIDDoc Elements 327

LERS (language element reference section)

NORMAL

Specifies normal heading separation — usually white space.
LHPAGE

Starts the language element on the next left-hand page (even page).
RHPAGE

Starts the language element on the next right-hand page (odd page).

Contexis

Children: E, @

Parents: Appendid, Body, DBody, LEDI, ModItend, Msgltem.

LERSDef (LERS property definition)

328

Purpose

Use LERSDef to define the titles to be generated for different classes of LEDI
elements, and to define values for common properties.

Examples

<lersdef defname="taglers" comments="Usage" context="Contexts"
defaults="Style Values" examples="Examples" format="Syntax"
other="SGML Markup" parms="Attributes" results="More Information"
usage="Usage">

</lersdef>

Attributes

DEFNAME-=definition-name
The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

RETKEY=None | First
Use the RetKey attribute to enable or disable automatic running headings for
this tag.

NONE
indicates that nothing is to be used.

FIRST
indicates that the first non-blank item on the page is to be used.

ID Workbench: IBMIDDoc User’s Guide and Reference

LERSDef (LERS property definition)
The values NODUP and FIRSTLAST are not supported at this time.

If you code any explicit RetKey elements, they are honored and will appear. If
you nest elements that can generate a running heading (for example, a MsgList
inside Lers), only the outer active generated heading is used. That is, if you
specified automated RetKey generation for LERS and MSGLIST, a Msgno
inside Lers will not be used in the RetKey area. But if you had an explicit
RetKey inside the Msg, then the RetKey is honored as an explicit override.

CLASSNAME = classname
Depreciated — use DEFNAME attribute. Defines the name of the class. This
name is the name referenced by the CLASS attribute on the Lers element.

COMPLANG-=computer-language
Specifies the computer language described in this LERS section.

classname=title_text
For each LEDI class, you can define the generated title for the LEDI elements.

AUTH
Authorization level; for example, user or superuser.

COMMENTS
Comments about the language element.

CONTEXT
The context in which the language element is used.

DEFAULTS
The defaults for the language element.

ERRCOND
Error conditions.

EXAMPLES
Examples of using the language element.

FLAGS
Control flags.

FORMAT
The format or syntax of the language element.

INTREP
Internal representation, such as control blocks or data structures.

MESSAGES
Any messages related to the language element.

OTHER
An open category; define your own title.

PARMS
Parameters.

PROCESS
Processing related to the language element.

PURPOSE
The purpose of the language element.

RESTRICT
Restrictions on the use of the language element.

Chapter 25. IBMIDDoc Elements 329

LERSDef (LERS property definition)

RESULTS
The results of using the language element.

RETCODES
Return codes.

SYSENV
The system environments to which the language element applies.

USAGE
How to use the language element.

VERSION
Any version information for the language element.

SEP= PAGE | NORMAL | LHPAGE | RHPAGE
allows you to specify how you want the language elements separated, where:

PAGE Starts the language element on the next page.

NORMAL

Specifies normal heading separation — usually white space.
LHPAGE

Starts the language element on the next left-hand page (even page).
RHPAGE

Starts the language element on the next right-hand page (odd page).

v . ”

See

Attributes

See

Usage
See

Contexts
Children: Desd.

Parents: [PropDefd, PropGroug.

LI (list item)

330

Purpose

The LI element contains a single list item within a list. List items can be grouped
together with LiBlk..

Examples

<1i>This is an item in an unordered Tist. To separate
it from other items in the 1ist, the formatter puts
a bullet beside it.</1i>

<1i>The paragraph that is contained in the LI element
is part of the list item which contains it. <p>This

ID Workbench: IBMIDDoc User’s Guide and Reference

LI (list item)

is the contained paragraph.</p></1i>

<1i>This is a separate Tist item in our unordered
Tist.</1i>

Attributes

See

7 . ”

Usage

See

7 : ”

Contexts

Ch11dren text (#pcdata), [Addresd, Annod, APT, [Attentiod, Bid, %gd Cautiod
Ead, 1], Danged Datd, Ded, 1], B, Eormutd, B, Eoy, [), Lined,
IM.IjIM.kNo:d , ModInfd, MWM@E

Em mawwwwwwm

Parents: ILIBI, Nn.teLi.si, EI, Ei:epNo.teﬂ, .

LibEntry (document library definition)

Purpose

Use LibEntry to define the bibliographic information about a library or other
collection of documents. You can use the CLASS attribute and the ClassDef
element to define different classes of LibEntry to correspond to different classes of
collection. For example, you may have product libraries that are themselves
collected into larger libraries of libraries. You could define a class of "CollectionKit"
for libraries of libraries and then use LibEntry elements to define the contents of a
given collection kit.

LibEntry elements can also be specified in a BibEntryDefs section or object
container and used by reference from within a document, for example, from Cit
elements. When LibEntry elements are specified within Cit, the LibEntry elements
are collected for use in a generated bibliography.

Contained BibEntry elements and LibEntry elements are normally used within
re-used information in order to ensure that the re-used information is completely
self-contained. In other words, these elements should be used within the scope of
the information that is being re-used. For example, if a Division element is re-used,
the BibEntry and LibEntry elements should be contained within that same
division’s DProlog element. This allows these elements to be completely contained,
and thus completely re-usable, within the division that is being re-used.

It is intended that the public identifier of the library entity be used by the
presentation system to locate the actual system object, but specific presentation
systems may define application-specific data to be specified as the system identifier
of the library entity if they do not support the use of public identifiers. The public
identifier can be included in the LibEntry itself as a way of keeping a library’s
formal public identifier definition with the rest of its bibliographic information.
This could allow, for example, the automatic generation of entity declarations for
libraries described by LibEntry elements.

Chapter 25. IBMIDDoc Elements 331

LibEntry (document library definition)

Examples

<bibentrydefs>

<ibmlibentry>
<library><titleblk><titl1e>BS/300</title></titleblk>
</library>

<ibmbofnum>SBOF-1234-0</1ibmbofnum>

<containeddocs bibids="booka bookb"></ibmlibentry>
<ibmbibentry id="booka"><doctitle><titleblk><title>
BS/300 Guide</title></titleblk></doctitle></ibmbibentry>
<ibmbibentry id="bookb"><doctitle><titleblk><title>
BS/300 Reference</title></titleblk></doctitle></ibmbibentry>
<libentry>
<library><titleblk><title>Back'n'Recovery</title>
</titleblk></1ibrary>

</1ibentry>

</bibentrydefs>

Attributes
See 'Common Flement Attributes (large set)” on page 227,

Usage

See

" 17

Contexts

Children: BOFNum, ContainedDacd, Desd, [SBN], Libraryl OrderNum|, ProdNamé,
Prtl od, Publicld, Published

Parents: IBj.b.En.thDeﬁd, [BibList, Git.

LIBIk (list item block)

Purpose

The LIBlk element groups items within a list. The reasons for the grouping are
determined by the author. The grouping may be logical, and can be indicated by
including an optional title. LiBlk can also be used define blocks of list items to be
connected with a Bridge element.

If you want to have all the text in the LIBLK to be on the same page, use
style="xpp:(keep)”. Be cautious when using this feature. If the text does not fit on a
page, remove the style="xpp:(keep)” or the pages will not format correctly.

Migration Note
The use of LIBIK, its title, or the use of Bridge, replaces the List Part (LP)
element from BookMaster.

Examples

<0]>

<liblk>

<1i>1 GIG SCSI-2 Hard Disk</1i>
<1i>32 MB RAM</1i>

<1i>128-Bit 8MB VRAM Video</1i>
<1i>21-Inch Monitor</1i>
</1iblk>

<liblk>

332 1D Workbench: IBMIDDoc User’s Guide and Reference

LIBIK (list item block)

Great Word Processor</1li>
Best Multimedia App</1i>
Voice Mail</1i>

</1iblk>

Attributes

See

7 . ”

Usage

” . . . 7

See

Contexts
Children: @, E, frind.

Parents: NoteLis, E‘, E.tep.hbteﬁ, o,

Library

Purpose
The Library element contains the name of a library.

Examples

See these books for a good read and then a weird read: <cit>
<bibentry><doctitle><titleblk><title>Tom Sawyer</title>
</titleblk></doctitle></bibentry></cit> and <cit>
<ibmbibentry><doctitle>
<library><titleblk><title>System/36</title></titleblk>
</Tibrary>

<titleblk><title>Concepts and Programmer's Guide</title>
</titleblk></doctitle></ibmbibentry></cit>

Attributes

See I'Common Flement Attributes (]argp set)” on page 227

Usage

”

For more information about the Library element, see [/An example of using

Contexts
Children: M

Parents: [DocTitld, (BMLibEntryl LibEntryl

Lines (text with line boundaries)

Purpose

The Lines element contains text for which the input line (record) boundaries are
significant and must be preserved or indicated when presented.

Chapter 25. IBMIDDoc Elements 333

Lines (text with line boundaries)

Examples

<LINES>

a partridge in a pear tree
two turtledoves

three French hens

four calling birds

five golden rings

six geese a-laying

seven swans a-swimming
eight maids a-milking
nine ladies dancing

ten Tords a-Teaping
eleven pipers piping
twelve drummers drumming
</LINES>

Attributes

NOTATION=LINESPEC
Specifies that LINESPEC is the default value for the NOTATION attribute.

OBJ=entity_name
The name of the external data entity that contains the line-specific data. When
OB]J is specified, it is an error to specify any data or the Lines end tag.

See i/ b ”
Usage

See [Just plain lines” on page 53.
Contexts

Chlldren %#%ia% [Addresd, A1, Bid, Chad Cid, Datd, Ded, Eormuld, Hed, [,

Parents: AnnotBody} Attention, BackCaver Brided, Caution, Danged, DBady, Defd,
Dmmwbnfrd@Eg&gE&mﬁ@LEmﬂmM@m@Mmﬂd

ModTten, Msgltend, MsgTexd, NoteBody, B PEIH, Procinird, BynNotd, Warning,

Litdata (literal data)

334

Purpose

The Litdata element contains or refers to literal data in a specific notation. Use
Litdata to contain or refer to data that is not to be parsed by the SGML parser and
that may need special processing in order to properly present the data, such as
character translation or use of special code pages.

When the OB]J attribute is used to refer to an external entity, the Litdata end tag
cannot be specified. Do not specify a notation when referring to an external entity
because the entity will have a notation defined on its entity declaration.

The typical use of Litdata is to contain or refer to samples of programming code.
The only SGML markup recognized within Litdata is the end tag open delimiter

(</). When literal data is included inline in the document, the end tag open
delimiter ends the Litdata element, regardless of the context.

ID Workbench: IBMIDDoc User’s Guide and Reference

Litdata (literal data)

Examples
<IENTITY testprg SYSTEM "testprg.c" ndata c>

<FIG>

<CAP>A basic C++ program.
<LITDATA 0BJ="TESTPRG">
</FI1G>

Attributes

NOTATION=notation_name
The name of the notation that the data is in. The notations supported are
defined by the specific implementation of IBMIDDoc you are using, but typical
notations include:

LINESPEC
Specifies that the line ends are respected. This is the default.

C

Cpp
C and C++ program source.

The processing application uses the notation name to determine what special
processing is needed to present the literal data. For example, in the case of C
program code, the square bracket and curly bracket characters may need
special treatment.

OBJ=entity_name
Specifies the name of an external data entity that contains the literal data.
When OB]J is specified, the Litdata end tag cannot be specified.

CDATA
Is the literal data.

Usage
See [Li ”
Contexts
Children: text (cdata).
Parents: AnnotBody IAttention, Ba.ck.CmLP_‘d, ided, Caution, ICGraphid Da%ﬂ]
DBody Defd, DIntrd, DSund, bntry [Fid, FieSed, Fd, ErantCoved, [EDI, [

MWM@M&MWEMM
EynNotd, Warning, Kmg.

LQ (excerpt quotation)

Purpose

Use the LQ element to contain material excerpted from another source that can
stand alone without a defining context. This is usually the case when the quotation
is of considerable length. The LQ may be of considerable length and can contain
almost any element, including divisions.

Examples

<1g>The only thing we have to fear is fear itself.
</1g>

Chapter 25. IBMIDDoc Elements 335

LQ (excerpt quotation)
Attributes

Usage

Bibld=bibentry_id
The ID of the BibEntry element that defines the source of the quotation. You
must either specify BIBID or include a BibEntry element within the LQ
element.

4 . ”

See

See 'Quotes and excerpts” on page 47.

Contexis

Children: text (#pcdata), [Addresd, Annaod, AP [Attention) @ %gd,

%ﬂ . Danged, Datd, Ded, DU, Eid, Eormetd, C1, Hex,
MO, MiNotd, MMOb], ModIntd, bV Notd, NoteLisd, Nurd, Dcd, 01, B

MMEWEAE RefKes) Bcreed, EynbH, Eymta, Labld, Gorad, 06, 011

Kengd, iPH, KRef

Parents: AnnotBody), A ttention], ,Cauﬁ.od,ban.gerlbﬂod;&beid, DIntrd,

DSund, Entry Fid, FieSed), [Ed, LEDJI , ModDesd, Modltend, Msglten], NoteBody B
EB]_kI IZ];Qan_t];d \vnT\Tnfc,Mlam_]né

Caution,
Lined

/4 4

Maintainer (reader comment)

Purpose

Usage

The content of the Maintainer element is used for tracking control information. It is
also used in generating a Reader Comment Form. If this information is not
included, the Reader Comment Form cannot be generated by the output processor.

See [

Examples

<maintainer>

<corp>

<corpname>IBM Corporation</corpname>
<address>ATTN: Dept 542

3605 HWY 52 N

Rochester, MN
<postalcode>55901-9986</postalcode></address>
</corp>

</maintainer>

Contexis

Children: @, Bersad.
Parents: [DProlag, Prolog, BpecDProlog.

336 ID Workbench: IBMIDDoc User’s Guide and Reference

Maintainer (reader comment)

Mark (marked note definition)

Purpose

Use Mark to define a collection of marked notes. To use marked notes, you must
define at least one collection in a document. All marked notes must be associated
with a collection.

You can define different collections of notes to correspond to different releases of a
document or to different types of notes. Different collections may use the same
classes and actions. For example, if you use marked notes to track changes and
generate a summary of changes, you can define different collections for different
releases or drafts of a document. Or if you are tracking changes from different
sources, you can define a collection for each different source.

Examples

<mark id="mkv5r4" ident="use">
<desc>V5R4 marked changes</desc>
</mark>

Attributes

ID=collection_id
Defines the mark collection ID.

IDENT=USE | IGNORE
Determines whether to process the specified collection of marked notes as
follows:

USE
Process the collection of marked notes.

IGNORE
Ignore the collection of marked notes.

Conloc
The CONLOC attribute specifies that the content of another element of the
same type is to be used as the content of the referencing element. This enables
reuse of information. When the CONLOC attribute is specified, you cannot
specify the element’s end tag. The result of using CONLOC is exactly the same
as if the element being referred to had occurred at that point in the document.

See [Reusing elements from an object library” on page 191.

Attributes on the element are now passed to the element with the CONLOC;
this is a feature that began with IDWB release 3.4, patch IDWXF036.

Class
The Class attribute associates an element class with an element. This attribute
must contain an SGML name that has been defined as a class name in a
ClassDef element. This attribute only applies to elements specified on the
ClassDef’s ELETYPE attribute. Element classes are defined with ClassDef

elements within PropDefs. See [Chapter 20 “Property and Class Definitions” on

for more information.

Rev
The REV attribute references the Rev element which describes the last revision

level of the information. See ['Ising Revisions” on page 109.

Status
ignored by processes

Chapter 25. IBMIDDoc Elements 337

Mark (marked note definition)

InfoMast
A fixed attribute used to classify the element.

Usage

See [!Creating Collections of Marked Notes” on page 111l
Contexts

Children: Desd.

Parents: m

MarkList (marked note list)

Purpose

Use MarkList to include a list of marked notes. Only notes that are members of the
specified collections and that have the specified class and action values are
included in the list.

Examples

<marklist mkids="mkv5r4" classes="msg abend" actions="change del rep"
display="item action location desc" classhd="Msg"
actionhd="Reason" Tochd="Loc" deschd="Desc">

Attributes

ID=marklist_id
Specifies the ID of this element.

DISPLAY=NAMES

CLASSES=class_name
Defines the mark class or classes to include in this list. Only notes with a
specified class will be included.

ACTIONS=action_name
Defines the action or actions to include in this list. Only notes with a specified
action will be included.

SPEC=AUTO | MAN
Specifies that the content of the element is generated.

Future Enhancement
FAt this time, MAN is not supported.

MKIDS=mark_id
Defines which collections to search for notes to present.

DISPLAY=CLASS | ACTION | LOC | ITEM | DESC
Specifies the type of information to display in the generated list. You can
choose one or more items from the group, but you can choose each item only
once. The items in the list are displayed in the order they are specified on the
Display attribute.

338 1D Workbench: IBMIDDoc User’s Guide and Reference

MarkList (marked note list)

CLASS
Specifies that the CLASS attribute values for the marked notes are to be
included.

ACTION
Specifies that the ACTION attribute values for the marked notes are to be
displayed.

ITEM
Specifies that the ITEM attribute values for the marked notes are to be
displayed.

LOC
Specifies that the locations of the marked notes, either page numbers or
online equivalents, are to be displayed.

DESC
Specifies that the contents of the marked notes are to be displayed.

CLASSHd=column_heading

ACTIONHd=column_heading

ITEMHd=column_heading

LOCHd=column_heading

DESCHd=column_heading
Defines the heading text associated with each type of information in the
generated list. These values override the default headings defined in the
document style.

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

s . ”

Usage

See

a . : ”

Contexts
Children: empty.

Parents: [DBody, DIntrd, DSumd, LEDY, Msgltend, PBIK, [Procintrd,

Masterindex (master index)

Purpose

The Master Index is a way to combine the indexes of several documents. Rather
than having to look in the index of several documents, the user can look in the
master index for the correct document and page number where the index entry is
located.

Chapter 25. IBMIDDoc Elements 339

Masterindex (master index)

Examples

<backm>

<masterindex>
<specdprolog><gendtitle></specdprolog>
<masterindexobj obj="gsugidx">
<masterindexobj obj="planidx">
<masterindexobj obj="instidx">
</masterindex></backm>

Attributes

LAYOUT=Default-Layout | OneCol | TwoCol | ThreeCol
Specifies the column-style for this portion of the book.

Default-Layout
The section uses the default layout for the document style.

OneCol
The entries format across the entire page.

TwoCol
The entries format in two columns.

ThreeCol
The entries format in three columns.

See ‘Camman Flement Attributes (laroe set)” an pace 227
[@) I (o]

Contexts

Children: DIntrd, DSuml, MasterIndexQhj, BpecDProlag.
Parents: BackM]|

Masterindexinfo (master index information)

340

Purpose

MasterIndexInfo is used in conjunction with MasterIndexPrefix. Use these tags
when preparing to merge the indexes of several documents into a master index.
These tags should be used in the content of each document containing an index
you wish to have merged into a master index.

Examples

<ibmbibentry><doctitle>

<library><titleblk>

<title>ID Workbench</title>
</titleblk></Tlibrary>

<titleblk>

<title>Getting Started and User's Guide</title>
</titleblk></doctitle>
<externalfilename>idfgsmst</externalfilename>
</ibmbibentry>

<masterindexinfo>
<masterindexprefix>GSUG</masterindexprefix>
</masterindexinfo>

Attributes

7 : ”

See

ID Workbench: IBMIDDoc User’s Guide and Reference

Masterindexinfo (master index information)

Contexts
Children: MasterIndexPrefix.

Parents: [DProlog, Prolag, BpecDProlog.

MasterindexObj (master index object)

Purpose

MasterIndexObj is used with the MasterIndex tag. The MasterIndexObj tag
provides a reference to the index of a document to be included in the Master
Index. This is a separate document in itself. It is separate from the documents with
indexes you are merging.

Examples

<IENTITY guide SYSTEM "rweguide.mdx" ndata mindex>
<IENTITY ref SYSTEM "rweref.mdx" ndata mindex>

<masterindex>
<specdprolog><gendtitle></specdprolog>
<masterindexobj obj="guide">
<masterindexobj obj="ref">
</masterindex>

Attributes

OBJ
Specifies the name of the master index entity.

Class
The Class attribute associates an element class with an element. This attribute
must contain an SGML name that has been defined as a class name in a
ClassDef element. This attribute only applies to elements specified on the
ClassDef’s ELETYPE attribute. Element classes are defined with ClassDef
elements within PropDefs, See rhapfpr 20 ”Prnpprfv and Class Definitions” onl
for more information.

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be
unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See ‘Property-Based

”

PropSrc
Points to an element whose properties are to be used as the properties of the

referencing element. See Chapter 20, “Property and Class Definitions” on

Status
ignored by processes

Style
The Style attribute contains either a reference to a separate style specification

Chapter 25. IBMIDDoc Elements 341

MasterindexObj (master index object)

for an element or a set of element-specific presentation style definitions when
the processing system does not support separate styles for elements. Assigning
a value to the STYLE attribute modifies how an element is presented when it is
output.

Usage

See LCx:eah.n.g_a_mas.ter_mdex_an_pa.geJ.Zﬂ i i ” .

Contexts
Children: empty.

Parents: MasterIndex.

MasterindexPrefix (master index prefix)

Purpose

MasterIndexPrefix is used in conjunction with MasterIndexInfo. Use these tags
when preparing to merge the indexes of several documents into a master index.
These tags should be used in the content of each document containing an index
you wish to have merged into a master index.

Examples

<masterindexinfo>
<masterindexprefix>GSUG</masterindexprefix>
</masterindexinfo>

Attributes

See ‘'Camman FElement Attributes (l;\rgp set)” on page 227

Usage

See l’(“rpafing a master index” on page 124

Contexts
Children: text (#pcdata).

Parents: MasterIndexInfd.

MD (marked deletion)

Purpose

The MD element identifies data that no longer applies. The REV attribute
associates the MD element with a specific revision.

MD can contain any other phrase-like elements. The MD element cannot be used
to mark data that contains paragraphs or division elements. In these cases, the
revision and status attributes provided for those elements must be used to indicate
the revision level and deletion status of the data.

342 1D Workbench: IBMIDDoc User’s Guide and Reference

MD (marked deletion)
Examples

The following data no longer applies:
<MD>This data no longer applies.</MD>,
as you can clearly see.

Attributes

Rev
The REV attribute references the Rev element which describes the last revision
level of the information. See L “

s . ”

See

Usage
See

7 : . ”

Contexts

Children: text (#pcdata), [Addresd, IAPI, @ tha.‘cl,m Datd, @ Eormula Hex, El,
BA] R, B, b, B89, B 0, Reiesd e8] B, (£, P, KRl

Parents: [AnnotBody) Ittention, Brided, Caution, CompCmi, Danged, Defr, Desd,
Eate Ed, O, O, Cined, [Q, MiNotd, ModDesd, Modited, NoteBods) B BH, B

BynNotd, Warning.

MetaData (information architecture)

Purpose

The MetaData tag identifies or classifies your information. It is passed through to
the XHTML output as metadata keywords. This helps search programs and other
programs find, filter, or select information.

Examples

<d id="feederinst">

<dprolog><titleblk>

<title>Installing your Fruit-Bat Feeder</title>
</titleblk>

<metadata type="task" job="installing"
audience="user" experiencelevel="general">
</dprolog>

Attributes

type
Indicates the information type. You can pick from: advisor, concept, definition,
example, reference, task, or wizard. For information on information types, refer

to UA Central: th;tp_,LLua_m.le.Lgb_lbm.cgm..LuJ

job
Indicates the type of job being performed with the information. You can pick
from: administering, configuring, customizing, evaluating, installing, planning,
programming, troubleshooting, or using.

audience
Indicates the intended audience. You can pick from: administrator, executive,
programmer, or user.

Chapter 25. IBMIDDoc Elements 343

http://ua.raleigh.ibm.com/ua

MetaData (information architecture)

experiencelevel
Indicates how experienced the reader is. You can pick from: expert, general, or
novice.

vrmoriginated
Indicates the version, release, and modification level that the information was
originated in.

vrmlastchanged
Indicates the version, release, and modification level that the information was
last updated.

classification
Indicates the classification of the information. You can pick classified or
unclassified.

Usage
See [!Creating an information architecture” on page 27,

Contexts
Children: empty.

Parents: Dprolag, BpecDprolad.

MkAction (marked note action definition)

Purpose

Use MkAction to define actions that can be associated with marked notes. You can
define as many actions as you need. Any mark action can be used with any mark
class. These actions are used within a MKNote element to describe the action that
is associated with that note. The MarkList element uses the MKAction to determine
which marked notes are to be presented.

’ . . 7

See

Examples

<propdefs>

<mkdesc>

<mkclass name="msg">Msg</mkclass>

<mkclass name="abend">Abend</mkclass>
<mkaction name="new">New</mkaction>

<mkaction name="changed">Changed</mkaction>
<mkaction name="deleted">Deleted</mkaction>
<mkaction name="replaced">Replaced</mkaction>
</mkdesc>

</propdefs>

Attributes

NAME=action_name
Specifies the short name of the action, which is the value specified in the
Action attribute of MkNote and the Actions attribute of MarkList.

Conloc
The CONLOC attribute specifies that the content of another element of the
same type is to be used as the content of the referencing element. This enables
reuse of information. When the CONLOC attribute is specified, you cannot

344 1D Workbench: IBMIDDoc User’s Guide and Reference

MkAction (marked note action definition)

specify the element’s end tag. The result of using CONLOC is exactly the same
as if the element being referred to had occurred at that point in the document.

See [Reusing elements from an object library” on page 191.

Attributes on the element are now passed to the element with the CONLOC;
this is a feature that began with IDWB release 3.4, patch IDWXF036.

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be
unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

Rev
The REV attribute references the Rev element which describes the last revision

level of the information. See f’_LIsm.g_Rmus:.nns_m_p.a.ge_lﬁg

Status
ignored by processes

Style
The Style attribute contains either a reference to a separate style specification
for an element or a set of element-specific presentation style definitions when
the processing system does not support separate styles for elements. Assigning
a value to the STYLE attribute modifies how an element is presented when it is
output.

HyTime
ignored by processes

InfoMast
A fixed attribute used to classify the element.

Reftype
ignored by processes

Usage

See

’ . : ”

Contexts
Children: text (#pcdata).

Parents: MkDesd.

MkClass (marked note class definition)

Purpose

The MkClass element defines a marked note class. These class codes are used in a
MarkNote element to specify the class of the note.

Examples

<propdefs>

<mkdesc>

<mkclass name="msg">Msg</mkclass>

<mkclass name="abend">Abend</mkclass>
<mkaction name="new">New</mkaction>
<mkaction name="changed">Changed</mkaction>

Chapter 25. IBMIDDoc Elements 345

MkClass (marked note class definition)

346

<mkaction name="deleted">Deleted</mkaction>
<mkaction name="replaced">Replaced</mkaction>
</mkdesc>

</propdefs>

Attributes

Usage

NAME=class_name
Specifies the short name of the class, which is the value specified in the Class
attribute of MkNote and the Classes attribute of MarkList.

Conloc
The CONLOC attribute specifies that the content of another element of the
same type is to be used as the content of the referencing element. This enables
reuse of information. When the CONLOC attribute is specified, you cannot
specify the element’s end tag. The result of using CONLOC is exactly the same
as if the element being referred to had occurred at that point in the document.

See 'Reusing elements from an object library” on page 191.

Attributes on the element are now passed to the element with the CONLOC;
this is a feature that began with IDWB release 3.4, patch IDWXF036.

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be
unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

Rev
The REV attribute references the Rev element which describes the last revision

level of the information. See U_I.sm.g_Rmu.smns’_on_pa.gP_LOQ

Status
ignored by processes

Style
The Style attribute contains either a reference to a separate style specification
for an element or a set of element-specific presentation style definitions when
the processing system does not support separate styles for elements. Assigning
a value to the STYLE attribute modifies how an element is presented when it is
output.

HyTime
ignored by processes

InfoMast
A fixed attribute used to classify the element.

Reftype
ignored by processes

7 : : ”

See

Contexts

Children: text (#pcdata).
Parents: MkDesd.

ID Workbench: IBMIDDoc User’s Guide and Reference

MkClass (marked note class definition)

MkDesc (mark description)

Purpose

The MkDesc element describes the classes and actions that can be used with
marked notes.

Use MkDesc to define the classes and actions that are valid for marked notes. Any
mark action can be used with any mark class.

Examples

<propdefs>

<mkdesc>

<mkclass name="msg">Msg</mkclass>

<mkclass name="abend">Abend</mkclass>
<mkaction name="new">New</mkaction>

<mkaction name="changed">Changed</mkaction>
<mkaction name="deleted">Deleted</mkaction>
<mkaction name="replaced">Replaced</mkaction>
</mkdesc>

</propdefs>

Attributes

Conloc
The CONLOC attribute specifies that the content of another element of the
same type is to be used as the content of the referencing element. This enables
reuse of information. When the CONLOC attribute is specified, you cannot
specify the element’s end tag. The result of using CONLOC is exactly the same
as if the element being referred to had occurred at that point in the document.

See [Reusing elements from an ohject library” on page 191.

Attributes on the element are now passed to the element with the CONLOC;
this is a feature that began with IDWB release 3.4, patch IDWXF036.

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be
unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

Rev
The REV attribute references the Rev element which describes the last revision

level of the information. See Using Revisions” on page 10d.

Status
ignored by processes

Style
The Style attribute contains either a reference to a separate style specification
for an element or a set of element-specific presentation style definitions when
the processing system does not support separate styles for elements. Assigning
a value to the STYLE attribute modifies how an element is presented when it is
output.

HyTime
ignored by processes

Chapter 25. IBMIDDoc Elements 347

MkDesc (mark description)

InfoMast
A fixed attribute used to classify the element.

Reftype
ignored by processes

Usage

See

7 . . ”

Contexis
Children: MkActiod, MkClass.

Parents: PropDefd, PropGroug.

MkNote (marked note)

Purpose

The MkNote element contains a marked note, which is a specialized annotation
element that can be associated with problem and change tracking information such
as change requests or problem numbers. Use marked notes to collect information
about the content of your document such as notes about changes, notes to yourself
as an author, or references to specific locations as navigation aides to readers.
Marked notes are presented in marked note lists as defined by the MarkList
element.

For example, you can automatically create a summary of changes by using marked
notes to record changes within your document and using a MarkList element to
generate a list of those notes.

Examples

<ibmiddoc docstyle="1ibmxagd">
<prolog><ibmbibentry><doctitle><titleblk>
<title>My Marked Changes Document for Messages</title>
</titleblk></doctitle></ibmbibentry>
<propdefs>

<mkdesc>

<!--Define two classes for marked 1ists - notes and abends-->
<mkclass name="msg">Msg</mkclass>

<mkclass name="abend">Abend</mkclass>
<!--Define the actions for the changed info-->
<mkaction name="new">New</mkaction>

<mkaction name="change">Changed</mkaction>
<mkaction name="del">Deleted</mkaction>
<mkaction name="rep">Replaced</mkaction>
</mkdesc>

</propdefs>

<revdefs>

<rev id="revv4r5" ident="use">

<date></date>

<desc></desc>

</rev>

<mark id="mkv4r5" ident="use">

<desc>v4r5 marked message changes</desc>
</mark>

</revdefs>

</prolog>

<body>

<d>

348 1D Workbench: IBMIDDoc User’s Guide and Reference

MkNote (marked note)

<dprolog><titleblk>

<title>List of changed items</title>
</titleblk></dprolog>

<dbody>

<marklist mkids="mkv4r5" classes="msg abend" actions="change del rep"
display="item action page desc" classhd="Msg" actionhd="Reason"
itemhd="Msg" Tochd="Page" deschd="Message text"></dbody>
</d>

<msglist>

<msg rev="revv4rs5">

<msgnum>IDWOO12</msgnum>

<msgtext>Hi there!</msgtext>

<msgitem class="xpl1">

<p>This is a friendly message.<mknote class="msg"
action="change" mkids="mkv4r5" item="IDWOO12">Hi there!
</mknote></p>

</msgitem>

</msg>

<msg rev="revv4rs5">

<msgnum>IDWOO13</msgnum>

<msgtext>Farewell!</msgtext>

<msgitem class="xp1">

<p>This unlucky message was removed.<mknote class="msg"
action="del" mkids="mkv4r5" item="IDWOO13">Farewell!
</mknote></p>

</msgitem>

</msg>

</msglist></body>

</ibmiddoc>

Attributes

CLASS=class_name
Defines one or more mark classes to which this marked note belongs.

ACTION=action_name
Defines one or more actions associated with this marked note.

MKIDS=mark_id
Contains the IDs of one or more Mark elements, which define collections of
marked notes.

ITEM=item_value
Defines an identifying label for the note, such as a message number, function
name, or error report. The Item attribute enables you to distinguish among
marks of the same class and action. You can also use the Item attribute to
closely associate a note with things in your document that have unique
identifiers such as message numbers.

DISPLAY=items-to-display
Specifies the items to display and the order to display them in. Values are:
item, action, loc or page, and desc.

CLASSHD=class-heading
Specifies the heading for the Class column.

ACTIONHD=action-heading
Specifies the heading for the Action column.

ITEMHD-=item-heading
Specifies the heading for the Item column.

LOCHD=location-heading
Specifies the heading for the Location column.

Chapter 25. IBMIDDoc Elements 349

MkNote (marked note)

DESCHD=description-heading
Specifies the heading for the Description column.

v . ”

See

See l/Creating Collections of Marked Notes” on page 111

Contexts

Chlldren text ata),lA.dd.tesﬁ Annof IAPL, E CGraphid, IChad E
e, I, Cined | banob] B Rioed,
b, am m @ by O Refkey] Boreed, Eyml,

@, e e D Kang), KPH, Kol

Pa1re1r1tslp|Amjlr\&t\rhJ IA.ttenJmﬂ , ta.l.l.ti.ad, Da.n.geﬂ, DB.odJ, D.e.ﬁd, Dln.ttd,
I [S]]n;{ nirs |E]gSe# |[| El)ﬂ , IMQd| !esd, IMQd“.’EJI‘, IMSgH;EJI‘,
B BRI, Brocintrd, Warning »

MMODbj (multi-media object; artwork)

350

Purpose

The MMODbj element refers to a non-text object such as an image, vector graphic, or
video clip. The types of objects supported depends on your processing and
presentation systems. For print, non-text objects are usually image or vector
graphics such as EPS graphics. For online information, they would be BMPs, GIFs,
or JPEGs. MMODbj also contains a text description of the object, intended to provide
an alternative to the object itself.

Depending on the style definition, the object can be integrated with the text. It is
normally presented inline with the text. The online presentation of non-text objects
depends on the presentation system being used. When you need to refer to a
single non-text object, you can use the OB]J attribute of the MMODbj element to
specify the entity that represents the object.

Migration Note
MMObj replaces the ARTWORK and ARTALT tags. Use MMObj as you
would ARTALT. The presentation attributes on the ARTWORK tag are now
notation attributes specified on the entity declaration used to declare the
artwork file.

Examples

Here’s the declaration and the markup for an illustration of a bike:
<IENTITY bike system "bike.gif" ndata graphics>

<MMOBJ>

<OBJREF 0BJ="bike">

<TEXTALT>This is a two-wheeled bicycle.</TEXTALT>
</MMOBJ>

ID Workbench: IBMIDDoc User’s Guide and Reference

MMODbj (multi-media object; artwork)

S~

A

“A

Ny

=)

Attributes

LABEL=position
Defines a text label to use for a graphic object when the object cannot be
presented, or to use as a link button.

Placement=position
Controls where the grapic appears on the page. Valid values include:
standalone, inline, and margin.

Standalone
Places artwork on a sparate line. This is the default value.

Inline
Places artwork in the current text stream without a preceding or following
line break. This replaces the previously used style override bkm: (runin)

Margin
Places artwork in the offset margin. In some Xyvision-formatted styles, the
placement does not work as expected.

Halign=alignment
Controls the horizontal alignment of the graphic witin the textline when
standalone is specified. Valid values include: left, center, right, and current.

’ . ”

See

Usage

See

0 : : ”

Contexts
Children: MMOR{Tinl, DhjRed, FextAll.

Chapter 25. IBMIDDoc Elements 351

MMODbj (multi-media object; artwork)

Parents: AnnotBody) Bttentiod, BackCoved Bridgd, Cautiod, Cond, Capyd,
CoverDef, Danger, DBady Defd, Desd, DIntrd, DSum, EdNoticesd, bn’rrdm EigSeg,
Ed, FrontCoved, LEDesd, LEDI, [, £Q, MkNotd, ModDesd, Modlter], Msgltend,
Riterd, NoteBody Noficed, B PartAsn, IEa.utAs.mSng PBIN, ProcEntry, ProcExi,

Broclntzd, Batety] Boreed, Bead, ByaNowd, Korad, Wazning.

MMODbijLink (multi-media object link)

Purpose

The MMODbjLink element allows you to create a graphic hot spot under an image.

Examples

<mmobj><objref obj="partl">
<mmobjlink 1inkend="newdiv">
<areadef coords="1 100">
</areadef></mmobj1ink>
<textalt></textalt>

</mmobj>

Attributes

LINKEND=text_target
Specifies the ID of the textual target of the link.

AREADEFS=ref-ID
Specifies the ID of the AreaDef element containing the graphic area
specification of the graphic hot spot. If AREADEFS is specified, MMObjLink
must be an empty element. To specify the area definition, see

7

If you do not specify an area definition using an ID, use an inline AreaDefs
element to define the hotspot.

See I'Common Flement Attributes (]argp set)” on page 227

Usage
See

7 . . . 173

Contexts
Children: [AreaDef.

Parents: MMQbJ.

Mod (information module)

352

Purpose

The Mod element contains a module of information within a collection of modules.
The modules usually have the same structure.

Use modular information to create reference information. You can define as many
different modular information classes as you want for information that is similarly
structured.

ID Workbench: IBMIDDoc User’s Guide and Reference

Mod (information module)

Examples

<modinfo class="cust" style="table">

<mod class="CUST">

<modname class="NAME">Fred Smith</modname>

<moditem class="CUSTID"><p><num base="10">1000</num></p></moditem>
<moditem class="INC"><num base="10">40000</num></moditem>

<moditem class="LPD"><p><date>12/25/93</date></p></moditem>
<moditem class="NOTES"><p>Big spender</p></moditem>

</mod>

<mod cTlass="CUST">

<modname class="NAME">Suzanne Stanley</modname>

<moditem class="CUSTID"><p><num base="10">1001</num></p></moditem>
<moditem class="INC"><p><num base="10">50000</num></p></moditem>
<moditem class="LPD"><p><date>11/22/92</date></p></moditem>
<moditem class="NOTES"><p>Likes game software</p></moditem>

</mod>

<mod cTlass="CUST">

<modname class="NAME">Jeff George</modname>

<moditem class="CUSTID"><p><num base="10">1002</num></p></moditem>
<moditem class="INC"><p><num base="10">60000</num></p></moditem>
<moditem class="LPD"><p><date>12/02/93</date></p></moditem>
<moditem class="NOTES"><p>Likes DVD movies</p></moditem>

</mod>

<mod cTlass="CUST">

<modname class="NAME">Mike Gidento</modname>

<moditem class="CUSTID"><p><num base="10">1003</num></p></moditem>
<moditem class="INC"><p><num base="10">35000</num></p></moditem>
<moditem class="LPD"><p><date>12/12/92</date></p></moditem>
<moditem class="NOTES"><p>Likes 8-track tapes</p></moditem>

</mod>

</modinfo>

Attributes

CLASS=classname
Defines the class of this information module. Classes are defined with a
ModInfoDef element within the document or division prolog.

s . ”

See

Usage

See

Contexts
Children: MadDesd, ModItem|, ModNamd, RetKeyl

Parents: m

ModDesc (modular content description)

Purpose

The ModDesc element contains a description of the content of the Mod element of
which it is a part.

Examples

<modinfo class="cust" style="table">
<mod class="CUST">
<modname class="NAME">Fred Smith</modname>

Chapter 25. IBMIDDoc Elements 353

ModDesc (modular content description)

<moddesc>Fred is a cool guy</moddesc>

<moditem class="CUSTID"><p><num base="10">1000</num></p></moditem>
<moditem class="INC"><num base="10">40000</num></moditem>

<moditem class="LPD"><p><date>12/25/93</date></p></moditem>
<moditem class="NOTES"><p>Big spender</p></moditem>

</mod>

<mod class="CUST">

<modname class="NAME">Suzanne Stanley</modname>

<moditem class="CUSTID"><p><num base="10">1001</num></p></moditem>
<moditem class="INC"><p><num base="10">50000</num></p></moditem>
<moditem class="LPD"><p><date>11/22/92</date></p></moditem>
<moditem class="NOTES"><p>Likes game software</p></moditem>

</mod>

<mod class="CUST">

<modname class="NAME">Jeff George</modname>

<moditem class="CUSTID"><p><num base="10">1002</num></p></moditem>
<moditem class="INC"><p><num base="10">60000</num></p></moditem>
<moditem class="LPD"><p><date>12/02/93</date></p></moditem>
<moditem class="NOTES"><p>Likes DVD movies</p></moditem>

</mod>

<mod class="CUST">

<modname class="NAME">Mike Gidento</modname>

<moditem class="CUSTID"><p><num base="10">1003</num></p></moditem>
<moditem class="INC"><p><num base="10">35000</num></p></moditem>
<moditem class="LPD"><p><date>12/12/92</date></p></moditem>
<moditem class="NOTES"><p>Likes 8-track tapes</p></moditem>

</mod>

</modinfo>

Attributes

4 . ”

See

See

Contexis

Chlldren text (#pcdata), IAddresd, Annot, IAPI], [Attention), E, IB%EI, Caution),

Parents: Mod.

Modinfo (modular information)

354

Purpose

The ModInfo element contains a set of information modules for a single class of
modular information.

Use a ModInfo element to contain a set of information modules that describe a
type of information that is specific to your document. For example, in a document
describing a complex program, you can define a class of information module for
describing data structures.

Note: If your information describes the elements of a computer language, use the
LERS element for your information.

ID Workbench: IBMIDDoc User’s Guide and Reference

Modinfo (modular information)

Information modules can also be organized within object libraries and used by
reference from within a modular information section using the CONLOC attribute.

The default presentation style for modular information is as divisions, but other
presentation styles are defined. For example, you can present each module as a
row in a table for quick reference.

MODINFO with any style except STYLE=TABLE becomes a series of nested
divisions. When STYLE=TABLE is used, it is mapped to a table. The title of
MODINFO becomes CAP; DESC becomes DESC; MODINFOTITLE becomes
ENTRY; MOD becomes ROW; MODNAME becomes ENTRY, and the TITLE in
MODITEM is suppressed.

To use information modules, you must define an information module class using
the ModInfoDef element. To better facilitate reuse, you should consider containing
the ModInfoDef element within your modular information unit. You can specify
the modular information class on the ModInfo element, which applies to all
contained Mod elements, or you can specify a class on each Mod element.

For example, suppose you define several related classes of information module that
you want to group into a single ModInfo group for presentation. In that case, you
need to specify the class for each module rather than a global class for the
ModInfo element.

Examples

<modinfo class="cust" style="table">

<mod cTass="CUST">

<modname class="NAME">Fred Smith</modname>

<moditem class="CUSTID"><p><num base="10">1000</num></p></moditem>
<moditem class="INC"><num base="10">40000</num></moditem>

<moditem class="LPD"><p><date>12/25/93</date></p></moditem>
<moditem class="NOTES"><p>Big spender</p></moditem>

</mod>

<mod cTass="CUST">

<modname class="NAME">Suzanne Stanley</modname>

<moditem class="CUSTID"><p><num base="10">1001</num></p></moditem>
<moditem class="INC"><p><num base="10">50000</num></p></moditem>
<moditem class="LPD"><p><date>11/22/92</date></p></moditem>
<moditem class="NOTES"><p>Likes game software</p></moditem>

</mod>

<mod cTass="CUST">

<modname class="NAME">Jeff George</modname>

<moditem class="CUSTID"><p><num base="10">1002</num></p></moditem>
<moditem class="INC"><p><num base="10">60000</num></p></moditem>
<moditem class="LPD"><p><date>12/02/93</date></p></moditem>
<moditem class="NOTES"><p>Likes DVD movies</p></moditem>

</mod>

<mod cTass="CUST">

<modname class="NAME">Mike Gidento</modname>

<moditem class="CUSTID"><p><num base="10">1003</num></p></moditem>
<moditem class="INC"><p><num base="10">35000</num></p></moditem>
<moditem class="LPD"><p><date>12/12/92</date></p></moditem>
<moditem class="NOTES"><p>Likes 8-track tapes</p></moditem>

</mod>

</modinfo>

Chapter 25. IBMIDDoc Elements 355

Modinfo (modular information)

Attributes

style=table
Causes the modular information to be presented in a table format. The default
is as nested headings.

4 : ”

See

See

Contexis

Children: Desd, Mod), ModInfoDed, RetKes) [Titld.

Parents: AnnotBody, %.pendﬂ, (Attention, Bodyl Brided Caution, Dangen D.Bad.yl
Defd, Dintrd, DSund, Ed, LED], L1 Ld, Mselterd, NoteBody) B PRI, Procint:d,

ModinfoDef (modular information property definition)

356

Purpose

The ModInfoDef element defines a set of modular information properties.

Use ModInfoDef to define a class of modular information specific to your
information. You can apply specific presentation styles to a given class of modular
information using the STYLE attribute.

All classes referenced by a ModInfo element must be defined. These classes are
usually defined in a central location that is accessed by many documents. This
centralization allows control over the class definitions for modular information
used at a publishing site.

The scope of a definition is determined by the location of the definition.

Examples

<propdefs>

<modinfodef classname="CUST"><desc>Customer information
</desc>

<moditemdef classname="NAME"><title>Name</title><desc>
This is the first and last name of the customer</desc>
</moditemdef>

<moditemdef classname="CUSTID"><title>ID</title><desc>
This is their customer id number</desc></moditemdef>
<moditemdef classname="INC"><title>Income</title>
<desc>This is their annual estimated income</desc>
</moditemdef>

<moditemdef classname="LPD"><title>Last purchase date
</title><desc>This is their Tast purchase date</desc>
</moditemdef>

<moditemdef classname="NOTES"><title>Notes</title>
<desc>Personal notes</desc></moditemdef>

</modinfodef>

</propdefs>

ID Workbench: IBMIDDoc User’s Guide and Reference

ModinfoDef (modular information property definition)

Attributes

CLASSNAME=classname
Specifies the class of modular information that is being defined.

Usage

See

Contexts
Children: Desd, ModItemDef.

Parents: ModInfd, PropDefd, PropGroug.

ModItemDef (item class definitions)

Purpose

The ModItemDef element defines the classes of module description items valid for
a class of modular information.

Examples

<propdefs>

<modinfodef classname="CUST"><desc>Customer information
</desc>

<moditemdef classname="NAME"><title>Name</title><desc>
This is the first and last name of the customer</desc>
</moditemdef>

<moditemdef classname="CUSTID"><title>ID</title><desc>
This is their customer id number</desc></moditemdef>
<moditemdef classname="INC"><title>Income</title>
<desc>This is their annual estimated income</desc>
</moditemdef>

<moditemdef classname="LPD"><title>Last purchase date
</title><desc>This is their last purchase date</desc>
</moditemdef>

<moditemdef classname="NOTES"><title>Notes</title>
<desc>Personal notes</desc></moditemdef>

</modinfodef>

</propdefs>

Attributes

CLASSNAME-=classname
Defines the class of module description item that is valid for a class of
modular information.

7 . ”

See

Usage
See

Contexis
Children: @, friad.

Parents: ModInfoDed, PropDefd, PropGroug.

Chapter 25. IBMIDDoc Elements 357

ModitemDef (item class definitions)

ModItem (module description item)

Purpose

The ModItem element contains one item in a module of information.

The ModItem elements within a Mod element contain the different kinds of
information that are applicable for a given class of information module. The classes

for the ModItem elements are defined in the ModItemDef element.

The style used to present ModlItems is determined by the style specification of the
Mod element which contains it.

Examples

<modinfo

class="cust" style="table">

<mod class="CUST">

<modname
<moditem
<moditem
<moditem
<moditem
</mod>

class="NAME">Fred Smith</modname>

class="CUSTID"><p><num base="10">1000</num></p></moditem>
class="INC"><num base="10">40000</num></moditem>
class="LPD"><p><date>12/25/93</date></p></moditem>
class="NOTES"><p>Big spender</p></moditem>

<mod class="CUST">

<modname
<moditem
<moditem
<moditem
<moditem
</mod>

class="NAME">Suzanne Stanley</modname>
class="CUSTID"><p><num base="10">1001</num></p></moditem>
class="INC"><p><num base="10">50000</num></p></moditem>
class="LPD"><p><date>11/22/92</date></p></moditem>
class="NOTES"><p>Likes game software</p></moditem>

<mod class="CUST">

<modname
<moditem
<moditem
<moditem
<moditem
</mod>

class="NAME">Jeff George</modname>

class="CUSTID"><p><num base="10">1002</num></p></moditem>
class="INC"><p><num base="10">60000</num></p></moditem>
class="LPD"><p><date>12/02/93</date></p></moditem>
class="NOTES"><p>Likes DVD movies</p></moditem>

<mod class="CUST">

<modname
<moditem
<moditem
<moditem
<moditem
</mod>

class="NAME">Mike Gidento</modname>
class="CUSTID"><p><num base="10">1003</num></p></moditem>
class="INC"><p><num base="10">35000</num></p></moditem>
class="LPD"><p><date>12/12/92</date></p></moditem>
class="NOTES"><p>Likes 8-track tapes</p></moditem>

</modinfo>

Attributes

CLASS=classname
Indicates which class of information the ModItem contains. The class values for
a modular information item are defined on the ModIntemDef element.

7

See

Usage

See

Contexts

Children: text (#pcdata), [Addresd, Annod, IAPL [Attention]

358 1D Workbench: IBMIDDoc User’s Guide and Reference

Caution,

Moditem (module description item)
LitDatd, LQ, MO Ih%lwl Notd, Notelis], Nund, Bcd, BI, B
Rarmll, IETr_tAsnd DB, E MM% 0, RefKey Bereed, BynPH, Byntad, Term,
™M, ﬁl Xmp, XPH, XRef
Parents: Maod.

ModLvl (modification level)

Purpose

The ModLvl element contains a program’s modification level.

Examples

<IBMPRODINFO>

<PRODNAME>Test Prod</PRODNAME>
<VERSION>2</VERSION>
<RELEASE>3</RELEASE>
<MODLVL>1</MODLVL>
<IBMPROGNUM>223-3330</IBMPROGNUM>
</IBMPRODINFO>

Attributes

See

7 . ”

Usage
See

’ ”

Contexts
Children: text (#pcdata), Bd.

Parents: [BMProdInfd.

ModName (modular information element name)

Purpose

The ModName element contains the name of the information contained by the
Mod element of which it is a part.

Examples

<modinfo class="cust" style="table">

<mod cTlass="CUST">

<modname class="NAME">Fred Smith</modname>

<moditem class="CUSTID"><p><num base="10">1000</num></p></moditem>
<moditem class="INC"><num base="10">40000</num></moditem>

<moditem class="LPD"><p><date>12/25/93</date></p></moditem>
<moditem class="NOTES"><p>Big spender</p></moditem>

</mod>

<mod cTlass="CUST">

<modname class="NAME">Suzanne Stanley</modname>

<moditem class="CUSTID"><p><num base="10">1001</num></p></moditem>
<moditem class="INC"><p><num base="10">50000</num></p></moditem>
<moditem class="LPD"><p><date>11/22/92</date></p></moditem>
<moditem class="NOTES"><p>Likes game software</p></moditem>

</mod>

<mod cTlass="CUST">

<modname class="NAME">Jeff George</modname>

Chapter 25. IBMIDDoc Elements 359

ModName (modular information element name)

<moditem class="CUSTID"><p><num base="10">1002</num></p></moditem>
<moditem class="INC"><p><num base="10">60000</num></p></moditem>
<moditem class="LPD"><p><date>12/02/93</date></p></moditem>
<moditem class="NOTES"><p>Likes DVD movies</p></moditem>

</mod>

<mod class="CUST">

<modname class="NAME">Mike Gidento</modname>

<moditem class="CUSTID"><p><num base="10">1003</num></p></moditem>
<moditem class="INC"><p><num base="10">35000</num></p></moditem>
<moditem class="LPD"><p><date>12/12/92</date></p></moditem>
<moditem class="NOTES"><p>Likes 8-track tapes</p></moditem>

</mod>

</modinfo>

Attributes

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

Layout=Default-Layout | TwoCol | Page
This specifies how the message list should be formatted.

Default-Layout
Uses the layout based on the style. Most of the styles will have the default
as two columns, but some of the smaller styles have a default of
page-wide.

TwoCol
Composes the message list in two columns.

Page
Composes the message list page-wide.

RETKEY=None | NoDup
Use the RetKey attribute to enable or disable automatic running headings for
this tag.

NONE
indicates that nothing is to be used

NODUP
indicates that the first and last non-blank items on the page are to be used.
The two items are joined together, separated by a bullet or other character,
and the combined string is used as the retrieval subject for the page. Use
of NODUP provides the most dictionary-like retrieval of items. If the first
and last items on the page are the same, only one of the items appears.

If you code any explicit RetKey elements, they are honored and will appear. If
you nest elements that can generate a running heading (for example, a MsgList
inside Lers), only the outer active generated heading is used. That is, if you
specified automated RetKey generation for LERS and MSGLIST, a Msgno
inside Lers will not be used in the RetKey area. But if you had an explicit
RetKey inside the Msg, then the RetKey is honored as an explicit override.

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See L. =
ScalePct=scale-percent
You can use the ScalePct attribute to scale the text up or down in the element.

360 ID Workbench: IBMIDDoc User’s Guide and Reference

ModName (modular information element name)

The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:

scalepct="80"

7 . ”

See

Usage
For more information about the ModName element, see Examples of Using

”

Contexts
Children: text (#pcdata), ﬂ, E, E, M.

Parents: I@

Msg (message or code description)

Purpose
The Msg element contains a message or code and its description.

Examples

<msglist>

<msg>

<msgnum>DJI17832E</msgnum>

<msgtext>This message is issued when no data set of
the name <mv>file-name</mv> is found.</msgtext>
<msgitem class="xp1">

<p>The processor could not Tocate the data set named <mv>
file-name</mv>.</p>

</msgitem>

<msgitem class="severity">

<p>8</p>

</msgitem>

<msgitem class="probd">

<p>You would appear to have a problem.</p>
</msgitem>

<msgitem class="uresp">

<p>Search high and Tow for the data set.</p>
</msgitem>

</msg>

<msg>

<msgtext>This message has no number</msgtext>
<msgitem class="xp1">

<p>This message has no message number; only text.
These are really insidious because it makes finding
the message very hard.</p>

</msgitem>

</msg>

</msglist>

Attributes

See

7 : ”

Usage

See

7 : ”

Chapter 25. IBMIDDoc Elements 361

Msg (message or code description)

Contexts
Children: Codd, Msgltend, IMsgNum, MsgTexd, [[itld.

Parents: @

Msgltem (message description item)

Purpose
The Msgltem element contains part of the description of a message or code.

Examples

<msglist>

<msg>

<msgnum>DJI17832E</msgnum>

<msgtext>This message is issued when no data set of
the name <mv>file-name</mv> is found.</msgtext>
<msgitem class="xpl">

<p>The processor could not Tocate the data set named <mv>
file-name</mv>.</p>

</msgitem>

<msgitem class="severity">

<p>8</p>

</msgitem>

<msgitem class="probd">

<p>You would appear to have a problem.</p>
</msgitem>

<msgitem class="uresp">

<p>Search high and Tow for the data set.</p>
</msgitem>

</msg>

<msg>

<msgtext>This message has no number</msgtext>
<msgitem class="xp1">

<p>This message has no message number; only text.
These are really insidious because it makes finding
the message very hard.</p>

</msgitem>

</msg>

</msglist>

Attributes

CLASS=author-defined_class | DEST | XPL | EXPLANATION | MODULE |
NUMBYTES | ORESP | PRESP | PROBD | SEVERITY | SPRESP | SYSACT |
URESP

Indicates the class of the Msgltem as follows:

author-defined_class
Specifies an author-defined class, which must be defined using a
MsgltemDef element.

DEST
Specifies the message destination.

XPL or EXPLANATION
Specifies the message explanation.

MODULE
Specifies the issuing module.

362 ID Workbench: IBMIDDoc User’s Guide and Reference

Msgltem (message description item)

NUMBYTES
Specifies the number of error bytes.

ORESP
Specifies the operator response.

PRESP
Specifies the programmer response.

PROBD
Specifies problem-determination information.

SEVERITY
Specifies the message severity.

SPRESP
Specifies the system-programmer response.

SYSACT
Specifies the system action.

URESP
Specifies the user response.

Usage

See

0 . ”

Contexis

Chlldrenmwwwwwwﬁ
mmmmmﬂmwwmww
ModInfd, . Notd, Notel i, DI, B Parm1], PartAsmd, PRI, Prod,

MMOb),
Bereed, Bymtad, Eabld, [0, g
Parents: @

MsgltemDef (definition of message description items)

Purpose

The MsgltemDef element defines the classes of message description items that are
valid for a message list.

Examples

<msglist>

<msgitemdef classname="xpl1"><title>Why</title></msgitemdef>
<msgitemdef classname="uresp"><title>What to do</title>
</msgitemdef>

<msg>

<msgnum>A12</msgnum>

<msgtext>Closet full: Insufficient storage to proceed.
</msgtext>

<msgitem class="xpl">

<p>There are too many clothes in the closet.</p>
</msgitem>

<msgitem class="uresp">

<p>Remove some clothes from the closet and restart.
</p>

</msgitem>

</msg>

</msglist>

Chapter 25. IBMIDDoc Elements 363

MsgltemDef (definition of message description items)

Attributes

CLASSNAME=author-defined_class | DEST | EXPLANATION | MODULE |
NUMBYTES | ORESP | PRESP | PROBD | SEVERITY | SPRESP | SYSACT |
URESP

Specifies the Msgltem class to which the definition applies as follows:

author-defined_class
Specifies an author-defined class, which must be defined using a
MsgltemDef element.

DEST
Specifies the message destination.

EXPLANATION
Specifies the message explanation.

MODULE
Specifies the issuing module.

NUMBYTES
Specifies the number of error bytes.

ORESP
Specifies the operator response.

PRESP
Specifies the programmer response.

PROBD
Specifies problem-determination information.

SEVERITY
Specifies the message severity.

SPRESP
Specifies the system-programmer response.

SYSACT
Specifies the system action.

URESP
Specifies the user response.

Usage
See ['Message and cade lists” on page 38.

Contexts
Children: @, frind.

Parents: MsgLisi, PropDefd, PropGroug.

MsgLDef (Message list definition)

Purpose

The MsgLDef element sets attribute defaults for message lists. MsgLDef goes
within the document prolog to set definitions for the entire document; or within a
division prolog to set definitions for just that division. The MsgLDef tag goes
inside a PropDefs tag.

364 1D Workbench: IBMIDDoc User’s Guide and Reference

MsgLDef (Message list definition)
Examples

<propdefs>
<msgldef defname="msginline" Tayout="default-layout" retkey="none">
</propdefs>

Attributes

DEFNAME-=definition-name
The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

Layout=Default-Layout | TwoCol | Page
This specifies how the message list should be formatted.

Default-Layout
Uses the layout based on the style. Most of the styles will have the default
as two columns, but some of the smaller styles have a default of
page-wide.

TwoCol
Composes the message list in two columns.

Page
Composes the message list page-wide.

RETKEY=None | NoDup
Use the RetKey attribute to enable or disable automatic running headings for
this tag.

NONE
indicates that nothing is to be used

NODUP
indicates that the first and last non-blank items on the page are to be used.
The two items are joined together, separated by a bullet or other character,
and the combined string is used as the retrieval subject for the page. Use
of NODUP provides the most dictionary-like retrieval of items. If the first
and last items on the page are the same, only one of the items appears.

If you code any explicit RetKey elements, they are honored and will appear. If
you nest elements that can generate a running heading (for example, a MsgList
inside Lers), only the outer active generated heading is used. That is, if you
specified automated RetKey generation for LERS and MSGLIST, a Msgno
inside Lers will not be used in the RetKey area. But if you had an explicit
RetKey inside the Msg, then the RetKey is honored as an explicit override.

Chapter 25. IBMIDDoc Elements 365

MsgLDef (Message list definition)

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See l'Property-Based
Rmﬂaj_(m_pa.gem’ ” .

ScalePct=scale-percent
You can use the ScalePct attribute to scale the text up or down in the element.
The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:

scalepct="80"

Usage

See

Contexts
Children: empty.

Parents: PropDefd, PropGroug.

MsgList (list of message or code descriptions)

366

Purpose

Use MsgList to contain descriptions of messages and codes. A MsgList contains
one or more Msg elements, which contain the message or code and any
explanatory text associated with it.

Examples

<msglist>

<msg>

<msgnum>DJ17832E</msgnum>

<msgtext>This message is issued when no data set of
the name <mv>file-name</mv> is found.</msgtext>
<msgitem class="xp1">

<p>The processor could not Tocate the data set named <mv>
file-name</mv>.</p>

</msgitem>

<msgitem class="severity">

<p>8</p>

</msgitem>

<msgitem class="probd">

<p>You would appear to have a problem.</p>
</msgitem>

<msgitem class="uresp">

<p>Search high and Tow for the data set.</p>
</msgitem>

</msg>

<msg>

<msgtext>This message has no number</msgtext>
<msgitem class="xpl">

<p>This message has no message number; only text.
These are really insidious because it makes finding
the message very hard.</p>

</msgitem>

</msg>

</msglist>

ID Workbench: IBMIDDoc User’s Guide and Reference

MsgList (list of message or code descriptions)

Attributes
DEF=definition-name

Usage

Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as
defaults for this tag. See “Tsi initi - for
more information.

Layout=Default-Layout | TwoCol | Page

This specifies how the message list should be formatted.

Default-Layout
Uses the layout based on the style. Most of the styles will have the default
as two columns, but some of the smaller styles have a default of
page-wide.

TwoCol
Composes the message list in two columns.

Page
Composes the message list page-wide.

RETKEY=None | NoDup

Use the RetKey attribute to enable or disable automatic running headings for
this tag.

NONE
indicates that nothing is to be used

NODUP
indicates that the first and last non-blank items on the page are to be used.
The two items are joined together, separated by a bullet or other character,
and the combined string is used as the retrieval subject for the page. Use
of NODUP provides the most dictionary-like retrieval of items. If the first
and last items on the page are the same, only one of the items appears.

If you code any explicit RetKey elements, they are honored and will appear. If
you nest elements that can generate a running heading (for example, a MsgList
inside Lers), only the outer active generated heading is used. That is, if you
specified automated RetKey generation for LERS and MSGLIST, a Msgno
inside Lers will not be used in the RetKey area. But if you had an explicit
RetKey inside the Msg, then the RetKey is honored as an explicit override.

ScalePct=scale-percent

See

See

Contexts
Children: Msg, MsgltemDed, RetKeyl

Parents: Appendid, Body, DBody, LEDI, ModItend, Msgltem.

You can use the ScalePct attribute to scale the text up or down in the element.
The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:

scalepct="80"

7 . ”

7 . ”

Chapter 25. IBMIDDoc Elements 367

MsgList (list of message or code descriptions)

MsgNum (message identifier)

Purpose

The MsgNum element contains the number of a message.

Examples

<msglist>

<msg>

<msgnum>DJ17832E</msgnum>

<msgtext>This message is issued when no data set of
the name <mv>file-name</mv> is found.</msgtext>
<msgitem class="xpl1">

<p>The processor could not Tocate the data set named <mv>
file-name</mv>.</p>

</msgitem>

<msgitem class="severity">

<p>8</p>

</msgitem>

<msgitem class="probd">

<p>You would appear to have a problem.</p>
</msgitem>

<msgitem class="uresp">

<p>Search high and Tow for the data set.</p>
</msgitem>

</msg>

<msg>

<msgtext>This message has no number</msgtext>
<msgitem class="xp1">

<p>This message has no message number; only text.
These are really insidious because it makes finding
the message very hard.</p>

</msgitem>

</msg>

</msglist>
Attributes

See 'Comman Flement Attributes (]argp set)” on page 227
Usage

See ['Message and code lists” on page 38.
Contexts

Children: text (#pcdata), Bd.

Parents: @

MsgText (message text)

Purpose
The MsgText element contains the text of a message.

Examples

<msglist>

<msg>

<msgnum>DJI17832E</msgnum>

<msgtext>This message is issued when no data set of

368 1D Workbench: IBMIDDoc User’s Guide and Reference

MsgText (message text)

the name <mv>file-name</mv> is found.</msgtext>
<msgitem class="xpl">

<p>The processor could not locate the data set named <mv>
file-name</mv>.</p>

</msgitem>

<msgitem class="severity">

<p>8</p>

</msgitem>

<msgitem class="probd">

<p>You would appear to have a problem.</p>
</msgitem>

<msgitem class="uresp">

<p>Search high and Tow for the data set.</p>
</msgitem>

</msg>

<msg>

<msgtext>This message has no number</msgtext>
<msgitem class="xp1">

<p>This message has no message number; only text.
These are really insidious because it makes finding
the message very hard.</p>

</msgitem>

</msg>

</msglist>

Attributes

See

7 . ”

Usage
See

0 : ”

Contexts
Children: text (# cdat%ﬁﬂl EI, Chad, @, [Hex, Iﬂ, [Lined, m Num), @, E,
BX], 9 B, lersd, o0

4 4

Parents: @

MV (message variable)

Purpose

The MV element identifies data that is a placeholder for variable data in a
message. It can be used either in the message text itself or in an explanation of the
message.

Examples

<msglist>

<msg>

<msgnum>DJ17832E</msgnum>

<msgtext>This message is issued when no data set of
the name <mv>file-name</mv> is found.</msgtext>
<msgitem class="xp1">

<p>The processor could not locate the data set named <mv>
file-name</mv>.</p>

</msgitem>

<msgitem class="severity">

<p>8</p>

</msgitem>

<msgitem class="probd">

<p>You would appear to have a problem.</p>

Chapter 25. IBMIDDoc Elements 369

MV (message variable)

</msgitem>

<msgitem class="uresp">

<p>Search high and Tow for the data set.</p>
</msgitem>

</msg>

<msg>

<msgtext>This message has no number</msgtext>
<msgitem class="xp1">

<p>This message has no message number; only text.
These are really insidious because it makes finding
the message very hard.</p>

</msgitem>

</msg>

</msglist>

Attributes

4 : ”

See

See 'Message and code lists” on page 38.

Contexis

Children: text (#pcdata).

Parents: AnnotBody, I ttention, Brided, Caution, CompCmi, Danged, Defn, Desd,
E%%EﬂﬂﬂjjmmiEéimihﬁumdkhm&aimbmﬁmlMgﬁmdhhm&ﬁy
B bd, @ EynNotd, Fernd, Warnind, Kemd, XPH.

Name (person’s name)

370

Purpose

The Name element must always contains a person’s name. It should not contain
the name of a company (use the Company element for those).

Examples

<authors>

<author><person>

<name>Fred Mertz</name>

<address>

127 East Main Street,

East Overshoe, SD <postalcode>59134</postalcode>
</address>

</person></author>

</authors>

Attributes

4 : ”

See

See l‘Author and Address” on page 89.

Contextis

Children: text (#pcdata), Bd.
Parents: Person]

ID Workbench: IBMIDDoc User’s Guide and Reference

Name (person’s hame)

NameLoc (named location)

Purpose

The NameLoc element associates a local ID (defined within the same document)
with other locations. These other locations may be IDs within the same document,
other documents, or other entities. These are referenced using named list (NMList)
elements.

NameLoc is the standard HyTime mechanism for creating indirect links. NameLoc
creates indirect links and can be used with all links. The indirection provided by
NameLoc:

* Associates a single ID with several objects (either other SGML elements or
entities).
 Associates a local ID with objects in another document or subdocument.

NameLoc is required for linking to multiple locations.

Usually NameLoc contains a single NMList element that creates a simple
cross-document or multiple-object link. However, NameLoc can contain several
NMList elements. For example, you can create a link to several targets in different
documents by using a new NMList for the targets in each different document.

Examples

The first example shows a simple NameLoc that creates a cross-document link to a
heading with an ID of nameloc. Note that the entity named on the DOCNAME
attribute must be declared as a data entity in the document’s SGML prolog.

<IENTITY iddocref SYSTEM iddugref.idd NDATA SGMLDoc >

<LDESCS>

<NAMELOC ID="nmlocref">

<NMLIST DOCNAME="iddocref">nameloc</NMLIST>
</NAMELOC>

</LDESCS>

<P>The <L LINKEND="nmlocref">NameLoc</L> element is
the workhorse of the HyTime architecture.

In this example, the NameLoc element contains a single NMList element. The
NMList element associates the target ID (in this case the ID of the heading
reference entry for the NameLoc tag) with the document it is in (the document
represented by the entity named iddocref). The L element itself points to the
NameLoc element, which then serves to locate the actual target, the element with
the ID nameloc in the document iddocref.

Attributes

ID=nameloc_ID
Specifies the local ID of the NameLoc element, for the location referenced by
the NameLoc element.

OBJTYPE=target_type
Specifies the type of object being referenced.

This attribute must contain one of the following type names.

Chapter 25. IBMIDDoc Elements 371

NamelLoc (named location)

HEAD
A heading, division, or equivalent (such as a preface or a language element
name). If the OBJTYPE attribute is omitted, HEAD is assumed.

FIG | TABLE | QUES | ANS
A figure, table, question, or answer.

STEP | CI | LI | SPOT
A step, component item, list item, or spot.

PROGRAM | ANIMATION | VIDEO | AUDIO | GRAPHIC | IMAGE
Information that is not in a document. Access to these types of information
depend on the capabilities of the user’s installation.

NMList
Specifies an NMList element that contains the IDs or entity names of the
location being referred to by the NameLoc element.

Usage

See

Contexts
Children: hmlist.

Parents: @

Nitem (notice item)

Purpose

The Nltem element contains one or more elements that contain special notice
information.

Examples

<FRONTM>
<NOTICES>
<NITEM><PBLK STYLE='LBLBOX'>
<TITLE>TAKE NOTE!</TITLE>
<P>BEFORE USING THIS INFORMATION AND THE PRODUCT IT
SUPPORTS, BE SURE TO READ THE GENERAL INFORMATION UNDER <XREF
REFID="NOTICES">.</P>
</NOTICES>
<EDNOTICES>FIFTH EDITION (AUGUST 1992)
<P>This edition applies to Release 4 of IBM ..
.</P>
<P>Order publications through your IBM ...</P>
<P>A form for reader's comments is provided ...

</P>
</EDNOTICES>
Attributes
See L. i ”
Usage
See 'Natices and Fdition notices” on page 9.

372 ID Workbench: IBMIDDoc User’s Guide and Reference

Nitem (notice item)

Contexts
Children: DI, @, 1} MMOb], Notd, Notelist, b1, B PBIY, [abld, 1l

Parents: Noticed.

NMList (named list of IDs or entities)

Purpose

The NMList element is used within a NameLoc element to associate the NameLoc
element’s ID with the IDs of other elements or the IDs of other elements in other
documents.

NMList also uses the DOCNAME attribute to specify the document or
subdocument where the IDs are located.

NMList is used within NameLoc to contain the names (IDs or entity names) of the
objects to be located, either SGML elements or entities. When the objects to be
located are in the same document as the NMList element, NMList contains a list of
their IDs or entity names. When the objects to be located are in another document
or subdocument, specify the DocName attribute to indicate the document that
defines or declares the target.

You can use several NMList elements within a single NameLoc. If objects are in the
same document as the NMList element and in other documents, you need to
specify a new NMList for each different document that defines or declares the
target.

Examples

The first example shows a simple NMList used to create a cross-document link.
Note that the entity named on the DOCNAME attribute has been declared as a
data entity in the document’s SGML prolog.

<IENTITY iddocref PUBLIC
"+//ISBN 0-933186::1BM//NONSGML IBMIDDoc User's Guide and
Reference//EN" NDATA SGMLDoc >

<LDESCS>
<NAMELOC ID="nmlocref">
<NMLIST DOCNAME="iddocref">iddoc</NMLIST>
</NAMELOC>

</LDESCS>

<P>The <L LINKEND="nmlocref">NamelLoc</L> element is....

In this example, the NameLoc element, which is within an LDescs element,
contains a single NMList element. The NameLoc element associates the target ID
(in this case the ID of the reference entry for NMList) with the document it is in
(the document represented by the entity named "iddocref"). The L element itself
points to the NameLoc element, which then serves to locate the actual target, the
element with the ID "iddoc" in the document "iddocref".

Attributes

NAMETYPE=ELEMENT | ENTITY
Indicates the contents of the NMList as follows:

Chapter 25. IBMIDDoc Elements 373

NMList (named list of IDs or entities)

ENTITY
Indicates that the names listed in the content of the NMList element are
declared entity names.

ELEMENT
Indicates that the names listed in the content of the NMList element are
element IDs in a document.

DOCNAME-=entity_name
Specifies the name of the document or subdocument entity that contains the
IDs or declares the entities listed in the content of the NMList element. The
entity named must be declared in the current document.

If DOCNAME is not specified, the IDs in the NMList element are valid in the
current document. If DOCNAME is specified, the IDs in the NMList element
are valid for the document named on the DOCNAME attribute.

Note: The DOCNAME attribute is the HyTime docorsub attribute.

element_id
Specifies one or more element IDs of the elements to be located. When the
unified name space option is in effect (either because the HyTime unmspace
attribute was specified as Unified on the document element or because the
Nametype attribute value is Unified), the IDs can also be the names of entities
to be located.

DTDORLPD
Names the DTD that defines the element types or entity names used in the list.
This should almost never be used. Used in conjunction with DOCNAME, it
identifies a parsing context for interpreting the names in the list. The defaults
will handle the vast majority of cases.

OBNAMES=0OBNAMES | NOOBNAMES
OBNAMES means that referencing one location actually is an indirect reference
to another location.

NOOBNAMES means that the object pointed to is the actual content of the
NameLoc element that is the target.

element_id
Specifies one or more element IDs of the elements to be located.

Future Enhancement
When the unified name space option is in effect (either because the
HyTime unmspace attribute was specified as Unified on the document
element or because the NAMETYPE attribute value is Unified), the IDs
can also be the names of entities to be located.

CDATA
Contains character data.

Usage

See

Contexts
Children: text (#pcdata).

Parents: bhamelod.

374 1D Workbench: IBMIDDoc User’s Guide and Reference

NMList (named list of IDs or entities)

Note

Purpose

The Note element contains a information that is differentiated from the main text.
Information contained in a note often further explains the meaning of the main
text. Use Note to create a note of one or more paragraphs.

Examples

<note><notebody>Thinking of a seashore, green meadow,
or cool mountain overlook can help you to relax and
be more patient.</notebody></note>

Attributes

See

7 : ”

Usage

See

Contexis

Children: NoteBody] [itid

Parents: Brided, Cond, Capyi, Defn, Desd, DIntrd, DSum,
EdNQﬁceﬁllonfrd ,E].gSep. E[L.ED&C'LEDJI EM]{NOIAIN[OdDESd
Modltem, Msgltend, ,.NoncedlﬂEBJJJthaEnquthmaExﬂIEmcln.trdEaiegl,

NoteBody (note body)

Purpose

The NoteBody element contains the body of the Note information that is
differentiated from the main text.

Examples

<note><notebody>Thinking of a seashore, green meadow,
or cool mountain overlook can help you to relax and
be more patient.</notebody></note>

Attributes

See

7 . ”

Usage

See

7 7

Contexts
Children: text (#pcdata), [Addresd, Annad, [APL, EI t.GJ:a.Pb.ld Chai, E
Dosd. Dol bl Lo B o] ol b ¥ Eoncd) Lotboad, £, b0 Retios]
MWWM@ EMM @a@@
Bereed, EynPH, Bymtad, Tabld, Mered, M, [, Ky, &P

Parents: M

Chapter 25. IBMIDDoc Elements 375

NoteBody (note body)

NoteList (ordered note list)

Purpose

The NoteList element contains an ordered list of notes.

Examples

<notelist>

Make a To Do list</1i>
Prioritize sensibly</1i>
Avoid interruptions where possible</1i>
Check on your progress toward monthly goals</1i>
Plan for the next work week</1i>

<1i>Do something for the fun of it</1i>

<1i>Spend some quality time with your pet</1i>

</notelist>

Attributes

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

DEF=definition-name

Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as

defaults for this tag. See Chapter 9_“IIsing definition tags” on page 103 for

more information.

See 'Cammaon Element Attributes (largp set)” on page 227

Usage

See I'Note lists” an page 44

Contexts

Children: Bridgd, [, LIBIY, [itld.

Parents:

Brided,

Eond, Copd, DBady] Derd, Desd Dinid, BSud,

EdNoticed, bntry

ig) FigSed

[Ed, LEDesd, LEDI, LI, L9, MkNotd, ModDesd,

7

Noticed, B PBIN, ProcEntry] ProcExil, Pracintrd, Bafery,

Notices (contains notices)

Purpose

The Notices element contains one or more NItem elements that contain special

notice information.

Examples

<notices><pblk style="1blbox"><title>Note</title>
<p>Before using this information, be sure to read
the general information under <xref refid="notices">.

</p>

<p>This manual was produced using IBMIDDoc SGML, the

376 1D Workbench: IBMIDDoc User’s Guide and Reference

Notices (contains notices)

Epic editor, and processed for print and online using
the ID Workbench.</p>

</pblk></notices>

<ednotices>

Attributes

See

7 . ”

Usage

” . ey . ”

See

Contexts
Children: DI, Eid, U, bMMQb], Nitend, Natd, NoteLisd, O, B PRI, Tabld, L.

Parents: w

Notloc (notation-specific location)

Purpose

The Notloc element contains a specification of an address that uses a specific
notation. It enables the use of definition of anchors in non-SGML objects using
specifications that are peculiar to those objects.

In the current level of IBMIDDoc, NotLoc is used to encode URLs.
The Notloc element is a HyTime element.

Use Notloc to define link anchors in non-SGML objects such as images and vector
graphics, or using query specifications in a specific notation. For example, it can
contain x and y pixel locations within a bitmap or the label of a graphic object in a
CAD drawing. A link anchor can be the start of a link or the target of a link or
both. How a Notloc-defined anchor is used and expressed depends on your online
presentation system and is not defined by IBMIDDoc.

Examples

<IBMIDDOC>
<PROLOG>

<LDESCS>

<NOTLOC ID="+ibmwww" notation="url">
http://www.ibm.com

</NOTLOC>

</LDESCS>

<BODY>

<P PROPS="www">Be sure to check out the
<L LINKEND="{ibmwww"> for the Tatest IBM product information.
</p>

Chapter 25. IBMIDDoc Elements 377

Notloc (notation-specific location)

Attributes

ID=notloc_id
Contains the ID of this Notloc element.

NOTATION=notation_name
Specifies the notation of the address specification. It must be a declared SGML
notation.

Usage

See

Contexts
Children: text (#pcdata).

Parents: @

Num (number)

Purpose

Use the Num element to identify numbers in a base for which a more precise
element, such as Hex or Bin, does not exist. You must specify the Base attribute to
indicate the base of the number, for example, "36" for base 36 numbers.

Examples

<P>Nums in base 34 use the digits zero (0) to nine (9)
and the letters A to Z minus I and 0 (or L and 0), for
example, <NUM BASE="34">Z</NUM> = <DEC>33</DEC>.

Attributes

BASE=basevalue
Contains an integer value specifying the base of the number.

’ . ”

See

Usage

See

BEE : . 7

Contexts
Children: text (#pcdata).

Parents: [AnnotBods Attention, Bridgd, Cautiod, CompCmd, Danged, Defd, Desd
% Ed U, O, Lined £Q MO MiNotd, ModDesd, Maoditen], MsgTexd NoteBady)
B b, @ ByniNotd, Fernd, Iarning.

ObijLib (object library)

Purpose

The ObjLib element contains elements that are to be used elsewhere in the
document by reference. You can have as many different ObjLib elements as
desired. Use object libraries to collect elements for reuse. Elements in object

378 1D Workbench: IBMIDDoc User’s Guide and Reference

ObjLib (object library)

libraries are not processed at the place they occur in the source document but are
processed only when referred to by another element of the same type using the
CONLOC or RETALTS attributes. The ObjLib needs to be specified in the

document’s Prolog.

Use the optional Desc element to describe the purpose of the library.

Migration Note
ObjLib replaces the function provided by DVCEF side files for organizing
collections of text for re-use.

Examples

<0BJLIB>

<OBJLIBBODY>
<DLENTRY ID="FILEMENUITEM" "CLASS"="menuitem">
<TERM>File</TERM>
<DEFN>Work with files.</DEFN>
</DLENTRY>
<DLENTRY ID="Editmenuitem" CLASS="menuitem">
<TERM>Edit</TERM>
<DEFN>Perform edit functions.</DEFN>
</DLENTRY>

</0BJLIBBODY>

</0BJLIB>

Attributes

See

7 . ”

Usage

See

" . . . 7

Contexts

Children: Desd, ObjLibBodyl
Parents: DProlag, Pralog, BpecDProlag.

ObjLibBody (object library body)

Purpose

The ObjLibBody element contains the elements in an object library.

The OBJLibBody contains all of the elements in the object library.

Examples

<0BJLIB>
<0BJLIBBODY>
<DLENTRY ID="FILEMENUITEM" "CLASS"="menuitem">
<TERM>File</TERM>
<DEFN>Work with files.<DEFN>
</DLENTRY>
<DLENTRY ID="Editmenuitem" CLASS="menuitem">
<TERM>Edit</TERM>

Chapter 25. IBMIDDoc Elements 379

ObjLibBody (object library body)

<DEFN>Perform edit functions.</DEFN>
</DLENTRY>
</0BJLIBBODY>
</0BJLIB>

Attributes

See

7 : ”

Usage

See

" . . . 17

Contexts
Children: any element.

Parents: m

ObjRef (object reference)

Purpose

The ObjRef element references a declared graphic entity. ObjRef has no content; it
only references the graphic entity using the entity’s declared name.

When using an SGML editor, such as ArborText’s Epic*Editor, that supports the
inline display of certain graphic types, the graphic entity will be displayed inline
with your text.

Examples

<IENTITY bike system "bike.gif" ndata graphics>
<MMOBJ>
<OBJREF 0BJ="bike">

<TEXTALT>This is a two-wheeled bicycle.</TEXTALT>
</MMOBJ>

Attributes

OBJ=entity_name
This attribute’s value is the name of the graphic entity containing the graphic
to be included.

EDITSCALE=scaling_value
The EDITSCALE attribute specifies the scaling factor for graphics in an SGML
editor capable of displaying graphics inline.

WIDTH and DEPTH
WIDTH and DEPTH attributes allow you to expand or contract a drawing.
They accept the following values:

x.yin
inches. For example: 4in or 5.5in.

x.ypt
points. For example: 48pt or 39.5pt.

x.ypi
picas. y is base 12. For example, 5.11pi is 5 picas, 11 points.

380 1D Workbench: IBMIDDoc User’s Guide and Reference

ObjRef (object reference)

x.ymm
millimeters. For example: 55mm or 47 . 6mm.

x.ycm
centimeters. For example: 12cm or 10.7cm.

ScaleBox=BestFit | DepthFirst | UseBoth | None
Defines how to use the width and depth values to scale an object.

BestFit
Scaled to fit specfied area without skewing the artwork. This is the default
value.

DepthFirst
The depth value will be chosen first it the composer must skew the object.

UseBoth
Sets to the depth and width values specified. If any one value is specified,
it will be used without without skewing.

None
No scaling.

Usage

See

7 . . ”

Contexts
Children: empty.

Parents: m

Oct (octal number)

Purpose

Use the Oct element to identify octal data, which is encoded in a base-8 numbering
system.

Examples
<BIN>11000001</BIN> = <DECIMAL>193</DECIMAL> = <Q0CT>301</0CT>

Attributes

See

a . ”

Usage

See

” . . . rr

Contexts
Children: text (#pcdata).

Parents: AnnotBody Mttention, Brided, Cautiond, CompCm4, Danged, Defr, Desd
E%%EiilﬁjmmiEihﬂimmwmiMmmmdh&ﬂmmiMgﬂaihbm&ﬁg
B bd, Q EynNatd, Fernd, Warning,

Chapter 25. IBMIDDoc Elements 381

Oct (octal number)

OL (ordered list)

Purpose

The OL element contains a list of items where the order of the items has particular
significance, or where the ordinal number of each item is significant.

Examples

Cream butter and sugar together until fluffy.</1i>

Beat in egg yolks one at a time.</1i>

<1i>Add nutmeg, cinnamon, and vanilla, and mix thoroughly.

The batter should be smooth and glossy and stream

off the spoon in ribbons.</1i>

Fold in beaten egg whites.

<p>Do not overmix; the batter should be Tight and fluffy.</p></1i>
</ol1>

Attributes

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

OLType
This attribute specifies the list type. Allowed values are:

Normal
Causes a normal, ordered list.

Step Causes a list with the word "Step” to appear before the step item.

Checkoff
Causes a small check-off area to appear before the step item.

CheckoffStep
Causes both a small check-off area and the word "Step” to appear
before the step item.

DBScalePct=scale-percent
You can use the DBScalePct attribute to scale the dingbat (the thing in front of
the list) up or down for a list item. The scale-percent is one of the following
numbers: 50, 60, 70, 80, 90, 100, 110, 120, 140, 160, 180, 200, 240, or 300. 100 is
the normal size; 50 is 50% smaller; 200 is 200% larger. For example, this scales
the bullet or number to twice its size:

dbscalepct="200"

This works for hardcopy only.

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as

defaults for this tag. See Chapter 9 “IIsing definition tags” on page 105 for

more information.

Seq
Specifies that a sequence of ordered lists are to connect. That is, the list can
end, but when the list starts again, the numnbering continues from the
previous list’s last item. Use this for steps that need to cross divisions or table

382 ID Workbench: IBMIDDoc User’s Guide and Reference

OL (ordered list)

cells. The value START indicates the beginning of the list; the value END
indicates the end of the list. The ID on the list must appear on the SEQID
attributes on the continuing lists.

SEQID
Indicates the list is part of a sequence. The SEQID points to the ID of the
beginning list.

7 . ”

See

Usage

See

7 . ”

Contexts
Children: Bridgd, L, LIBId.

Parents: AnnotBody} Ittention, BackCoved Bridgd, Caution, Cond, ICopyi, [Danged,

%D&Eﬂ,bsd,bmd DSund, EdNoticed, bntry] Eid) EigSed, Ed, ErontCoved
, LEDI, O, L, MkNotd, ModDesd, Modltend, mﬁi ,NmaBndyl

Noticed, B PRI, ProcExil, Procknted, Bafety) Bexd, ByaNotd, [extall

OLDef (Ordered list definition)

Purpose

The OLDef element sets attribute defaults for ordered lists and note lists. OLDef
goes within the document prolog to set definitions for the entire document; or
within a division prolog to set definitions for just that division. The OLDef tag
goes inside a PropDefs tag.

Examples

<propdefs>
<oldef defname="setup" Tinespace="space" oltype="checkoffstep" dbscalepct="140">
</propdefs>

<ol def="setup">

<1i>0pen the box.</1i>

<1i>Jump out</1i>

Enjoy the out-of-the-box experience!</1i>

Attributes

DEFNAME-=definition-name
The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

Chapter 25. IBMIDDoc Elements 383

OLDef (Ordered list definition)

DBScalePct=scale-percent
You can use the DBScalePct attribute to scale the dingbat (the thing in front of
the list) up or down for a list item. The scale-percent is one of the following
numbers: 50, 60, 70, 80, 90, 100, 110, 120, 140, 160, 180, 200, 240, or 300. 100 is
the normal size; 50 is 50% smaller; 200 is 200% larger. For example, this scales
the bullet or number to twice its size:

dbscalepct="200"

This works for hardcopy only.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

OLType
This attribute specifies the list type. Allowed values are:

Normal
Causes a normal, ordered list.

Step Causes a list with the word "Step” to appear before the step item.

Checkoff
Causes a small check-off area to appear before the step item.

CheckoffStep
Causes both a small check-off area and the word "Step” to appear
before the step item.

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See I'Property-Based

Retrieval” on page 195,

Usage

See

Contexts
Children: empty.

Parents: PropDefd, PropGroug.

Oper (syntax operator)

384

Purpose

Use Oper to define an operator within a syntax definition. Operators usually
connect two parts of a statement and imply an action such as assignment or
comparison. Operators can also be applied to a single parameter, such as the
negation operator. Typical operators are the equals sign (=) and the mathematical
operators such as add (+) and multiply (*).

Examples

<syntax>
<group>
<kwd>LANGUAGE</kwd>

ID Workbench: IBMIDDoc User’s Guide and Reference

Oper (syntax operator)

<oper>=</oper>
<var>language_name</var>
</group>

</syntax>

Attributes

OPTREQ= OPT | REQ | DEF
Indicates whether the operator is optional, required, or the default.

LINKEND=id
Contains an ID reference that enables a link to an arbitrary location in the
document.

7 . ”

See

Usage

See

Contexts
Children: text (#pcdata).

Parents: m, w

OrderNum (order number)

Purpose

The OrderNum element contains the order number assigned to a document. This
element is for use by non-IBM documents. IBM documents use the IBMDocNum

element (see IBMDocNum (IBM dacument number)” on page 298).

Examples
<ORDERNUM>GC12-3456-00</0RDERNUM>

Attributes

#PCDATA
Contains the order number.

Contexts
Children: text (#pcdata), BH.

Parents: [BibEntryl, [LibEntryl

OrigIBMDocNum (original IBM document number)

Purpose

Use this when you have a new manual that superceeds a previous manual.

Contexts
Children: text (#pcdata), BH.

Parents: m

Chapter 25. IBMIDDoc Elements 385

OrigIBMDocNum (original IBM document number)

Owners

Purpose

Contains the name of the owner or owners of the information.

Examples

<OWNERS>
<PERSON>
<NAME>John Smith</NAME>
<ADDRESS>XYZ Corp. RTP, NC 27709</ADDRESS>
</PERSON>
<PERSON>
<NAME>Susan Jones</NAME>
<ADDRESS>ABC Corp. RTP, NC</ADDRESS>
</PERSON>
</OWNERS>

Attributes

See

7 . ”

Contexts
Children: m, Bersod.

Parents: DProlag, Pralog, BpecDProlag.

P (paragraph)

Purpose

The P element contains a paragraph; a block of text representing a single idea. Use
paragraphs to contain flowing text and other elements associated with the text,
such as lists, examples, figures, and tables.

Paragraphs with no content are not valid.

Examples

This example shows a simple paragraph:
<P>This is a simple paragraph.</P>

Use the paragraph end tag to control whether or not other elements are contained
within the paragraph. In this example, the unordered list is contained within the
paragraph:
<P>This paragraph contains a Tist:

List item
List item

</p>

To keep the list from being part of the paragraph, the paragraph must be ended
before the list begins, as in this example:
<P>This paragraph does not contain the list.</P>

List item

386 1D Workbench: IBMIDDoc User’s Guide and Reference

P (paragraph)

Attributes
See [£ i ”

Usage
See L i ”

Contexis
Children: text (#pcdata), (Addresd, Annad, AP @ i CGraphid, Chad E,
Datd, Ded, DI, Eormuld, C1 Hed EI Lined, Lithatd MO, MkNaotd,
MMOR), Modingd, b, Notd, NateList, Ruxd, 0cl, DL, ,EE,EE,
RefKey] Bereed, BynPH, Byntad, abld, Mered, (M, 101, iong, IPH, KRed

Parents: [AnnotBodyl Attention, BackCaved Brided, Cautiod, Cond, Copy [Danged,
wwwwww@wﬂ,w
, LED], O, Ld, MiNotd, ModDesd Modlten) IMng.tend BU.te.nd, NoieBndgzl

Parm (parameter list entry)

Purpose

The Parm element contains a single parameter and its definition within a
parameter list.

Examples

<parml>

<parm><term>KEYWORD = <pk optreq="DEF">DEFAULT</pk>|VALUE
</term>

<defn>This is the description of the parameter above.

It could go on for many pages, if necessary. (Of course,
that means we have a very complicated parameter to
describe.)</defn>

</parm>
<parm><term>KEYWORD2 = &1brc;ABC|XYZ&rbrc;</term>
<term>&1brk;KEYWORD3 = GGG&rbrk;</term>

<defn>This description applies to the two parameters
above. Often in examples of programming syntax, it

is necessary to use symbols for the brackets and braces.
</defn>

</parm>
<parm><term><synph><kwd>KEYWORD3</kwd></synph></term>
<defn>Here's a term that uses the syntax phrase (SYNPH);
it allows you to use the same items as a syntax diagram.
</defn>

</parm>

</parml>

Attributes

See

7 . ”

Usage

See

7 . ”

Chapter 25. IBMIDDoc Elements 387

Parm (parameter list entry)

Contexts
Children: E, ern.

Parents: RarmBIK, Parmll.

ParmBlk (parameter list block)

Purpose

The ParmBlk element organizes parameter list entries into meaningful groupings.
For example, if you group parameters within the definition of a complex statement
or command, you can use ParmBlk in the parameter list to mirror the grouping in
the syntax definition.

Attributes

See

7 . ”

Usage

See

” . . . 17

Contexts
Children: B.r_i.d.gd, Parm), [Titld,

Parents: Parml].

Examples

<parml>

<parmbTk>

<parm><term>one term</term>
<defn>definition</defn>

</parm>

<parm><term>another term</term>
<defn>definition</defn>

</parm>

</parmb1k>

<parm><term>yet another term</term>
<defn>definition</defn>

</parm>

</parml>

ParmL (parameter list)

388

Purpose

Use parameter lists to describe the parameters in a computer language statement.
Parameter lists are usually associated with syntax definitions. Entries can be
organized within parameter lists using ParmBlk elements. Bridge elements can also
be used to create connections between blocks of entries, including syntax
definitions.

Examples

<parml>

<parm><term>KEYWORD = <pk optreq="DEF">DEFAULT</pk>|VALUE
</term>

<defn>This is the description of the parameter above.

ID Workbench: IBMIDDoc User’s Guide and Reference

ParmL (parameter list)

It could go on for many pages, if necessary. (0Of course,
that means we have a very complicated parameter to
describe.)</defn>

</parm>
<parm><term>KEYWORD2 = &1brc;ABC | XYZ&rbrc;</term>
<term>&1brk;KEYWORD3 = GGG&rbrk;</term>

<defn>This description applies to the two parameters
above. Often in examples of programming syntax, it

is necessary to use symbols for the brackets and braces.
</defn>

</parm>
<parm><term><synph><kwd>KEYWORD3</kwd></synph></term>
<defn>Here's a term that uses the syntax phrase (SYNPH);
it allows you to use the same items as a syntax diagram.
</defn>

</parm>

</parml>

Attributes

TERMWIDTH= SMALL | MEDIUM | LARGE | 11 2
You can use the TERMWIDTH attribute to determine the indentation size of
the definition list. The valid choices are: small (.25 inch, the default), medium
(.5 inch), and large (1 inch). The value “1” is for 1-character width; “2” is for a
2-character width.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as

defaults for this tag. See Chapter 9 “11sing definition tags” on page 103 for

more information.

HeadStyle=base_h | italic_h | bold_h | monospaced_h | underlined_h |
bold_italic_h | italic_underlined_h | bold_underlined_h |
bold_italic_underlined_h
Specifies the highlighting to use for the list’s TermHd and DefnHd heading
tags. The default is bold.

All values work for Xyvision, XHTML, HTML, and BookMaster. For IPF or
RTF, there are some inconsistencies due to the limitations of those formats:
“monospaced” is ignored, and the default style (bold) is used for terms and
headings. “bold_italic_underlined” does not exist in IPF or RTF; this is treated
the same as bold_underlined. “base” works on everything but definition terms;
there is no plain style in IPF, so the default bold will not be over-ridden.

TermStyle=base | italic | bold | monospaced | underlined | bold_italic |
italic_underlined | bold_underlined | bold_italic_underlined
Specifies the highlighting to use for the list’s Term tags. The default is bold.

s . ”

See

See

Chapter 25. IBMIDDoc Elements 389

ParmL (parameter list)

Contexts
Children: Bridgd, DefnHd|, Parmd, ParmBIK, TermHd.

Parents: AnnotBodyl Attention), Bu.d.ﬁ . Cautiod, Danged DBodyl Defd, Dintrd,
DSund, bntry] Eid, EigSed [Ed, LEDI, U, Ld, MiNotd, ModDesd, Modltend,

Msgltend, NoteBody B PBIM, Proclnted, BymNotd, Warning

Part (major document part)

Purpose

Use Part to divide a document’s chapters into logical groupings. For example, in a
document that contains both guide and reference information, you can define two
parts, one containing the guide information and the other containing the reference
information.

The Part element does not change the logical hierarchy of the divisions it contains.
For example, if, in your document style, first-level divisions are considered to be
chapters, they are still chapters when contained within Part. Thus, the enumeration
of divisions contained within Parts is not affected by the presence or absence of
Part elements.

Examples

<ibmiddoc>

<body>

<part>

<dprolog><titleblk>
<title>Introduction</title>
</titleblk></dprolog>
<dbody>

<d>

<dprolog><titleblk>
<title>Salads of our neighborhood</title>
</titleblk></dprolog>
<dbody></dbody></d>

<d>

<dprolog><titleblk>
<title>Salads of the world</title>
</titleblk></dprolog>
<dbody></dbody></d>
</dbody></part>

<part>

<dprolog><titleblk>
<title>Recipies</title>
</titleblk></dprolog>
<dbody>

<d>

<dprolog><titleblk>
<title>Egg salad</title>
</titleblk></dprolog>
<dbody></dbody></d>

<d>

<dprolog><titleblk>
<title>Tuna fish salad</title>
</titleblk></dprolog>
<dbody></dbody></d>
</dbody></part></body>
</ibmiddoc>

390 1D Workbench: IBMIDDoc User’s Guide and Reference

Part (major document part)
Attributes

See

a . ”

Usage

7 : : ”

See

Contexts
Children: [Abstrac, [DBody), Dintrd, [DProlog, DSum.

Parents: @

PartAsm (part assembly)

Purpose

The PartAsm element contains the elements needed to construct a parts assemby
list.

Examples

<partasm id="bike" style="bkm: (Tayout=same)"><title>
Bicycle</title><mmobj><objref obj="bike">
<textalt>Bicycle</textalt>

</mmobj><comp1>
<ci jdxnum="1" partnum="4563423" upa="1">Bike</ci>
<comp1>

<ci idxnum="1" partnum="1230987" upa="1">Frame</ci>

<ci idxnum="2" partnum="1238475" upa="1">Wheel assembly, front</ci>
<compcmt>For detailed breakdown, see <xref refid="wheelxmp">.</compcmt>
<ci idxnum="3" partnum="1234939" upa="1">Wheel assembly, rear</ci>
</comp1>

</comp1>

</partasm>

Attributes

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

7 . ”

See

Usage

See

Contexts

Children: Compll, MMOb], PartAsmSeg, RetKey [itle,
Parents: Appendid, Body, DBodyl LEDI, ModlItend, Msgltem.

Chapter 25. IBMIDDoc Elements 391

PartAsm (part assembly)

PartAsmSeg (part assembly segment)

Purpose

The PartAsmSeg element contains the component elements needed to contain the
parts assembly information that is a logical division of the assembly.

Attributes
See 'Commaon Element Attributes (large set)” on page 227,

Contexts
Children: Compll, MMOQb).

Parents: RartAsnd.

PBIk (paragraph block)

Purpose

Use PBIk to group paragraphs and paragraph-like elements together. You can use a
Title element on the PBlk element to identify or introduce the topic that the
paragraphs in the PBlk address. PBlk can be used to define property values for the
set of contained elements. For example, if a number of paragraphs have changed,
you can put them within a PBlk element in order to define their revision status.

You can also use PBlk within an ObjLib to define groups of paragraphs for use by
reference. For example, if you have a figure with an introductory paragraph that
you want to use in several contexts, you can put the paragraph and the figure into
a PBIk. To use the content of that PBlk in several places, you can specify a PBlk
with a CONLOC attribute that refers to the PBlk you want to reuse.

PBIk also enables you to define a set of paragraphs as a single link anchor by
linking to the PBlk element.

To create a labeled box, use attribute style="1b1box" on the PBlk tag:

<pblk style="1blbox"><title>Getting There</title>
<p>To get to...
</p></pb]k>

To create hidden text in IPF and Windows, use attribute style="hidden" on the
PBIk tag:

Attributes

style=hidden
A PBLK with style=hidden and formated for IPF or RTF becomes a hidden
division. Be sure to specify a title for the PBLK or you will get *** for the title
of the generated division.
<pblk style="hidden"><title>Getting There</title>

<p>To get to...
</p></pb'| k>

style=Iblbox
This causes a labeled box to surround the content. Use a Title tag to specify the
title for the labeled box.

392 D Workbench: IBMIDDoc User’s Guide and Reference

PBIk (paragraph block)

<pblk style="1blbox"><title>Getting There</title>
<p>To get to...
</p></pb'|k>

Contexts
%lldrenwwwwwwww

EnLisd GI, I, Lined, LitDatd, Ld MarkLisd, MiNotd hvob], Modintd
Notd, /0, B bacmil, BBIY, Bereed, Bymtad, Tabid, Tind, 01, Ky,

Parents [AnnotBody Attention, Brided, Cautiod, ICond, , Danged, DBadyl
Desd, Dinted, DSund, EdNoticed, batry) [Eig, FigSed Ed, FrontCoved LEDesd,
Lp__mi 0, £, MiNow, ModDesd, Modterd, MsgTterd, INIterd, NoteBody) Noticed,

BBW, BrocEntsy) PracExil, Procinted, Batety) Bend, BynNotd, [extAll, Iarning)

Person (person’s name and address)

Purpose

The Person element contains name and address pairs for use in Author, Approvers,
and Owners where either a person or an enterprise can be meaningful.

Attributes

See

7 . ”

Usage

See

7 ”

Contexis
Children: m, Namd.

Parents: |A.p.p_1:mLP_L<|, Authod Maintained, Dwnerd.

Examples

<owners><person><name>Mike Temple</name></person>
</owners>

Ph (Phrase)

Purpose

Use the Ph element to identify a phrase for some reason not already provided for
by the IBMIDDoc language. Phrases can define containment structures to associate
one element with another, such as associating a footnote with a specific sentence,
or they can use an author-defined element class to further specify the semantic
meaning of a phrase.

The Ph element can also be used to associate a specific property with a specific
phrase. For example, you can associate a revision or version level with a phrase.
You can also identify a word as a particular type of data for special processing.

You can precisely identify information that is unique to your document by defining
element classes with the ClassDef element and using those classes with the Ph
element. For example, in the documentation for a program that supports mining
operations, you may need to discuss different kinds of rocks and want to precisely

Chapter 25. IBMIDDoc Elements 393

Ph (Phrase)

identify references to different rocks to enhance the retrievability of your
information. You can define element classes for the different rock types and use Ph
elements with those classes to identify references to the types of rock.

Examples
Hey there! This is very important! Don’t go out in the rain without your galoshes!

Here’s its markup:

<ph style="Bold Italic">Hey there!</ph>

This is <ph style="Underlined Bold">very</ph>

<ph style="Bold">important</ph>! Don't go out in the

<ph style="Italic">rain</ph> <ph style="Underlined Bold Italic">
without your galoshes</ph>!

Attributes

style=phrase-style
The style attribute values include:

* base
* bold
* italic
* bold italic

¢ underlined

o superscript

subscript
* monospaced
* smaLLcars. Note that YOU need to do the uppercase conversion yourself. This

is because not all languages do proper uppercase conversion of lowercase
letters.

e underlined bold

e underlined italic

e underlined bold italic

¢ UNDERLINED SMALLCAPS

When migrating a Bookmaster document, Bookmaster highlight phrases are
migrated to IBMIDDoc phrases.

HPO <PH STYLE="base">

HP1 <PH STYLE="italic">

HP2 <PH STYLE="bold">

HP3 <PH STYLE="bold italic">

HP4 <PH STYLE="smallcaps">

HP5 <PH STYLE="underlined">

HP6 <PH STYLE="underlined italic">

394 1D Workbench: IBMIDDoc User’s Guide and Reference

Ph (Phrase)

HP7 <PH STYLE="underlined bold">
HP8 <PH STYLE="underlined bold italic">
HP9 <PH STYLE="underlined smallcaps”>
Contexts
Children: text (#pcdata), [Addresd, IAPT], @ Chad @ Datd , Hey, ﬂ,
Rd ol ,&,é@mawwwm@@

Parents: [Addresd, |AnnotBady) IAttentiod, BOENum, Brided, Cap, Caution,

bcmmﬁbmwtmpcmjbmdkmvdbamdbeﬁdbeﬁnﬂdlbesd
batry ExternalFileNamd, [FileNum) EWWW
mw,mwwﬂmmﬂmmﬂwmm

Phone (telephone number)

Purpose

The Phone element contains a telephone number.

Phone has the EQUIP attribute that is used to specify the type of phone equipment
being described.

If you want to specify a fax and a voice phone, use two Phone elements within the
Address element.

Examples
<phone equip="fax">1-800-555-1212</phone>
Attributes

EQUIP=FAX | VOICE | VOICEFAX
Specifes the type of telephone equipment being described.

s . ”

See

Usage
See

7 : 7 ”

Contexts
Children: text (#pcdata).

Parents: M

PK (programming keyword)

Purpose

The PK element contains a programming keyword. A keyword is a literal string
that has special significance in the context in which it is being used.

Chapter 25. IBMIDDoc Elements 395

PK (programming keyword)
Examples

<P>Specify the user ID and password parameters when error messages
indicate that you must provide security information and specifying the
<PK>-n</PK> parameter does not solve the problem.

See <XREF REFID="SECURITY"> for an explanation of using security
parameters in the....</P>

Attributes

OPTREQ=OPT | REQ | DEF
Indicates if the keyword is optional, required, or the default. REQ (required) is
the default value for this attribute.

Usage

See

ST T . . I

Contexts
Children: text (#pcdata).

Parents: [AnnotBody) ttention, Brided, Caution, CompCmi, Danged, Defr, Desd,
% Ed, O, L, Lined LQ MO MiNotd, ModDesd, ModItend, MsgTexd, NoteBody)
B bd, @ EsmNotd, Fernd, Warnind, Kmgd, kPH.

PNindex (part number index)

Purpose

The PNIndex element is a specialized list element that contains an index of all
parts contained in CI (component item) elements.

Examples

<PNINDEX SPEC=AUTO>

Attributes

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

LAYOUT=Default-Layout | OneCol | TwoCol | ThreeCol
Specifies the column-style for this portion of the book.

Default-Layout
The section uses the default layout for the document style.

OneCol
The entries format across the entire page.

TwoCol
The entries format in two columns.

396 1D Workbench: IBMIDDoc User’s Guide and Reference

PNindex (part number index)

ThreeCol
The entries format in three columns.

SPEC=AUTO | MAN
This attribute has a fixed value of AUTO. The manual value currently does not
work.

7 . ”

See

Usage

See

7 : . ”

Contexts
Children: GendTitld, RetKey), TitleBIY.

Parents: m

PostalCode (postal or zip code)

Purpose

The PostalCode element contains a zip or postal code.

Examples

<authors>

<author><person>

<name>Fred Mertz</name>

<address>125 West Hollywood Blvd

Tinseltown, CA <postalcode>90210</postalcode></address>
</person></author>

</authors>

Attributes

See I'Common Flement Attributes (]argp set)” on page 227

Usage

See I'l Jsing reader’s comment form (RCF)” on page 103

Contexts
Children: text (#pcdata).

Parents: M

Preface

Purpose

The Preface element contains introductory information about a document, such as
the purpose of the document. If you wish to enter a unique title for the Preface,
use the TitleBlk element to contain the Title element and the title text.

Chapter 25. IBMIDDoc Elements 397

Preface

Examples

<FRONTM>
<PREFACE><SPECDPROLOG><GENDTITLE></SPECDPROLOG>
<P>This information is...

</FRONTM>

Attributes

LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol
Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

See I'Common Flement Attributes (]argp set)” on page 227

Usage
See ['The preface” on page 100

Contexts
Children: DBady, DIntrd, IDSum, BpecDProlog.

Parents: w

Proc (procedure)

Purpose

The Proc element structures information that describes a procedure or task. The
markup enables a wide variety of print and online presentation styles. It contains a
link element (RefKey) for connecting procedure descriptions to graphics and other
multimedia elements, such as animation or tutorials.

Use the procedure element to describe procedures such as user tasks. A procedure
consists of three basic parts: a procedure entry, one or more steps, and a procedure
exit. The procedure entry defines the entry criteria for a procedure, such as any

398 1D Workbench: IBMIDDoc User’s Guide and Reference

Proc (procedure)

prerequisite tasks or related tasks. Each procedure step defines the actions to take
and the expected results and can contain other procedures. The procedure exit
describes the expected result of performing the task and what to do next.

Examples

<proc id="babymap" style="BKM:(STYLE=BASE SEP=INLINE COMPACT)">
<titleblk><title>Baby Johnny is Crying</title></titleblk>
<procentry>Six-month old baby Johnny was sleeping
peacefully. Suddenly he began to cry.</procentry>
<procstep>

<proccmnd>

<desc>Check Johnny's diaper.</desc>

</proccmnd>

<decisionpnt>

<cond>Is the diaper wet?</cond>
<then><procstep><proccmnd>

<desc>Change the diaper.</desc>
</proccmnd><procexit>Johnny was uncomfortable.</procexit>
</procstep>

</then>

<else>

<desc>Continue at <xref refid="hungry">.</desc>
</else>

</decisionpnt>

</procstep><procstep id="hungry">

<decisionpnt>

<cond>Is Johnny hungry?</cond>
<then><procstep><decisionpnt>

<cond>Does Johnny have teeth?</cond>
<then><procstep><stepnotes><1li>Johnny can eat solid
food.</1i>

Continue at <xref refid="frozstk"></1i>
</stepnotes></procstep>

</then>

<else><procstep id="bottle"><proccmnd>

<desc>Warm a bottle.</desc>

</proccmnd><proccmnd>

<desc>Feed Johnny.</desc>
</proccmnd><procexit>Johnny needed a bottle.</procexit>
</procstep>

</else>

</decisionpnt></procstep>

</then>

<else><procstep><proccmnd>

<desc>Rock Johnny to sleep.</desc>
</proccmnd><procexit>Johnny was sleepy.</procexit>
</procstep>

</else>

</decisionpnt>

</procstep><procstep id="frozstk">

<proccmnd>

<desc>Thaw and broil a steak for Johnny. Include a
baked potato with butter and sour cream.</desc>
</proccmnd>

<procexit>Johnny was really hungry.</procexit>
</procstep></proc>

Attributes

procnums=procedure-number
Assigns a specific number to a procedure.

7 . ”

See

Chapter 25. IBMIDDoc Elements 399

Proc (procedure)

Usage

See

Contexts
Children: Desd, EmcEn.tqzl IlmcEY.i.ﬂ, Illmcln.tl:d, E};ecStq:l, |121:ch1.1.an, Re.LKeg,zl,

Parents: |A.p.p,en.d.ial, Badg‘, ID.B:;\d.yI, Elsd, LEDI, Modltem, M.sgltal;d, ProcCmnd, [Thed.

ProcCmnd (procedure command)

Purpose

The ProcCmnd element contains the command text for the procedure described in
the procedure’s Desc element.

Use ProcCmnd to direct the user to take a specific action. More than one
ProcCmnd element can be used on a ProcStep, but multiple ProcCmnd elements
should be very closely related. If they are not closely related , they should be
contained in separate ProcSteps.

Examples

<proccmnd>
<desc>Check Johnny's diaper.</desc>
</proccmnd>

Attributes

See 'Cammaon Element Attribiites (l;\rgp set)” on page 227

Usage

See

Contexts
Children: Desd, Prad, EmcS.teIi

Parents: m

ProcEntry (procedure entry point)

Purpose

The ProcEntry element defines the entry criteria for a given procedure and
describes the procedure itself. The PREREQPROCS and RELPROCS attributes
reference prerequisite or related procedures.

Examples

<procentry>Six-month old baby Johnny was sleeping
peacefully. Suddenly he began to cry.</procentry>

400 1D Workbench: IBMIDDoc User’s Guide and Reference

ProcEntry (procedure entry point)

Attributes

PREREQPROCS
This attribute’s value references one or more prerequisite procedures. The
order the procedure IDs are specified indicates the order the prerequisite
procedures should be performed.

RELPROCS
The value of this attribute references a one or more related, but not
prerequisite, procedures.

7 . ”

See

Usage

See

Contexts

Children: text (#pcdata), [Attention, Caution, , E‘, @, ﬂ, m, W,

Parents: Prod, ProcSummltem.

ProcEXxit (procedure exit point)

Purpose

The ProcExit element describes the exit criteria for a procedure and optionally
contains information about what to do next and how to recover if something went
wrong.

Examples

<procexit>Johnny needed a bottle.</procexit>

Attributes

RECOVERYPROC
This attribute references a recovery procedure that describes what to do if the
procedure is not completed successfully.

s . ”

See

Usage

See Chapte

Contexts
Children: text (#pcdata), E‘, @, E|, M.MQb.’, Notd, NoteLisd, E‘, E, @, E,

Parents: Prod, lchStepL ProcSummltend.

Chapter 25. IBMIDDoc Elements 401

ProcEXxit (procedure exit point)

Procintro (procedure introduction)

Purpose

The Proclntro element contains the introduction to a procedure.

Examples

<procintro>
<p>A father's quick guide to child care.</p>
</procintro>

Attributes

See

Usage

See

Contexts
Children: |Annof, [AsmI isd, |Attention], BibList, Bri |, Caution, t.G.ta.p.b.id, E,
Danged, D1, Eid, EnLisd, GIl, [, Lined, LitDatd, g, MarkTis], MiNotd, MMQD),

Parents: Prad.

ProcStep (procedure step)

Purpose

The ProcStep element describes a single step in a procedure. A procedure is made
up of one or more procedure steps. Each step contains a description of the step
followed by an optional decision point specification indicating what further action
to take. The default action is to proceed to the next step in the procedure. A step
can also contain a StepNotes element containing notes about the step.

A procedure step description can itself contain a procedure, allowing you to nest
procedures to any level desired (within the general element nesting limits imposed
by IBMIDDoc).

Migration Note
Bookmaster only supports three levels of nesting. For migration purposes,
nesting within procedure elements should be limited to three levels.

Examples

<procstep><proccmnd>

<desc>Change the diaper.</desc>
</proccmnd><procexit>Johnny was uncomfortable.</procexit>
</procstep>

Attributes

See I'Common Flement Attributes (]argp set)” on page 227

402 1D Workbench: IBMIDDoc User’s Guide and Reference

ProcStep (procedure step)

Usage

See

Contexts
Children: DecisionPni, ProcCmnd, ProcExii, B.tep.NgteJ, [TitleBIY.

Parents: IElsd, IEmd, Emchnd, [Ched.

ProcSumm (procedure summary)

Purpose

The ProcSumm element contains procedure summary items.

Examples

<procsumm>
<p>And that is how you care for a child.</p>
</procsumm>

Attributes

See

Usage

See

Contexts
Children: PracSummItend.

Parents: Prad.

ProcSummltem (procedure summary item)

Purpose

The ProcSummltem element specifies a procedure summary items.

Contexts
Children: PracEntry ProcExifl

Parents: m

Prodinfo (product information)

Purpose

The ProdInfo element contains the name and version number of the product that is
associated with the document.

Chapter 25. IBMIDDoc Elements 403

Prodinfo (product information)

Examples

<PRODINFO>

<PRODNAME>Test Prod</PRODNAME>
<VERSION>2</VERSION>
</PRODINFO>

Attributes

7 : ”

See

Usage

See

4 ”

Contexts
Children: ProdNaméd, Mersion.

Parents: DProlag, Prolag, BpecDProlog.

ProdName (product name)

Purpose

The ProdName element contains the name of the product with which the
document is associated.

Examples

<IBMPRODINFO>

<PRODNAME>Test Prod</PRODNAME>
<VERSION>2</VERSION>
<REL>3</REL>

<MOD>1</MOD>

</IBMPRODINFO>

Attributes

See ‘Commaon FElement Attributes (]argp set)” on page 227

Usage
See

a ”

Contexts
Children: text (#pcdata).

Parents: [BMLibEntryl, [BMProdInfd, LibEntry} Prodinfd.

Prolog (document metainformation)

Purpose

The Prolog element contains metainformation about a document, which is
information that describes the document, such as the document title, the author,
and the document number. It also contains many different types of markup
definitions used to define classes and properties. It contains collectors which contain
information on reuse elsewhere in the document (using GLDefs and ObjLib).

404 1D Workbench: IBMIDDoc User’s Guide and Reference

Prolog (document metainformation)

Examples

<prolog>

<?xpp:lers nopage>

<ibmbibentry><doctitle>

<library><titleblk>

<title>ID Workbench</title>

</titleblk></Tibrary>

<titleblk>

<title>IBMIDDoc User's Guide and Reference</ph></title>
</titleblk></doctitle>
<ibmdocnum>SH21-0783-09</1bmdocnum>
<externalfilename>iddugref</externalfilename>
</ibmbibentry><masterindexinfo><masterindexprefix>
IDDOC</masterindexprefix></masterindexinfo>

<}[')r'*o1og>
Attributes

See

7 . 7”7

Usage

7 ”

See

Contexts

Children: [Approverd BibEntryDefd CopyrDefd, CritDated, IGlDefd, [BMBihEntry)

Parents: m

PropDef (property set definition)

Purpose

The PropDef element defines values for properties that are common to a set of
elements. Any element can refer to a PropDef element using the common
PROPSRC attribute. When a set of properties applies only to a certain set of
element types, the ELETYPES attribute can be used to indicate which element
types can refer to a given PropDef element.

You can also use PropDef to contain PROPS definitions for property attributes that
are common to all elements, such Language and Proc. See [!Defining Element

Properties” on page 201l for guideance on using property definitions..

Examples

<propdef eletypes="xmp" style="BKM: (keep=10)">
<desc>Allow examples in BookMaster output to flow,
keep the 1st 10 Tines together.</desc>

</propdef>

Attributes

PROPNAME=name
Defines the name to be referenced by the PROPSRC attribute.

ELETYPES=element names
Defines those element types (generic identifiers) to which this PropDef applies.

Chapter 25. IBMIDDoc Elements 405

PropDef (property set definition)

Use ELETYPES when a PropDef is only meaningful for a specific set of
element types, such as when the STYLE value is element-specific. When an
ELETYPES value is specified, the PropDef values will apply only to elements
of the specified type.

See I'Common Element Attributes (small set)” on page 228,
Usage

See

" . . . 7

Contexts
Children: Desd.

Parents: PropDefd, PropGroug.
PropDefs (property definitions)

Purpose

The PropDefs element contains property definition elements. Properties apply to all
elements contained within the division with which the property definitions are
associated.

Examples

<propdefs>

<propdef eletypes="xmp" style="BKM: (keep=10)">
<desc>AlTow examples in BookMaster output to flow,
keep the 1st 10 lines together.</desc>

</propdef>
<}é;opdefs>
Attributes
See ['Common Flement Attributes (small set)” on page 224
Usage
See ' 7
Contexts
Children: ClassDef, DLDef, [Fi GLDef, LERSDef MadInfoDef

Parents: [DProlog, Prolog, BpecDProlog.
PropDesc (property description)

Purpose

The PropDesc element contains the definitions used in the values of the PROPS
attribute. It also contains a default value that is used if no PROPS value is assigned
by the author.

406 1D Workbench: IBMIDDoc User’s Guide and Reference

PropDesc (property description)
Examples

<propdesc propname="ref" default="true">
<desc>Include the Reference part</desc>
</propdesc>

Attributes

PROPNAME=property-name
Contains the value that is being defined. This value can be used on the PROPS
attribute.

Default=true | false
Sets the default value of the property. You set the value to true or false. An
unset variable is set assumed to be false.

Usage

See

7 . : 7

Contexts
Children: @, frind.

Parents: PrapDefd, [PropGroug.

PropGroup (property group)

Purpose

The PropGroup element enables you to organize elements within a PropDefs
section. Because PropDef elements are used to define property values, the
processing system cannot use those same properties to determine whether or not a
given PropDef element should be processed. The PropGroup element provides a
way to use properties to use or ignore PropDef elements.

The typical case is one where you want one set of properties for one output and a
different set for another. You can use PropGroup elements with the PropDefs
element to contain the different PropDef elements.

You can nest PropGroup elements in order to take advantage of property
inheritance.

Examples
<PRpLOG>

<PROPDEFS>
<PROPDEF PROPNAME='xpert" SEC="IUO" PROPS="expert">
<DESC>This property definition applies to all elements in the document
</PROPDEF>
<PROPGROUP PROPS="display">
<DESC>The following property definition only applies
when processing for online display.
</DESC>
</PROPGROUP>
<PROPGROUP PROC="print">
<DESC>The following property definition only applies
when processing for print.
</DESC>
<PROPDEF>

Chapter 25. IBMIDDoc Elements 407

PropGroup (property group)

</PROPGROUP>
</PROPDEFS>

</PROLOG>

Attributes
See 'Common Element Attributes (small set)” on page 228,

Contexis
Children: ClassDef, Desd, DLDef, FigDef, GLDef, LERSDed, MkDesd, ModInfoDef,
ModItemDef

Parents: PropDefd, PropGroug.

PrtLoc (country where printed)

Purpose

The PrtLoc element contains the name of the country where a document or library
was printed.

Examples
<PRTLOC>Boise, Idaho</PRTLOC>

Attributes

See 'Cammaon Element Attributes (largp set)” on page 227

Usage

See

1 : . : 7”

Contexts
Children: text (#pcdata), Bd.

Parents: BibEntryl, [BMBibEntry, [BMIibEntryl LibEntryl

PublicID (public identifier)

Purpose

The PublicID element contains the SGML public identifier for a document. It is
intended that the public identifier of the document entity be used by presentation
systems to locate the actual document, but specific presentation systems may
define application-specific data to be specified as the system identifier of the
document entity if they do not support the use of public identifiers. The public
identifier can be included in the BibEntry itself as a way of keeping a document’s
formal public identifier definition with the rest of its bibliographic information.
This could allow, for example, the automatic generation of entity declarations for
documents described by BibEntry elements.

408 1D Workbench: IBMIDDoc User’s Guide and Reference

PubliclD (public identifier)

”

i d D den O
bage 459 for a description of the formal public identifier standard defined by the
IBM Corporation for its internal and external use.

Examples
<BIBENTRY ID="iddocref">

<PUBLICID>+//ISBN 0-933186::1BM//DOCUMENT IBMIDDoc Reference//EN

</BIBENTRY>

Attributes

See

7 . ”

Contexts
Children: text (#pcdata), Bd.

Parents: BibEntry, [BMBibEntry, [BMLibEntry} LibEntryl

Publisher (document publisher)

Purpose

The Publisher element contains the name and address of the publisher of the
document.

Examples
<PUBLISHER>IBM CORPORATION</PUBLISHER>

Attributes

See I'Cammon Element Attributes (largp set)” on page 227

Usage

See

’ 7

Contexts
Children: IAddresd, CorpNamd.

Parents: BibEntryl, [BMBibEntry, [BMLibEntryl LibEntryl

PV (parameter variable)

Purpose

The PV element contains a parameter variable. The output style specification for a
PV element provides a visual cue to the user, denoting that the content of the PV
element has special meaning.

Examples

<P>This is a description of a
<PV>parameter variable</PV>
</p>

Chapter 25. IBMIDDoc Elements 409

PV (parameter variable)

Attributes

OPTREQ=REQ | OPT | DEF
Indicates whether or not the variable is optional. REQ (required) is the default.

7 . ”

See

Usage

See

o : . ”

Contexts
Children: text (#pcdata).

Parents: [AnnotBody) Attention, Brided, Cautiod, CompCmi, Danged, Defd, Desd,
% Ed U L, Lined L MO MiNotd, ModDesd, Modltend, MsgTexd, NoteBody)
B bH, @ EymNotd, Fernd, Wamind, Kmd, KPH.

Q (quotation phrase)

Purpose

Use the Q element to contain material excerpted from another source and that is
used within the context of a paragraph or similar element. Use LQ for quotations
that contain more than one paragraph. In the default presentation style, the quoted
material is presented inline with the material around it. It is usually surrounded by
typographical quotes as well.

One of the purposes of Q is to identify a quotation, it can refer to a BibEntry
element using the BIBID attribute.

Examples

<P>New presidents often try to inspire the country to face new challenges
with words Tlike:
<Q BIBID="jfk0161">Ask not what your country can do for you,

ask what you can do for your country</Q>

Attributes

BibId=bibentry_id
The ID of the BibEntry element that defines the source of the quotation. This is
optional.

Usage

See

7 ”

Contexts
Children: %#‘%aﬁ, [Addresd, APT, Bid, Chad Cid, Datd Ded, Eormuld, Bed, T,
M0, My N, B, b, B, B @, RefiKey] BynPH, Ferad, M, KPH, KRed.

410 1D Workbench: IBMIDDoc User’s Guide and Reference

Q (quotation phrase)

Parents: [AnnotBody} Attention, Brided, Caution, CompCmtl, [Danged, Defn, Desd,
bt B, 0, 0, Dined £Q MD|, MiNotd, ModDesd, Moditend, NoteBody) B B3, Q

Eyniotd, Warning,

Qualif (qualification)

Purpose

The Qualif element contains a qualification definition that is referenced by
elements to which the qualification applies.

A qualification is a limitation or restriction on the application of information. For
example, a qualification might be that information applies to ‘OS/2 2.1 users only’.
The QUALIF attribute is used to reference the Qualif element from the element
that contains information of this type.

The Qualif element cannot be used to include or exclude information. It cannot be
used for conditional processing. The QUALIF attribute and element have no effect
on property-based retrieval.

For more information about the Qualif element, see I‘Qther prolag elements” od

Examples

<qualifdefs>

<qualif id="win99" ident="use">
<title>Windows/99</title>
<desc>Windows/99 information</desc>
</qualif>

<qualif id="o0s25" ident="use">
<title>0S/2.5</title>
<desc>0S/2.5 information</desc>
</qualif>

</qualifdefs>

Attributes

ID=revision_ID
The ID of this qualification. The ID attribute is required. The ID is referred to
with the QUALIF attribute from any element.

IDENT= USE | IGNORE
Indicates whether the qualification is a active.

4 : ”

Usage

See

” 17

Contexts
Children: Desd, [itld.

Parents: m

Chapter 25. IBMIDDoc Elements 411

Qualif (qualification)

QualifDefs (qualification definitions)

Purpose

The QualifDefs element contains a list of Qualif elements which are used in the
document or division in which it is found.

Examples

<qualifdefs>

<qualif id="win99" ident="use">
<title>Windows/99</title>
<desc>Windows/99 information</desc>
</qualif>

<qualif id="o0s25" ident="use">
<title>0S/2.5</title>
<desc>0S/2.5 information</desc>
</qualif>

</qualifdefs>

Attributes

4 . ”

Usage

See

g ”

Contexts
Children: Dualifl

Parents: DProlag, Pralag, BpecDProlag.

RCF (reader comment form)

Purpose

The RCF element contains the elements necessary to produce a reader comment
form.

In order for the standard IBM RCF to be generated, the following IBMIDDoc
elements must be specified in the document prolog:

* DocTitle

* Library

e IBMDocNum
* Version

* Release

* Maintainer

When creating an RCF for hardcopy, be sure to include the <MAINTAINER>
section in your profile. This has the address information, fax number, etc. to be
included in the RCFE. Also, you need to specify the <RCF> element in the back
matter.

412 1D Workbench: IBMIDDoc User’s Guide and Reference

RCF (reader comment form)

Examples

For the RCF to be generated, you need to specify the MAINTAINTER element
information in the prolog of your document:

<maintainer>

<corp>

<corpname>IBM Corporation</corpname>

<address>ATTN: Dept 542

3605 HWY 52 N

Rochester, MN

<postalcode>55901-9986</postalcode>

<phone equip="fax">1-800-555-1212</phone></address>
</corp>

</maintainer>

In the back matter, you need to include the RCF element; for example:

<backm>
<rcf><gendtitle></rcf>
</backm>

Attributes

7 : ”

Usage
See

0 . 7 ”

Contexts
Children: GendTitld, RetKey) [TitleRIK.

Parents: w, ErontM.

RefKey (reference key)

Purpose

The RefKey element establishes a visual link that identifies a specific part of a
graphic.

Examples
See <refkey>1</refkey> for that part.

Attributes

G . ”

Usage

See

s . . . 77

Contexts
Children: text (#pcdata).

Bot] besd, bt %@%ﬁwmﬁfﬁm
B T) B e P s

Chapter 25. IBMIDDoc Elements 413

RefKey (reference key)

Release (product release identifier)

Purpose

The Release element contains the product release number.

Examples

<VERSION>1</VERSION>
<RELEASE>1</RELEASE>
<MOD>1</MOD>

Attributes

7 : ”

Usage

See

s : ”

Contexts
Children: text (#pcdata), BH.

Parents: [BMProdInfd.

RepSep (syntax repeat separator)

Purpose

The RepSep element defines a repeat separator within a syntax definition. Repeat
separators must be defined at the beginning of the syntax definition.

Examples
<syntax>
<repsep id="rsep0003a"></repsep>
<group repid="rsep0003a">
<var>variable</var>
</group>
</syntax>

Attributes

OPTREQ=OPT | REQ
Indicates whether the contained group is required or optional.

CONVAR=CONSTANT | VAR
Indicates whether the content of the element is a constant or a variable in the
context where is it used.

414 1D Workbench: IBMIDDoc User’s Guide and Reference

RepSep (syntax repeat separator)

Contexts

Children: text (#pcdata).

Parents: m, @

RetKey (retrieval key)

Purpose

RetKey can be used to specify subject heading retrieval aid text and graphics for
those output types which support such graphics. This can also contains
information to be used by an information management system. Using this key, the
system could conduct queries without resorting to a full-text search of all of the
information. Use the RetKey element to contain a list of meaningful terms and
abbreviations that might be used as keywords during a database search.

Examples

<D>

<DPROLOG>

<TITLEBLK><TITLE>Configuring Your New Whantoozler
</TITLE></TITLEBLK>

<RETKEY>Whantoozler 5.0 Setup</RETKEY>
</DPROLOG>

Attributes

OBJ=graphic_entity
specifies the the name of the graphic to be used as a retrieval aid.

s . ”

See

Contexts

Children: text (#pcdata), Bd.

Parents: [Appendiy, [DProlag|, Figlist, [BMBibEntry, [BMSafetyl [ndex, L LERY,
Mod, Modmid, MegLis), PartAsn), PNInde, Prod, RCH Bafers] BpecDPralad, T,

Rev (revision)

Purpose

The Rev element defines a single revision for a document or division. The REV
attribute is used on revised elements to refer to the applicable Rev element. Use
the Desc element within Rev to describe the purpose of the revision.

Examples

<prolog>
<revdefs>
<rev id="v4r5" ident="use">

<date>9/9/99</date>
<desc>First draft for vé4rb</desc>

Chapter 25. IBMIDDoc Elements 415

Rev (revision)

</rev>
</revdefs>

<)r.>\'ro1og>
Attributes

ID=revision_ID
The ID of this revision. The ID attribute is required. The ID is referred to with
the REV attribute from any element.

IDENT= USE | IGNORE
Indicates whether the revision is an active revision. Revisions that are active
(USE) will be indicated by whatever mechanism is defined in the presentation
style, typically by placing a vertical bar or other character in the margin.

Revisions for which IGNORE is specified are ignored when the document is
processed.

CODE=character
Associates a character with the revision. When no code is specified, you get a
vertical bar to the left of text containing the active REV attribute. This is what
you want to appear in the final edition. For internal drafts, you can use some
other character to indicate the revision level. For example, a plus sign, an
asterisk, or a number. Use only a single character.

REASON-=reason_text
Contains the text explaining the reason for the revision.

See ['Common FElement Attributes (small set)” an page 224

Usage
See [1lsing Revisions” on page 109.

Contexts
Children: Authod, Datd, Desd.

Parents: RevDefd.

RevDefs (revision tracking information)

Purpose

The RevDefs element contains Rev and Mark elements which define the revision
history of the document or division.

Examples

<prolog>

<revdefs>

<rev id="v4r5" ident="use">
<date>9/9/99</date>

<desc>First draft for v4r5</desc>
</rev>

</revdefs>

</prolog>

416 1D Workbench: IBMIDDoc User’s Guide and Reference

RevDefs (revision tracking information)
Attributes

See

s . 7

Usage
See

” . . . 1

Contexis
Children: @, Redd

Parents: DProlog, Prolog, BpecDProlog.

Row (table row)

Purpose

The Row element contains the row information for a row in a TGroup.

Examples

<table pgwide="0" id="tablesample">
<cap>Sample table caption</cap>

<tgroup cols="1">

<colspec colname="coll">

<tbody>

<row>

<entry colname="coll">my little</entry>
</row>

<row>

<entry colname="coll">sample table</entry>
</row>

</tbody>

</tgroup>

</table>

Attributes

ROWSEP=0 | 1
This attribute’s value specifies that a row separator rule should be:

* displayed below each Entry element ending in a Row (1)
* not displayed at all (0)
Shade=NOShade | XLight | Light | Meduim | Dark | XDark

Use the Shade attribute to specify the shading. This table example shows the
shading values used in table cells:

Table 22. Cell entry shading. In the editor, use the modify attributes icon or Cirl-A to set the
Shade attribute for the cell’s Entry tag.

noshade (0%) | xlight (5%) light (26%) medium dark (74%) xdark (100%)
(50%)

the quick brown | fox

VALIGN=TOP | MIDDLE | BOTTOM
This attribute specifies the vertical alignment of the text contained in the Entry
elements.

TOP
specifies alignment of the text at the top of the Entry elements.

Chapter 25. IBMIDDoc Elements 417

Row (table row)

MIDDLE
specifies alignment of the text at the middle of the Entry elements.

BOTTOM
specifies alignment of the text at the bottom of the Entry elements (the
default).

See tCammgn_ELemenLAimbu.tes_(laLgeseL)LQn_pa.ge.m

Usage

See

Contexts

Children: batryl
Parents: |tb.od§z|, Lﬂmﬂ, tthead.

Safety (safety notices)

418

Purpose

Use Safety to contain or refer to any safety-related information such as cautions,
warnings, and FCC notices.

Examples

<safety><titleblk><title>Safety Notices</title></titleblk>
<caution>Watch out for splinters.</caution>
</safety>

Attributes

LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol
Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

SPEC=AUTO | MAN
Specifies whether the content of the element is generated. If SPEC=AUTO is
specified, the element’s content is generated. This attribute is not supported at
this time.

7 . ”

See

ID Workbench: IBMIDDoc User’s Guide and Reference

Safety (safety notices)

Contexts

Children: [Attentiod, Caution, Danged, DT, Fig, GendTitld, [l, MMOb], Notd,
Notelisi, BT, B PBIY, RetKey] Tabld, TirleBIK, [T, iNarning.

Parents: w

Screen (display screen)

Purpose

The Screen element contains or refers to a representation of a computer screen or
user interface panel (window).

Examples

<screen>
cpyf CopyFile Command

From file

Fl=Help 3=Exit 12=Cancel
</screen>

Attributes

OB]J=data_entity_name
Refers to an SGML data entity that contains the screen representation. The data
entity can be in any supported notation and may in fact be a reference to a live
version of the panel if that is supported by your online presentation system.

When the OB]J attribute is specified, it is an error to specify any screen data or
the Screen end tag.

NOTATION=
Defines the notation of the contained data for inline screen data, as follows:

LINESPEC
Significant record ends are preserved in the output.

LINELENGTH-=characters
This specifies the number of characters in widest line. If the number of
characters does not fit in the column or page width, the text size is reduced. If
possible, when LINELENGTH is specified, the width of the screen border is
shrunk to fit around the specified number of characters.

If no LINELENGTH is specified, the formatter uses the default size for screens
for that style (or the current document point size if it is smaller) and makes the
screen fit the indented area (or the page area if pgwide=1).

If LINELENGTH is specified, the formatter starts scaling down from the
current document point size. If number of characters fits, it makes the screen
just large enough to fit them and shrinks the screen to fit around them. If
number of characters doesn’t fit, it scales down the characters to fit and has the
screen fit around them.

PGWIDE=1 | 2
This specifies the width of the screen. 1 is for a page-wide screen; 2 indents to
the current indention in the column (2 is the default)

Chapter 25. IBMIDDoc Elements 419

Screen (display screen)

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as

defaults for this tag. See Chapter 9, “1Ising definition tags” on page 103 for

more information.

See L ”
Usage
See L ”
Contexts
Children: text (#pcdata), U, LitDatd, MMOb], B, RefKes] fernd.
Parents: [AnnotBody) Attention), |, Caution, b.a.n.gerl DBodyl Defd, DIntrd,
Mbnfi‘vl@lwam wwwﬂ'ﬂ

Msgltend, NoteBods] B PEI, Prackntd, |, Warning.

ScreenDef (Screen definition)

420

Purpose

The ScreenDef element sets attribute defaults for screens. ScreenDef goes within
the document prolog to set definitions for the entire document; or within a
division prolog to set definitions for just that division. The ScreenDef tag goes
inside a PropDefs tag.

Examples

<screendef defname="widescreen" Tinelength="127" pgwide="1">

Attributes

DEFNAME-=definition-name
The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

LINELENGTH-=characters
This specifies the number of characters in widest line. If the number of
characters does not fit in the column or page width, the text size is reduced. If
possible, when LINELENGTH is specified, the width of the screen border is
shrunk to fit around the specified number of characters.

If no LINELENGTH is specified, the formatter uses the default size for screens
for that style (or the current document point size if it is smaller) and makes the
screen fit the indented area (or the page area if pgwide=1).

If LINELENGTH is specified, the formatter starts scaling down from the
current document point size. If number of characters fits, it makes the screen

ID Workbench: IBMIDDoc User’s Guide and Reference

ScreenDef (Screen definition)

just large enough to fit them and shrinks the screen to fit around them. If
number of characters doesn’t fit, it scales down the characters to fit and has the
screen fit around them.

PGWIDE=1 | 2
This specifies the width of the screen. 1 is for a page-wide screen; 2 indents to
the current indention in the column (2 is the default)

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See L. =

Rmal—m—PageJﬂd- ” .

Usage
See

Contexts
Children: empty.

Parents: PrapDefd, [PropGroug.

Sem (semantic meaning)

Purpose

The Sem element defines the meaning of a class. It should describe the type of
information for which the class should be used.

Attributes

See I'Cammon Element Attributes (]argp set)” on page 227

Contexts

Children: text (#pcdata), b, @, o, MMOb], Notd, Notel isf, r, B a1, Y, Cabid,

Parents: ClassDedl.

Sep (syntactic separator)

Purpose

The Sep element contains a separator that is to separate keywords, variables,
operators, or groups.

Examples

<syntax>

<group>
<kwd>FRED</kwd>
<sep>,</sep>
<kwd>BARNEY</kwd>
</group>
</syntax>

Chapter 25. IBMIDDoc Elements 421

Sep (syntactic separator)

Attributes

OPTREQ = REQ | OPT
Indicates whether or not the separator is optional or required. REQ (required)
is the default. Any separator that is not optional is, by definition, required.

CONVAR=CONSTANT | VAR
Indicates whether the content of the element is a constant or a variable in the
context where is it used.

LINKEND=id
Contains an ID reference that enables a link to an arbitrary location in the
document.

7 . ”

See

Usage

See

Contexts
Children: text (#pcdata).

Parents: m, w

SOA (summary of amendments)

422

Purpose

The SOA element contains information summarizing any changes made to the
information since prior versions.

Examples

<soa>
<specdprolog><titleblk><title>What's new and different
</title></titleblk></specdprolog>
<dbody>
<p>Changes since the last edition include...</p>
</dbody>
</soa>

Attributes

LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol
Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

ID Workbench: IBMIDDoc User’s Guide and Reference

SOA (summary of amendments)

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

7 : ”

Usage

See

7 ”

Contexts
Children: DBady, DIntrd, [DSum, EpecDProlag.

Parents: w, ErontM.

SpanSpec (span specification)

Purpose

In tables, this specifies how cells are to be combined.

Examples

<table frame="all" pgwide="0" id="compIxt">
<cap>Complex table example</cap>

<tgroup cols="3" colsep="1" rowsep="1">

<colspec colname="coll" colwidth="25*">

<colspec colname="col2" colwidth="32%">

<colspec colname="col13" colwidth="38*">

<spanspec namest="coll" nameend="col2" spanname="1to2">
<tbody>

<row>

<entry spanname="1to2" valign="top">Row 1, Cell 1
</entry>

<entry colname="co13" morerows="1" valign="top">Row
1, Cell 2</entry>

</row>

<row>

<entry valign="top">Row 1, Cell 3</entry>

<entry valign="top">Row 1, Cell 4</entry>

</row>

</thody>

</tgroup>

</table>

Attributes

namest=starting column
nameend=ending column
spanname=narie

align= center | char | justify | left | right
How to align the content of the cell.

Chapter 25. IBMIDDoc Elements 423

SpanSpec (span specification)

charoff=distance
Offset from left edge of cell.

char
Character to align to

colsep=110
Draw a line to the right of the cell (1); or not (0).

rowsep=110
Draw a line under the bottom of the cell (1); or not (0).

Usage

See

Contexts
Children: empty.

Parents: @

SpecDProlog (special section division prolog)

Purpose

The SpecDProlog element contains prolog information specific to a division.

Examples

<SPECDPROLOG>
<GENDTITLE>
<AUTHORS>
<AUTHOR>
<PERSON>
<NAME>

Rick Dennis

</NAME>

</PERSON>
</AUTHOR>
</AUTHORS>

</SPECDPROLOG>

Attributes

See ‘Common Element Attributes (small set)” on page 224

Contexts

Children: [Approvers, [Authord, IBib.E.n.tr.)LDefd, CopyrDefd, CritDated, IGendTitld,

Parents: [Abbrev [Abstract, IBi.b.Li.ggl, C]gssa.ql, |L.egend, MasterIndes, Prefacd, BOQA.

424 1D Workbench: IBMIDDoc User’s Guide and Reference

SpecDProlog (special section division prolog)

StepNotes (step notes)

Purpose

Use StepNotes to contain notes about a procedure step, such as special
considerations about the step. Do not use StepNotes to convey decision-making
information. Rather, use DecisionPnt to identify conditions and actions that may
change the path through the procedure.

Examples

<procstep>

<stepnotes>

Johnny can eat solid food.</1i>
Continue at <xref refid="frozstk"></1i>
</stepnotes></procstep>

Attributes

See

7 . ”

Usage
See

Contexis
Children: Bridgd, LJ, LIRI.

Parents: w

StepRef (procedure step reference)

Purpose
The StepRef element cross-references to a step in a procedure (PROC).

Contexts
Children: empty.

Parents: Desd, [ProcEntry} ProcExif.

STitle (shortened title)

Purpose

The STitle element contains a shortened title for an element or document. The
STitle is used in running footers by some output formatter styles.

For XHTML and HTML, you can use the STitle to override the text used in the

table of contents for use in Informaiton Centers. This also requires the use of the
/TOCSTITLE formatting option.

Chapter 25. IBMIDDoc Elements 425

STitle (shortened title)

Examples

<ibmbibentry>

<doctitle><titleblk>

<title>Document Title</title>

<stitle>Short title, used for running foot</stitle>
<subtitle>Subtitle, using on title page</subtitle>
</titleblk></doctitle></ibmbibentry>

Attributes

See

7 . ”

Contexts
Children: text (#pcdata), ﬂ, E, E, .

Parents: [TitleBI.

SubTitle (descriptive subtitle)

Purpose

The SubTitle element contains a descriptive subtitle that can be used on title pages
to further describe the document’s subject matter.

SubTitle is also allowed with in heading and division titles, but it should not be
used.

Examples

<ibmbibentry>

<doctitle><titleblk>

<title>Document Title</title>

<stitle>Short title, used for running foot</stitle>
<subtitle>Subtitle, using on title page</subtitle>
</titleblk></doctitle></ibmbibentry>

Attributes

See

a . ”

Contexts
Children: text (#pcdata), El, E, E, .

Parents: [TitleBI.

SynBIk (syntax block)

Purpose

The SynBlk element organizes syntax definitions into titled subdivisions. Use
syntax blocks to organize the elements of a syntax definition into logical, optionally
titled groupings. For example, a single command may have several forms. Syntax
blocks allow you to define all the forms in a single syntax definition.

In hardcopy, syntax blocks also automatically scale the diagram portion they
contain to fit the column width.

426 1D Workbench: IBMIDDoc User’s Guide and Reference

SynBlk (syntax block)
Examples

<syntax>
<synb1k>
<group>
<kwd>FORM</kwd>
<kwd>PROC</kwd>
</group>
<group>
<kwd>FILE</kwd>
<kwd>NAME</kwd>
</group>
</synblk>
</syntax>

Attributes

See

7 . ”

Usage
See

Contexts
Children: Eragment, EragRef, Groud, RepSep, BynNaotd, [Litld.

Parents: m

SynNote (syntax note)

Purpose

The SynNote element contains a note within a syntax definition group or fragment.
Use SynNote to add notes to your syntax definition to explain aspects of the
syntax that cannot be expressed in the syntax markup itself. In the default
presentation, the syntax notes are associated with the syntax diagram using
numeric callouts and the syntax notes are themselves collected at the end of the
presented syntax diagram or syntax block.

Examples

<syntax>

<group>

<kwd>FRED</kwd>

<synnote>This is a rather common name.</synnote>
</group>

</syntax>

Attributes

refid=identifier
Refers the the ID of a corresponding SYNNOTE tag. This allows you to enter
the note text once in the diagram, and reuse the note for another item in the
diagram.

callout=character
This allows you to specify one character to use instead of a number for
indicating the note.

7 . ”

See

Chapter 25. IBMIDDoc Elements 427

SynNote (syntax note)
Usage

See "'Syntax Notes” on page 154

Contexts

%d% t% (#pcdata), %@m &E i bﬁ;ph.\d Chad i,
Modintd, b Notd, NoteLisd, Nudd, ocd, 0, Parmd, PBRL, BH, PK, Efa
RefKey] Bereed, BynpPH, Tabld, ernd, v, T, Kang, KpH, KRed.

Parents: Eragment, Groupl, BynBIY, Byntax.

SynPh (syntax phrase)

Purpose

The SynPh element contains syntax definition elements and is used in the context
of the information around it. Use SynPh to present syntax fragments outside the
context of a complete syntax definition.

Examples
<synph><kwd optreq="def">Filename</kwd></synph>

Attributes

See

v . ”

Usage

See I'Syntax Phrases” aon page 157

Contexts
Children: text (#pcdata), Delim|, [Kwd, Dpeﬂ, E, Wad

Parents: [AnnotBody} Ittention, Brided, Caution, CompCmil, [Danged, Defn, Desd,
Ed, [, O, Cined, £Q MD), MkNotd, ModDesd, MadItend, MsgTexd,

B by, Q BynNotd, Fernd, Warning, Kmpl

Syntax (syntax diagram)

Purpose

The Syntax element contains the definition of the syntax of a statement in some
computer language; or a command, function call, programming language
statement, or other such construct. Use syntax definitions to define the rules for
creating statements in some computer language, for example commands in a
command language or programming language expressions. Syntax definitions can
also be used to model more abstract constructs, such as the structural relationships
between elements in a language.

The default presentation style is as “railroad tracks”, but their presentation is not
limited to that form. A given definition can be presented in a variety of ways.

428 1D Workbench: IBMIDDoc User’s Guide and Reference

Syntax (syntax diagram)

Examples

<syntax><title>Database Reference</title>
<repsep id="rsep0006"></repsep>
<group>

<kwd>CREATE TABLE</kwd>

</group>

<group>

<var>table_name</var>

</group>

<group repid="rsep0006">

<group style="bkm: (composite)">
<delim startend="START">(</delim>
<var>column_name</var>

</group>

<fragref><title>Data Type</title></fragref>
<kwd optreq="OPT">NOT NULL</kwd>
<delim optreg="req" startend="END">)</delim>
</group>

<fragment><title>Data Type</title>
<group choiceseq="CHOICE">
<kwd>INTEGER</kwd>

<group>

<group choiceseq="CHOICE">
<kwd>DECIMAL</kwd>

<kwd>DEC</kwd>

</group>

<group style="BKM: (COMPOSITE)">
<delim startend="START">(</delim>
<var>length</var>
<sep>&sshl;+&ssbl;</sep>
<var>colwidth</var>

<delim startend="END">)</delim>
</group>

</group>

<group>

<group choiceseq="CHOICE">
<kwd>CHARACTER</kwd>
<kwd>CHAR</kwd>

</group>

<group optreq="0OPT" style="BKM: (COMPOSITE)">
<delim startend="START">(</delim>
<var>length</var>

<delim startend="END">)</delim>

</group>

</group>

<group style="BKM: (COMPOSITE)">
<kwd>GRAPHIC</kwd>

<delim startend="START">(</delim>
<var>length</var>

<delim startend="END">)</delim>
</group>

</group>

</fragment>

</syntax>

Attributes

SYNSTYLE=SPACE | LBLBOX | BOX | RULE
Causes the figure to have a frame. The default is space — no frame.

LblBox
Causes a box to be placed around the diagram. The top line of the box
has text label that is taken from the diagram’s Title tag.

Box Causes a box to be placed around the diagram.

Chapter 25. IBMIDDoc Elements 429

Syntax (syntax diagram)

Rule Causes a line to be placed above and below the diagram; to visually
separate it from the surrounding text.

PGWIDE=1 | 2
This specifies the width of the syntax diagram. 1 creates a page-wide diagram;
2 indents to the current indention in the column (2 is the default).

ScalePct=scale-percent
You can use the ScalePct attribute to scale the text up or down in the element.
The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:

scalepct="80"

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings deflned on that DEF tag are used as
defaults for this tag. See Z for
more information.

Complang
Specifies the computer language. This is optional.

4 : ”

See

See

Contexis

Children: Eragment, BragRef, Groug, RepSep, BynBId, BynNotd, [Titld.

Parents: AnnotBody, Attention, B.u.d% Cautiod, Danged, DBadyl Defr, Dintrd,
DSundlonmAI@Egseng kaNo.thadDedeadlten:l

Msglterd, NateBady) B

SyntaxDef (Syntax definition)

430

Purpose

The SyntaxDef element sets attribute defaults for syntax diagrams. SyntaxDef goes
within the document prolog to set definitions for the entire document; or within a
division prolog to set definitions for just that division. The SyntaxDef tag goes
inside a PropDefs tag.

Examples

<syntaxdef defname="widediag" synstyle="box" pgwide="1" scalepct="90">

Attributes

DEFNAME-=definition-name
The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

ID Workbench: IBMIDDoc User’s Guide and Reference

SyntaxDef (Syntax definition)

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

SYNSTYLE=SPACE | LBLBOX | BOX | RULE
Causes the figure to have a frame. The default is space — no frame.

LbIBox
Causes a box to be placed around the diagram. The top line of the box
has text label that is taken from the diagram’s Title tag.

Box Causes a box to be placed around the diagram.

Rule Causes a line to be placed above and below the diagram; to visually
separate it from the surrounding text.

ScalePct=scale-percent
You can use the ScalePct attribute to scale the text up or down in the element.
The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:

scalepct="80"

PGWIDE=1 | 2
This specifies the width of the syntax diagram. 1 creates a page-wide diagram;
2 indents to the current indention in the column (2 is the default).

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See I'Property-Based

Retrieval” on page 193.

Usage

See

Contexts
Children: empty.

Parents: PropDefd, PropGroug.

Table

Purpose
The Table element contains elements that make up a IBMIDDoc table.

Examples

<table frame="all" pgwide="0" id="compIxt">
<cap>Complex table example</cap>

<tgroup cols="3" colsep="1" rowsep="1">

<colspec colname="coll" colwidth="25%">

<colspec colname="col12" colwidth="32*">

<colspec colname="col13" colwidth="38*">

<spanspec namest="coll" nameend="co12" spanname="1to2">
<tbody>

<row>

<entry spanname="1to2" valign="top">Row 1, Cell 1
</entry>

Chapter 25. IBMIDDoc Elements 431

Table

432

<entry colname="co13" morerows="1" valign="top">Row
1, Cell 2</entry>

</row>

<row>

<entry valign="top">Row 1, Cell 3</entry>

<entry valign="top">Row 1, Cell 4</entry>

</row>

</thody>

</tgroup>

</table>

Attributes

TOCENTRY= 0(NO) | 1(YES)
If YES, and if the Title element is included, the table title will be included in
the generated TList for the document.

FRAME=TOP | BOTTOM | TOPBOT | ALL | SIDES | NONE
This attribute’s value describes the frame around the table.

COLSEP=0(NO) | 1(YES)
This attribute’s value specifies that the internal column rules should be:
e drawn to the right of each cell’s content (1)
* not displayed at all (0)

ROWSEP 0(NO) | 1(YES)
This attribute’s value specifies that the internal row rules should be:

¢ drawn below each Entry element that ends a row (1)
* not displayed at all (0)

ORIENT=PORT | LAND
This attribute specifies whether the orientation of the table presentation is
portrait or landscape. The default is PORT for portrait.

PGWIDE=0 | 1| 2
This attribute’s value specifies that the table width should be:

* the full page width (1)
* column width (0)

* The width of the current textline (2). Use this to have a table inside a list
item format to the indentation of that list item.

RowHeader=FirstCol | NoRowHeader
This specifies whether the first column is a row header. If your table’s first
column is really a row-header, specify the RowHeader=FirstCol setting. In the
same way that a column header introduces a table column; the row header
introduces the table row. This is to help make tables, whose first column is a
row-header, to be more accessible when the output is for XHTML. The default
is NoRowHeader. Here’s an example of a table where the FirstCol attribute
should be used:

Switch Location Setting
Hallway On
Kitchen Off
Bedroom On

And the markup:

<table pgwide="2" rowheader="firstcol">
<tgroup cols="2">

<colspec colname="coll">

ID Workbench: IBMIDDoc User’s Guide and Reference

Usage

Table

<colspec colname="col2">

<thead>

<row>

<entry colname="coll" valign="top">Switch Setting
</entry>

<entry colname="col12" valign="top">Value</entry>
</row>

</thead>

<tbody>

<row>

<entry colname="col1">Hall switch</entry>
<entry colname="co12">0n</entry>

</row>

<row>

<entry colname="col1">Kitchen switch</entry>
<entry colname="col12">0ff</entry>

</row>

<row>

<entry colname="col1">Bedroom switch</entry>
<entry colname="col12">0n</entry>

</row>

</tbody>

</tgroup>

</table>

Shade=NOShade | XLight | Light | Meduim | Dark | XDark

Use the Shade attribute to specify the shading. This table example shows the
shading values used in table cells:

Table 23. Cell entry shading. In the editor, use the modify attributes icon or Ctrl-A to set the
Shade attribute for the cell’s Entry tag.

noshade (0%) |xlight (5%) light (26%) medium dark (74%) xdark (100%)
(50%)

the

quick brown | fox

ScalePct=scale-percent

See

See

Contexts
Children: Cap), [Desd, ttgrouy.

Parents: [AnnotBody} Attention, BackCover Bridgd, Caution, Cond, Copyi, [Danged,
DBody] Defd, Dintrd, DSund, EdNoficed, Ed, ErontCoverd [EDesd, LEDI, L, £G,
MseTtend, Nitend, NoteBady Naticed, B PRI, PracEniry] ProcExid, ProcIntrd, Bafety

You can use the ScalePct attribute to scale the text up or down in the element.
The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:

scalepct="80"

7 . ”

Chapter 25. IBMIDDoc Elements 433

Table

TBody (table body)

Purpose
The TBody element contains the body of a TGroup; the main part of a table..

Examples

<table frame="all" pgwide="0" id="compIxt">
<cap>Complex table example</cap>

<tgroup cols="3" colsep="1" rowsep="1">

<colspec colname="coll" colwidth="25">

<colspec colname="col2" colwidth="32+">

<colspec colname="col13" colwidth="38+">

<spanspec namest="coll" nameend="co12" spanname="1to2">
<tbody>

<row>

<entry spanname="1to2" valign="top">Row 1, Cell 1
</entry>

<entry colname="co13" morerows="1" valign="top">Row
1, Cell 2</entry>

</row>

<row>

<entry valign="top">Row 1, Cell 3</entry>

<entry valign="top">Row 1, Cell 4</entry>

</row>

</thody>

</tgroup>

</table>

Attributes

VALIGN=TOP | MIDDLE | BOTTOM
This attribute specifies the vertical alignment of the text contained in the Entry
elements.

TOP
specifies alignment of the text at the top of the Entry elements.

MIDDLE
specifies alignment of the text at the middle of the Entry elements.

BOTTOM
specifies alignment of the text at the bottom of the Entry elements (the
default).

a . ”

See

Contexts
Children: kowl

Parents: w

Term

Purpose

The Term element contains a term, usually within a glossary entry. When used
outside the context of GLEntry, Term identifies a term that has been defined
elsewhere.

434 1D Workbench: IBMIDDoc User’s Guide and Reference

Term

Examples

<GLENTRY>

<TERM>apple</TERM>

<DEFN>The fruit of the apple tree.</DEFN>
</GLENTRY>

An <term>apple</term> a day keeps the doctor away.

Attributes

TERMDEF=defnid
Contains the ID of the correct definition for the term contained in the Term
element. This definition is found in the glossary or definition list markup.

a . ”

See

Contexts

Children: text (#pcdata), |A.BL|, E', tha.ll, @, IEa.r.m.uld, Hex|, ﬂ, M.M.O.b.j, w N.u.n:i,

Parents: [Addresd, |[AnnotBady) IAttention, Brided, ICap, Caution), ICGraphid, E, CLH,
bo:m.p.CmJl, bond, , IDB.D.gﬂJ, IDEﬁDl, Deﬁ‘ﬂ:[dl, Dﬁd, D]_EJJJ‘_]‘_VI, lentry E/
GLEntry [, LEDesd, L1, Lined, LQ MO, MkNotd, ModDesd, Moditerd, ModNamd,
MsgTexd, No.tP_BQdyl, E, Parm, E‘, racEntry [ProcExif], E, Bereen|, Bend, STitld,

TermHd (term heading)

Purpose

The TermHd element contains the heading for the term portion of a definition or
parameter list.

Examples

<DL>
<TERMHD>Term</TERMHD>
<DEFNHD>Definition</DEFNHD>
<DLENTRY>
<TERM>Red Otter</TERM>
<DEFN>The Red Otter lives in....
</DEFN>
</DLENTRY>
<DLENTRY>
<TERM>Blue Otter</TERM>
<DEFN>Blue Otters inhabit the....
</DEFN>
</DLENTRY>
</DL>

<PARML>
<TERMHD>Parameter</TERMHD>
<DEFNHD>Purpose</DEFNHD>
<PARM>
<TERM>D</TERM>
<DEFN>The D element contains a hierarchical division.</DEFN>
</PARM>
<PARM>

Chapter 25. IBMIDDoc Elements 435

TermHd (term heading)

<TERM>P</TERM>
<DEFN>Contains a paragraph</DEFN>
</PARM>

</PARML>

Attributes

7 : ”

See

Usage

See

% e ege . 7

Contexts
Children: text (#pcdata), El, E, @, .

Parents: m, Parm1l.

TextAlt (text alternative)

Purpose

The TextAlt element contains a text description of a multimedia object for use in
non-graphic environments.

Examples

<MMOBJ><0BJREF OBJ="TESTGRAF">
<TEXTALT><P>This is a description of the object referred to.
</TEXTALT>

</MMOBJ>

Attributes

See I'Cammon Element Attributes (]argp set)” on page 227

Usage
See

’ . : ”

Contexts
Children: text (#pcdata), Iil, Iﬂ, m, ﬁl, Iﬂ, PBI1L, E, [[abld, [Term, (91

Parents: [AreaDef, MMOQOb].

TFoot (table footer)

Purpose

The TFoot element contains the footer rows that occur after the TBody element.
TFoot cannot be created within the current version of the graphical table editor.
You can add the TFoot element to your table from the tag view, but the table
cannot be edited with the graphical table editor without removing the TFoot
element. For this reason, using TFoot is not recommended. Use the last row of the
table body to contain the table footing; typically to contain a list of table notes.

If you want to use the TFoot element, do not add it to your table markup until the
rest of the table markup and content is complete.

436 1D Workbench: IBMIDDoc User’s Guide and Reference

TFoot (table footer)

Attributes

VALIGN=TOP | MIDDLE | BOTTOM
This attribute specifies the vertical alignment of the text contained in the Entry
element.

TOP
specifies alignment of the text at the top of the Entry.

MIDDLE
specifies alignment of the text at the middle of the Entry.

BOTTOM
specifies alignment of the text at the bottom of the Entry (the default).

Usage

See

7 : ”

Contexts
Children: kowl

Parents: @
TGroup (table group)

Purpose

The TGroup element contains elements that make up a section of a table.

Examples

<TABLE FRAME="ALL">
<TGROUP COLS="5" COLSEP="1" ROWSEP="1" ORIENT="PORT" PGWIDE="0">

Attributes

COLS=number_of _cols
This value indicates the number of columns defined for the TGroup.

COLSEP=0(NO) | 1(YES)
This attribute’s value specifies that the internal column rules should be:
¢ drawn to the right of each cell’s content (1)
* not displayed at all (0)
ROWSEP 0(NO) | 1(YES)
This attribute’s value specifies that the internal row rules should be:
¢ drawn below each Entry element that ends a row (1)
* not displayed at all (0)

ALIGN=LEFT | RIGHT | CENTER | JUSTIFY | CHAR
This attribute specifies the horizontal positioning of the text:

LEFT
specifies left alignment (the default)

RIGHT
specifies right alignment

Chapter 25. IBMIDDoc Elements 437

TGroup (table group)

CENTER
specifies center alignment

JUSTIFY
specifies justification of the text

CHAR
specifies alignment on a particular character

PGWIDE=0 | 11 2
This attribute’s value specifies that the TGroup width should be:
* the full page width (1)
* column width (0)
* text-line width (2)
ColSpec
Contains the column specification for a column.
SpanSpec
Contains the specification for a table span.

THead
Contains the table header.

TFoot
Contains the table footer.

Tbody
Contains the body of a TGroup in a Table.

See

Contexts

Children: tolsped, pansped, thody itfoot, thead.
Parents: [[abld

THead (table heading)

438

Purpose

The THead element contains the heading rows of a TGroup element.

Examples

<table frame="all" pgwide="0">

<cap>Another sample table</cap>

<tgroup cols="4" colsep="1" rowsep="1">
<colspec colname="coll" colwidth="1*">
<colspec colname="col2" colwidth="2%">
<colspec colname="co13" colwidth="3x">
<colspec colname="col4" colwidth="1*">
<thead>

<row>

<entry valign="top" rowsep="1">Col #1</entry>
<entry valign="top" rowsep="1">Col #2</entry>
<entry valign="top" rowsep="1">Col #3</entry>
<entry valign="top" rowsep="1">Col #4</entry>
</row>

</thead>

ID Workbench: IBMIDDoc User’s Guide and Reference

THead (table heading)

<tbody>

<row>

<entry valign="top">Row 1, Cell I</entry>
<entry valign="top">

Row 1</1i>

Cell 2</1i>

</o1></entry>

<entry valign="top">Row 1, Cell 3; here's a little
more text than the other cells have</entry>
<entry valign="top">Row 1, Cell 4</entry>
</row>

<row>

<entry valign="top">Row 2, Cell 1</entry>
<entry valign="top">Row 2, Cell 2</entry>
<entry valign="top"><ph style="italic">Row 2, Cell
3</ph></entry>

<entry valign="top">Row 2, Cell 4</entry>
</row>

</tbody>

</tgroup>

</table>

Attributes

VALIGN=TOP | MIDDLE | BOTTOM
This attribute specifies the vertical alignment of the text contained in the Entry
element.

TOP
specifies alignment of the text at the top of the Entry.

MIDDLE
specifies alignment of the text at the middle of the Entry.

BOTTOM
specifies alignment of the text at the bottom of the Entry (the default).

Usage

See

v : . ”

Contexts
Children: kowl

Parents: M

Then (procedure action to take)

Purpose

The Then element contains a description of the action to take as the result of a
condition that occurs at a decision point of a procedure.

Examples

<decisionpnt>

<cond>Is the diaper wet?</cond>
<then><procstep><proccmnd>

<desc>Change the diaper.</desc>
</proccmnd><procexit>Johnny was uncomfortable.</procexit>
</procstep>

</then>

Chapter 25. IBMIDDoc Elements 439

Then (procedure action to take)

<else>

<desc>Continue at <xref refid="hungry">.</desc>
</else>

</decisionpnt>

Attributes

See

7 : ”

Usage

See

Contexis
Children: Desd, Prod, ProcSteg.

Parents: M

Title

Purpose

The Title element contains a title for elements that can have titles. Note that the
meaning of the Title element is dependent upon the context in which it is used. For
example, when used within a Division, Title contains the chapter or topic heading.
When used in a PBlk element, it contains the title for the block of paragraphs.

Examples

<d>

<dprolog><titleblk>

<title>My Little Chapter</title>
</titleblk></dprolog>

<dbody>

<p>Here's the beginning of my chapter.</p>
</dbody></d>

Attributes

See

a . ”

Usage

See

7 . . e e 173

Contexts
Children: text (#pcdata), ﬂ, E, @, oM.

Parents: [Annod, [Authod Bridgd, ClassDed, DLBIY, [EdNoticed El:agman." EragRed,

ELBW, Groug, LIBL, Modintd, Modltembel, Msg, MsgltemDel, Notd, NoteLisd,
BarmBlY, PartAsad, PBIY, BropDesd, Quald, BymBId, Bynta, [itleBId

TitleBlk (title information)

Purpose
The TitleBlk element contains title information.

440 1D Workbench: IBMIDDoc User’s Guide and Reference

TitleBIk (title information)
Examples

<d>

<dprolog><titleblk>

<title>My Little Chapter</title>
</titleblk></dprolog>

<dbody>

<p>Here's the beginning of my chapter.</p>
</dbody></d>

Attributes

See

7 . ”

Usage
See

” . o e e 17

Contexts
Children: ETitld, BuhTitld, [Titld.

Parents: DIntrd, DacTitld, DProlog, DSum, Eigl isd, [BMSafety Index, Library,
PNIndey, Prod, PracSted, RCH, Bafetyl, BpecDProlad, CLisd, fQd.

TList (list of tables)

Purpose

The TList element either causes a table list to be generated, or contains an explicit
list of tables to be presented.

Examples
<tlist><gendtitle></tlist>

Attributes

SPEC=AUTO | MAN
Specifies whether the content of the element is generated. If SPEC=AUTO is
specified, the list is automatically generated.

LAYOUT=Default-Layout | OneCol | TwoCol
Specifies the column-style for the section.

Default-Layout
The section uses the default layout for the document style.

OneCol
The headings and text format across the entire page.

TwoCol
The text formats in two columns. Headings format across the page or
with the two-column text.

Chapter 25. IBMIDDoc Elements 441

TList (list of tables)

Contexts
Children: CLE, GendTitld, RetKey, [[itleBIK.

Parents: ErontM.

TM (Trademark)

Purpose

The TM tag identifies the trademark terms in the document.

The TM tag identifies the trademark terms in your source by surrounding the
trademark term or phrase. This tag has attributes that are not translated; they
contain no “MRI”. The TM attributes contain information for the author an the
processing formatters. The TMType attribute creates the appropriate trademarking
character after the term or phrase. The files IDDIRTM.LST or IDTMSCAN.LST list
the trademarks and the attributes needed for the TM tag. Use these files to insert
the TM tag with proper attributes for the trademark term or phrase.

Examples

<tm trademark="0S/2" tmowner="IBM Corporation" tmtype="reg"
tmclass="ibm">0S/2</tm> requires a <TM trademark="Pentium"
tmowner="Intel Corproation" tmtype="reg" tmclass="special">Pentium</tm>
166MHz processer.

Attributes

trademark

This is the trademark term or phrase repeated in the tag. This attribute is
required.

tmowner
This identifies the trademark owner. For example, the trademark owner could
be “IBM Corporation”. This attribute is optional.

tmtype
This identifies the trademark type. One of the following must be chosen:

™
Trademark" .

REG
Registered trademark®.

SERVICE
Service marks™M.

tmclass

This identifies the trademark classification. One of the following must be
chosen:

IBM
IBM Corporation.

IBMSUB
IBM subsdiary (such as Tivoli " or Lotus).

SPECIAL
Requires special notation. These are for companies who have a special

442 1D Workbench: IBMIDDoc User’s Guide and Reference

TM (Trademark)

agreement with IBM. There is a legal obligation for IBM to mark these
trademarks in the document as well as in the Notices section.

OTHER
All other trademarks. These are not marked in the output.

Usage

See the ' ‘
trademarks into your document.

for the tools to insert

Contexts
Children: text (#pcdata), b, Ferad.

Parents: [Addresd, |AnnotBadsy) IAttentiod, Brided, % Cautiod [C1, ELB, CompCmd,
tond, l’“npvtl, b.a.n.gerl, De.ﬁ;{, ID-E‘.fDHd, DESd, En.tu,‘, , ﬂ, lL-EDESd, [L.EJNI, E, IL.i.D.E.d,
%w,w,w,w,mm,w,wﬂm
Warning

TOC (table of contents)

Purpose

The TOC element either causes a table of contents to be generated, or contains an
explicit list of CLE elements to be presented.

Examples

<toc><gendtitle></toc>

Attributes

SPEC=AUTO | MAN
Specifies whether the content of the element is generated. If SPEC=AUTO is
specified, then the element’s content is generated.

LAYOUT=Default-Layout | OneCol | TwoCol
Specifies the column-style for the section.

Default-Layout
The section uses the default layout for the document style.

OneCol
The headings and text format across the entire page.

TwoCol
The text formats in two columns. Headings format across the page or
with the two-column text.

Chapter 25. IBMIDDoc Elements 443

TOC (table of contents)

Contexts
Children: CLE, GendTitld, RetKey, [[itleBIK.

Parents: m, [ErontM.

UL (unordered list)

Purpose

The UL element contains a list of items whose order of appearance is not
important.

Migration Note
The simple list element from BookMaster has been included into the
unordered list element; the only difference is the type of bullet used for the
two lists.

Examples

<1i>This is an item in an unordered Tist. To separate
it from other items in the 1ist, the formatter puts

a bullet beside it.</1i>

<1i>The paragraph that is contained in the LI element
is part of the list item which contains it. <p>This
is the contained paragraph.</p></1i>

<1i>This is a separate Tist item in our unordered
Tist.</1i>

Attributes

ULTYPE= checkoff | normal | simple | simplecheckoff
Specifies the type of the list. Checkoff lists have an underscore before the
bullet. Simple lists have no bullet or dash before the list item. Simplecheckoff
lists have only the underscore in front of the list item.

style= simple
Deprecated. Use ULTYPE=SIMPLE. Specifies a simple list; no bullet is
produced.

DBScalePct=scale-percent
You can use the DBScalePct attribute to scale the dingbat (the thing in front of
the list) up or down for a list item. The scale-percent is one of the following
numbers: 50, 60, 70, 80, 90, 100, 110, 120, 140, 160, 180, 200, 240, or 300. 100 is
the normal size; 50 is 50% smaller; 200 is 200% larger. For example, this scales
the bullet or number to twice its size:

dbscalepct="200"

This works for hardcopy only.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

444 1D Workbench: IBMIDDoc User’s Guide and Reference

UL (unordered list)

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as

defaults for this tag. See Chapter 9, “1Ising definition tags” on page 103 for

more information.

Usage

See

7 : ”

Contexts
Children: B.r.i.d.gé, E, LIBIK.

Parents: EnnofBody) Bttentiod, BackCoved Bridgd, Cautiod, Cond, Copsd, Danged
Besd, Dintrd, DSud, EdNoticed, bntry] Eig, EigSed, Edl, ErontCoued,

Detd,
RMiNotd, ModDesd, ModTtesd, | Nitend, NoteBody)
wam%@

BrocExid, Procintrd, Bafety) BymNotd, [TextAll,

ULDef (Unordered list definition)

Purpose

The ULDef element sets attribute defaults for unordered lists. ULDef goes within
the document prolog to set definitions for the entire document; or within a
division prolog to set definitions for just that division. The ULDef tag goes inside a
PropDefs tag.

Examples

<propdefs><uldef defname="checklist" ultype="checkoff"
dbscalepct="140"></propdefs>

<ul def="checklist">
o01d horse</1i>
kitty-cat</1i>
peanut butter</1i>
engine</1i>

Attributes

DBScalePct=scale-percent
You can use the DBScalePct attribute to scale the dingbat (the thing in front of
the list) up or down for a list item. The scale-percent is one of the following
numbers: 50, 60, 70, 80, 90, 100, 110, 120, 140, 160, 180, 200, 240, or 300. 100 is
the normal size; 50 is 50% smaller; 200 is 200% larger. For example, this scales
the bullet or number to twice its size:

dbscalepct="200"

This works for hardcopy only.

DEFNAME-=definition-name
The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Chapter 25. IBMIDDoc Elements 445

ULDef (Unordered list definition)

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

ULTYPE= checkoff | normal | simple | simplecheckoff
Specifies the type of the list. Checkoff lists have an underscore before the
bullet. Simple lists have no bullet or dash before the list item. Simplecheckoff
lists have only the underscore in front of the list item.

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See 'Property-Based

Rﬂmﬂml—m—pa%e—]—g-g. ” .

Usage

See

Contexts
Children: empty.

Parents: PropDefd, PropGraug.

Var (syntax variable)

446

Purpose

Use Var to define variables within a syntax definition.

Examples

<syntax>

<group>
<kwd>LANGUAGE</kwd>
<oper>=</oper>
<var>language_name</var>
</group>

</syntax>

Attributes

OPTREQ=OPT | REQ | DEF
Indicates whether or not the variable is optional.

LINKEND=id
Contains an ID reference that enables a link to an arbitrary location in the
document.

See I!‘Common Element Attributes (large set)” on page 2217.

Usage

See

ID Workbench: IBMIDDoc User’s Guide and Reference

Var (syntax variable)

Contexts
Children: text (#pcdata).

Parents: Grougd, BymPH.

Version (product version number)

Purpose

The Version element contains the version number of the product that the document
describes.

Examples

<ibmprodinfo>

<prodname>ID Workbench</prodname>
<version>Version 37</version>
<release>Release 29</release>
</ibmprodinfo>

Attributes

See

s . ”

Usage
See

s ”

Contexts
Children: text (#pcdata), Bd.

Parents: [BMPradInfd, PradInfd.

VNet (IBM VNet mail address)

Purpose
The VNet element contains an IBM VNet email address.

Examples

<maintainer>

<corp>

<corpname>IBM Corporation</corpname>

<address>ATTN: Dept 542

3605 HWY 52 N

Rochester, MN
<postalcode>55901-9986</postalcode><phone equip="fax">
1-800-555-1212</phone><vnet>http://w3.rchland.ibm.com/projects/IDWB
</vnet></address>

</corp>

</maintainer>

Attributes

See

7 . ”

Chapter 25. IBMIDDoc Elements 447

VNet (IBM VNet mail address)

Contexts
Children: text (#pcdata).

Parents: [Addresd.

Volid (volume identifier)

Purpose

Contains the identifier for one portion of a multivolume document.

Examples

<doctitle>

<library><titleblk>

<title>ID Workbench</title>

</titleblk></Tibrary>

<titleblk>

<title>IBMIDDoc User's Guide <ph props="ref">and
Reference</ph></title>
</titleblk></doctitle><volid>Volume 1</volid><ibmdocnum>
SH21-0783-09</ibmdocnum><externalfilename>iddugref
</externalfilename>

Attributes

See

7 . ”

Contexts
Children: text (#pcdata), bd.

Parents: m

Warning (warning notice)

Purpose

Use Warning to contain a mandatory safety notice, consisting of one or more
paragraphs or other paragraph-level elements. For non-mandatory notices, use the
Attention element. See [“Attention (safety notice)” on page 23§ for information
about the Attention element.

Examples

<WARNING>Do not use this blow dryer while taking a shower.
</WARNING>

Attributes

See

7 : ”

Usage

See

” 7

Contexts
Chﬂdren text (%data) (Addresd, Annod, IAPT], E [Bud.%tﬁlxa.phﬁ Chai, E

Eormuid, B1] e, [Cined

448 1D Workbench: IBMIDDoc User’s Guide and Reference

Warning (warning notice)

MMOb)], ModInfd, M Nund, D, B1l, B Parmi], PBIY, PH, PK, PV 0, RefKey]

Parents: @

WebPage

Purpose

Use WebPage to contain a web-page address. Use this to provide a location in your
book to allow others to “read more about it”. Webpage is used as part of an
address. It currently does not cause any automated linking from a PDF file. When
used in the document, it is printed as an address line. When used in the
Maintainer section, it is printed on non-US reader comment forms.

Examples

<maintainer>

<corp>

<corpname>IBM Corporation</corpname>

<address>ATTN: Dept 542

3605 HWY 52 N

Rochester, MN
<postalcode>55901-9986</postalcode><phone equip="fax">
1-800-555-1212</phone>

<webpage>http://w3.rchland. ibm.com/projects/IDWB</webpage>
</address>

</corp>

</maintainer>

Attributes

See ‘'Camman FElement Attributes (];\rgp set)” on page 227

Contexts
Children: text (#pcdata).

Parents: [Addresd.

Xmp (example)

Purpose

Use Xmp to contain examples of computer input or output, such as code samples
or listings. In the default style, Xmp data is presented in a monospaced typeface.
Within Xmp, significant record ends are preserved and presented.

Examples

<XMP STYLE='BKM: (KEEP="10")'>
10 LET A = B

20 IF A GT C THEN GO 40

30 LETA=C

40 PRINT A, C

</XMP>

Chapter 25. IBMIDDoc Elements 449

Xmp (example)

Attributes

Usage

OBJ=object-reference
Allows you to include a declared program entity.

NOTATION=LINESPEC
LINESPEC is the default value for the NOTATION attribute on Xmp.

LINELENGTH=characters
This specifies the number of characters in widest line. If the number of
characters does not fit in the column or page width, the text size is reduced.

PGWIDE=1 | 2
This specifies the width of the example. 1 is for a page-wide example; 2
indents to the current indention in the column (2 is the default).

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as

defaults for this tag. See Chapter 9 “Ising definition tags” on page 101 for

more information.

See 'Common Flement Attributes (large set)” on page 227.

v 7

See

Contexts

Children: text (#pcdata), O LitDatd b PH, PKI, P\ RefKey) BynPH, Ternd.

Parents: AnnotBody} IAttention, BackCaver Brided, Caution, Danged, DRody, Defd,
DIntrd, DSun bntry Eid, FigSed, Ed, ErontCoved LEDI, L1, LQ, MkNotd, MadDesd,

XmpDef (Example definition)

Purpose

The XmpDef element sets attribute defaults for exampless. XmpDef goes within the
document prolog to set definitions for the entire document; or within a division
prolog to set definitions for just that division. The XmpDef tag goes inside a
PropDefs tag.

Examples

<xmpdef defname="widexmp" Tinelength="132">

Attributes

DEFNAME-=definition-name
The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire

450 1D Workbench: IBMIDDoc User’s Guide and Reference

XmpDef (Example definition)

document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

PGWIDE=1 | 2
This specifies the width of the example. 1 is for a page-wide example; 2
indents to the current indention in the column (2 is the default).

LINELENGTH-=characters
This specifies the number of characters in widest line. If the number of
characters does not fit in the column or page width, the text size is reduced.

Props=properties
The Props attribute is used to specify the condition under which the
1nformat1on contained within the element appears. See I‘Property-Based

Usage

See

Contexts
Children: empty.

Parents: PrapDefd, [PropGroug.

XPh (example phrase)

Purpose

Use the XPh element for computer input or output phrase that occurs within text.
In the default style, XPh is presented in the same typeface as is used for Xmp
elements.

Examples
The system will respond with a <XPH>READY</XPH> message.

Attributes

See

s . ”

Usage
See [lable 1 on page 44.

Contexts
Children: text (#pcdata), ﬂ, m, E, @, w Ternd

Parents: [AnnotBodyl Attention, Bridgd, Cautiod, CompCmi, Danged, Defd
maﬂﬂwmmwwwwﬂﬁa

ByniNotd, Fersd, Warning,

XRef (cross reference)

Purpose

The XRef element defines a reference to another element and generates the
reference text (or other link indicator) automatically. The element referred to can be

Chapter 25. IBMIDDoc Elements 451

XRef (cross reference)

452

in the same document or in another document. XRef can point to another element
indirectly by referring to a NameLoc element.

XRef defines a link to another element and automatically generates the link
indicator. The link indicator is normally the title of the element linked to along
with some locator, such as a page or panel reference, or, when the element does
not have a title, just a locator. When the element linked to has an XRefText
attribute specified, the XRefText value is used as the link indicator. For example, a
cross reference to a paragraph that does not have XRefText coded would generate
just a page number.

The style of the generated cross reference is determined by the active document
style.

You can create a cross reference indirectly by using a NameLoc element to define
the target of the cross reference. For example, you may have already defined a
NameLoc to something for use by the L element because it will be linked to many
times. You can use this same NameLoc for cross references to the element.

When XRef references a NameLoc element which references another document
using the DOCNAME attribute, a cross-document link is generated.

The name on the NameLoc’s DOCNAME attribute must match the name specified
on the DOCNAME attribute on an IBMBibEntry or BibEntry element. DOCNAME
values must be unique for each IBMBibEntry or BibEntry element.

Note: XREFTEXT is the only IBMIDDoc attribute that can take DBCS data.

Examples

Referring directly to another element:
<P>See <XREF REFID="AboutXRef"> for more information.

<D ID="AboutXref">XRef Explained

Here is an example referring to a title using Form=Full:
<title id=heading>Basic use of Elements</title>

<p>The best place for more information is in
<xref refid=heading form=full>.</p>

The example would read:

The best place for more information is in
"Chapter 3. Basic use of Elements" on page 20.

Here is an example referring to an ordered list using Form=Full:

<p>Here is a list of important items:

<1i>This is the first important item</1i>
<1i>This is the second important item</1i>
<1i id=third>This is the third important item</1i>
</p>
<p>This information refers back to the important Tist item
<xref refid=third form=full>

Which generates this output:

This information refers back to the important Tist item 3 on
page 5.

ID Workbench: IBMIDDoc User’s Guide and Reference

XRef (cross reference)

Here is an example referring to a title using Form=Text:
<title id=Heading>Basic Use of Elements</title>

<p>The best place for more information is in
<xref refid=heading form=text>.

The example shows:

The best place for more information is in Chapter 3. Basic Use of
Elements.

Attributes

REFID=clement_id
The ID value of the element being linked to. The linked element may be any
element that takes an ID attribute.

OBJTYPE=target_type
Specifies the target type of the object being referenced.

FORM=formtype
There are three types of cross references that can be used with the Form
attribute: text, number, or location. Text elements are usually linked to titles.
The location is a page number for printed output. The number is for
enumerated elements only (for example, ordered list items). Be sure to check
out the examples section to see how some of the attributes are used. If you are
processing the document through a transform that generates a hard copy
version, you can control the form of the reference. If you are processing the
document through a transform that generates an online version, the xref form
attribute is currently ignored. Here are the specific choices listed under Form:

NORMAL
The active presentation style defines the output.

FULL
A full reference includes all variable information about the target element.
For example, if you were referring to a chapter heading, the xref would list
the chapter number, name of the chapter, and the page number where the
chapter can be found.

TEXT
This lists the text of the target element (typically the title). This will list the
chapter number and the name of the chapter. The page number is not
listed.

NUMBER
This lists only the number of the target. If this was used in reference to a
chapter title, only the chapter number would be listed. If this was used in
reference to an ordered list, the xref would only list the number of the
step--not the page where the list number is located.

LOCATION
The location of an element, such as its page number or panel ID. In some
presentations, there may not be a meaningful locator, in which case the
presentation style may do the best it can, such as presenting the title of the
nearest containing element.

These renamining attributes may be supported in the future; they currently

processes the same as Normal.

NUMLOC
The number of an enumerated element followed by its location.

Chapter 25. IBMIDDoc Elements 453

XRef (cross reference)

NUMTEXT
The number of an enumerated element followed by its text.
LOCTEXT
The location of an element followed by its text.
TEXTLOC
The text of an element followed by its location.
TEXTNUM
The text of an element followed by its number.
LOCNUM
The location of an element followed by its number.
See L i “
Usage
See ‘“” _ ”
Contexts
Children: empty.
Parents: |A.t.tenhod | Cautior, tomp.Cm.ﬂ, IDa.n.ger], Defn, Desd,
Iam_,EJE Iﬁl@m , MiNotd, ModDesd, Maditen], NoteBody

454 1D Workbench: IBMIDDoc User’s Guide and Reference

Part 4. Appendixes

© Copyright IBM Corp. 1992, 2001 455

456 1D Workbench: IBMIDDoc User’s Guide and Reference

Appendix A. IBMIDDoc Supported Notations

Table 24. Notation table

The following table lists the notations and their identifiers.

Notation name Notation identifier

SGMLDOC PUBLIC "ISO 8879:1986/ /NOTATION STANDARD GENERALIZED MARKUP
LANGUAGE (SGML)/ /EN"

SMFF PUBLIC "+//ISBN 0-933186::IBM//NOTATION SCRIPT MATHEMATICAL
FORMULA FORMATTER/ /EN"

PSEG PUBLIC "+/ /ISBN 0-933186:1BM/ /NOTATION AFP PAGE SEGMENT//EN"

PSEG3820 PUBLIC "+/ /ISBN 0-933186::1BM//NOTATION AFP PAGE SEGMENT::3820/ /EN"

PSEG38PP PUBLIC "+/ /ISBN 0-933186:1BM/ /NOTATION AFP PAGE SEGMENT::38PP//EN"

PSEG4250 PUBLIC "+/ /ISBN 0-933186::1BM/ /NOTATION AFP PAGE SEGMENT::4250/ /EN"

ANIMATION PUBLIC "+/ /ISBN 0-933186:1BM/ /NOTATION GENERIC ANIMATION
META-NOTATION/ /EN”"

VIDEO PUBLIC "+//ISBN 0-933186::IBM//NOTATION GENERIC VIDEO
META-NOTATION/ /EN”

AUDIO PUBLIC "+//ISBN 0-933186::1BM/ /NOTATION GENERIC AUDIO
META-NOTATION/ /EN"

GRAPHICS PUBLIC "+//ISBN 0-933186::IBM//NOTATION GENERIC GRAPHICS
META-NOTATION/ /EN"

VECTOR PUBLIC "+/ /ISBN 0-933186:1BM/ /NOTATION GENERIC VECTOR
META-NOTATION/ /EN"

IMAGE PUBLIC "+//ISBN 0-933186::IBM//NOTATION GENERIC IMAGE
META-NOTATION/ /EN”"

EPS PUBLIC "-//ADOBE//NOTATION ENCAPULATED POSTSCRIPT//EN"

APL PUBLIC "ISO 8485:1989/ /NOTATION PROGRAMMING LANGUAGES - APL//EN"

ASM PUBLIC "+//ISBN 0-933186::1BM/ /NOTATION 80X86 ASSEMBLER
PROGRAMMING LANGUAGE//EN"

ASSEMBLE PUBLIC "+/ /ISBN 0-933186:1BM//NOTATION 370 ASSEMBLER PROGRAMMING
LANGUAGE//EN"

BAT PUBLIC "+//ISBN 0-933186:1BM/ /NOTATION DOS BAT PROGRAMMING
LANGUAGE/ /EN"

C PUBLIC "ISO/IEC 9899:1990/ /NOTATION PROGRAMMING LANGUAGES -
C//EN"

COBOL PUBLIC "ISO 1989:1985/ /NOTATION PROGRAMMING LANGUAGES -
COBOL//EN"

CPP PUBLIC "+//ISBN 0-933186::IBM//NOTATION C++ PROGRAMMING
LANGUAGE//EN"

EXEC PUBLIC "+/ /ISBN 0-933186:1BM/ /NOTATION EXEC PROGRAMMING
LANGUAGE//EN"

FORTRAN PUBLIC "ISO/IEC 1539:1991/ /NOTATION INFORMATION TECHNOLOGY -
PROGRAMMING LANGUAGES - FORTRAN/ /EN"

PLI PUBLIC "ISO 6160:1979/ /NOTATION PROGRAMMING LANGUAGES - PL/1//EN"

© Copyright IBM Corp. 1992, 2001 457

Table 24. Notation table (continued)

Notation name

Notation identifier

REXX PUBLIC "+//ISBN 0-933186::1IBM//NOTATION REXX PROGRAMMING
LANGUAGE//EN"

CMNDLINE PUBLIC "+//ISBN 0-933186::1IBM//NOTATION COMMAND LINE ENTRY//EN"

HYQ PUBLIC "ISO/IEC 10744:1992/ /NOTATION HYTIME QUERY NOTATION//EN"

HYLEX PUBLIC "ISO/IEC 10744:1992/ /NOTATION HYTIME LEXICAL MODEL
NOTATION/ /EN"

SCRIPT PUBLIC "+//ISBN 0-933186::IBM//NOTATION DOCUMENT COMPOSITION
FACILITY MARKUP//EN"

SCREEN PUBLIC "+//ISBN 0-933186::IBM//NOTATION CHARACTER SCREEN
REPRESENTATION/ /EN"

LINESPEC PUBLIC "+//ISBN 0-933186::1IBM//NOTATION LINE SPECIFIC CONTENT//EN"

PROGRAM PUBLIC "+//ISBN 0-933186::IBM//NOTATION GENERIC PROGRAM LAUNCH
META-NOTATION/ /EN"

BOOKMANAGERBOOK PUBLIC "+//ISBN 0-933186::1IBM//NOTATION BOOKMANAGER COMPILED
BOOK NOTATION/ /EN"

IPFINF PUBLIC "+//ISBN 0-933186::1BM//NOTATION INFORMATION PRESENTATION
FACILITY BOOK NOTATION/ /EN"

URL PUBLIC "-//IETF //NOTATION UNIVERSAL RESOURCE LOCATOR NOTATION::

IETF RFC 1738/ /EN"

458 1D Workbench: IBMIDDoc User’s Guide and Reference

Appendix B. Proposed IBM Standard for Formal Public
Identifiers

One of the SGML mechanisms on which IBMIDDoc depends is Formal Public
Identifiers (FPIs). This is a system-independent naming syntax that is defined in
the standards ISO 8879 and ISO 9070. There are several advantages to using them,
as opposed to using system identifiers directly. Resolution of references to these
entities are supported using a catalog lookup feature found in most SGML
products. This paper describes the conventions to be used within IBM when using
these formal public identifiers.

Here is the basic format of a formal public identifier:

FPI Format

»—[+:|—//owner identifier—//public text class— public text description———»

»—//public text language <

The following sections will describe each of these fields. In addition, these sections
describe a format to be used within IBM information development when creating
formal public identifiers. Identifiers which comply with this standard will be
unique and consistent across the corporation. This may become a the standard for
other parts of the corporation. Our customers may wish to use a definition like this
in their own work.

Notice that when processed, FPIs are transformed or normalized using the same
normalization rules as those used for tokenizing attribute value literals:

1. Ignore RS

2. Replace RE and SEPCHAR with SPACE

3. Replace a sequence of SPACE characters with a single SPACE and
4. Ignore leading and trailing SPACE characters.

This means that record ends or multiple spaces may be freely inserted anywhere a
space is allowed.

Owner Identifier

The first part described here is a structure called an owner identifier. There are two
forms of interest: registered (preceded with a "+") and unregistered (preceded with
a "-"). The ISO 9070 standard describes a registration process and an authority. It
also defines a syntax for using a registered identifier based on an ISBN number.
Either the 9070 registration or the ISBN registration may be used in registered
owner identifiers. Since the registration authority has not yet been named, the
ISBN number syntax must be used.

© Copyright IBM Corp. 1992, 2001 459

IBM has an ISBN publisher prefix, 0-933186. This will be used for all formal public
identifiers for IBM-owned objects. This yields a registered owner identifier of
+//ISBN 0-933186::1BM.

Public Text Class and Public Text Description

460

Following the owner identifier, there are two fields called the public text class and
public text description. The public text class defines the type or class of entity
being named. The public text description gives more information about the entity
described.

Here is an example of a formal public identifier which conforms to this standard.
+//ISBN 0-933186::IBM//DOCUMENT PUB SC31-1234-00//EN

The "+//ISBN ..." is the registered owner identifier, in this case indicating that the
owner is IBM using the ISBN registration. Notice that 0-933186 represents the ISBN
registration identifier that has been assigned.

The keyword DOCUMENT defines the public text class for the entity. The list of
possible values for this field are defined in ISO 8879. It is also reiterated in the list
below. The keyword DOCUMENT indicates that the entity identified is a complete
SGML document.

The keyword PUB is the start of the public text description. The keyword PUB in
this context indicates an IBM publication and is followed by the standard IBM
publication number. The "EN" preceded by the "/ /" is the public text language
identifier, in this case, English.

The following list defines the public text description field format. Notice that its
value is keyed on the public text class. Unless otherwise noted, the data in the
field identifies the entity itself; in some cases it may refer to either a containing
context or another entity to which the defined information is related. As used in
these definitions, the term “context” means the document library or collection to
which the entity applies or which owns the entity.

Public Text Class
Public Text Description

CAPACITY

The following field identifies the DTD to which this capacity set entity
applies.

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

A corporate standard will be written for all IBM internal DTDs
which are distributed throughout the company. The CAPACITY file
may be used to maintain the CAPACITY used by these DTDs and
is referenced from SGML declaration files which apply to the DTD.

Local Definition
LCL owner descriptor [::descriptor]

CHARSET
[CP nnnnn[-n]]

where

ID Workbench: IBMIDDoc User’s Guide and Reference

nnnnn[-n]
indicates a standard IBM codepage, if specified. If not specified, the
character set is assumed to not be an IBM-defined codepage.

Notice that if another standard is used for character encoding, such as an
ANSI or ISO standard, the FPI for their standards, as they define them,
should be used.

DOCUMENT

The following field applies to the document being described, not an
owning context.

Corporate Standard

STD ppp n-nnnn-nnn [nnnn-n]
IBM publication

PUB zznn-nnnn[-nn]

IBM collection
LIB zznn-nnnn[-nn]

ISBN notation
ISBN n-nn-nnnnnn-n

Local Definition
LCL owner descriptor [::descriptor]

DTD
Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]
A corporate standard will be written for all IBM internal DTDs
which are distributed throughout the company.
Local Definition
LCL owner descriptor [::descriptor]
Notice that if a standard DTD is used from another institution, like ANSI
or ISO, the FPI for their standards, as they define them, should be used.
ELEMENTS

If the declared elements are intended for general use throughout IBM, the
entity would be identified by the corporate standard identifier of the DTD
to which the declarations are related.

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n][::descriptor]

If elements are defined for a particular document, library or other
collection, the identifier identifies the owning context.

IBM publication
PUB zznn-nnnn[-nn][::descriptor]

IBM collection
LIB zznn-nnnn[-nn][::descriptor]

ISBN notation
ISBN n-nn-nnnnnn-n[::descriptor]

Local Definition
LCL owner descriptor [::descriptor]

Appendix B. Proposed IBM Standard for Formal Public Identifiers 461

ENTITIES
When an entity set is distributed throughout the company, a corporate
standard will be written for it and it will be identified using this field:

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

When an entity set is used to hold the entity declarations for a particular
document, library or collection, the identifier for that context should be
used to identify the entity:

IBM publication
PUB zznn-nnnn[-nn][::descriptor]

IBM collection
LIB zznn-nnnn[-nn][::descriptor]

ISBN notation
ISBN n-nn-nnnnnn-n[::descriptor]

Local Definition
LCL owner descriptor [::descriptor]

Notice that if a standard entity set is used from another institution, like
American Mathematical Society or ISO, the FPI for their standards, as they
define them should be used.

LPD

When a link process declaration set is distributed throughout the company,
a corporate standard will be written for it and it should be identified using
this field:

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

When an LPD is used to hold the declarations for a particular document,
library or collection, the identifier for that context should be used to
identify the entity:

IBM publication

PUB zznn-nnnn[-nn][::descriptor]

IBM collection
LIB zznn-nnnn[-nn][::descriptor]

ISBN notation
ISBN n-nn-nnnnnn-n[::descriptor]

Local Definition

LCL owner descriptor [::descriptor]

Note: The LINK features are not currently used within IBM but this
specification is included for completeness and in anticipation of
when these features will be used.

NONSGML
The following fields identify the owning context for the non-SGML entity.

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n][::descriptor]

462 1D Workbench: IBMIDDoc User’s Guide and Reference

IBM publication
PUB zznn-nnnn[-nn][::descriptor]

IBM collection
LIB zznn-nnnn[-nn][::descriptor]

ISBN notation

ISBN n-nn-nnnnnn-n[::descriptor]
Local Definition

LCL owner descriptor [::descriptor]

NOTATION

The following field identifies the document which defines the notation
referred to by this notation identifier.

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

Local Definition
LCL owner descriptor [::descriptor]

Notice that if a notation is defined by a standards body, like ANSI or ISO,
the FPI for their standards, as they define them should be used.

SHORTREF

When a short reference declaration set is distributed throughout the
company, a corporate standard will be written for it and it should be
identified using this field:

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

When a short reference set is used to hold the declarations for a particular
document, library or collection, the identifier for that context should be
used to identify the entity:

IBM publication
PUB zznn-nnnn[-nn]

IBM collection
LIB zznn-nnnn[-nn]

ISBN notation
ISBN n-nn-nnnnnn-n

Local Definition
LCL owner descriptor [::descriptor]

Note: The short reference capabilities of SGML are not currently used by
IBMIDDoc. This section is included for completeness. There are no
plans to use short references with IBMIDDoc within IBM.

SUBDOC
The following field applies to the document being described, not an
owning context.

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

IBM publication
PUB zznn-nnnn[-nn]

Appendix B. Proposed IBM Standard for Formal Public Identifiers 463

ISBN notation
ISBN n-nn-nnnnnn-n

Local Definition
LCL owner descriptor [::descriptor]

SYNTAX
The following field identifies the DTD to which this syntax definition
entity applies.
Corporate Standard

STD ppp n-nnnn-nnn [nnnn-n]

A corporate standard will be written for all IBM internal DTDs
which are distributed throughout the company. The SYNTAX file
may be used to maintain the SYNTAX used by these DTDs and is
referenced from SGML declaration files which apply to the DTD.

When an syntax definition only applies to a particular document, library or
collection, the identifier for that context should be used to identify the
entity:

IBM publication
PUB zznn-nnnn[-nn]

IBM collection
LIB zznn-nnnn[-nn]

ISBN notation
ISBN n-nn-nnnnnn-n

Local Definition
LCL owner descriptor [::descriptor]

TEXT
The following fields identify the owning context for the SGML text entity.

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n][::text descriptor]

IBM publication
PUB zznn-nnnn[-nn][::text descriptor]

IBM collection
LIB zznn-nnnn[-nn][::text descriptor]

ISBN notation
ISBN n-nn-nnnnnn-n[::text descriptor]

Local Definition
LCL owner descriptor [::descriptor]

Where

author name
This is a name which uniquely defines the author. It may be an RSCS address,
an Internet address, an employee serial number. The key is that it must be
unique across the corporation.

descriptor
is a unique identifier within the scope of the owning context that identifies that
content.

464 1D Workbench: IBMIDDoc User’s Guide and Reference

owner descriptor
identifies the owner of the data. This need not be unique; it could be the name
of the author, the owning department or site.

nnnnn[-n]
This is the identifier for the IBM codepage being specified.

ISBN n-nn-nnnnnn-n
This is an ISBN number.

STD ppp n-nnnn-nnn [nnnn-n]
This is the identifier defined for the specific IBM corporate standard in
question.

text descriptor
is a unique identifier within the scope of the owning context. It has the
following format:

descriptor[/author name[/owner descriptor]]

PUB or LIB zznn-nnnn[-nn]
This is the identifier of a document or library.

Public Text Language

The public text language field indicates the language used within the entity
identified by the formal public identifier. The language codes which are valid for
this field are defined in ISO 639.

Appendix B. Proposed IBM Standard for Formal Public Identifiers 465

466 1D Workbench: IBMIDDoc User’s Guide and Reference

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

500 Columbus Avenue
Thornwood, NY 10594
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1992, 2001 467

468

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Software Interoperability Coordinator
3605 Highway 52 N

Rochester, MN 55901-7829

US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,

ID Workbench: IBMIDDoc User’s Guide and Reference

modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AIX
BookManager
BookMaster
IBM

0s/2

Tivoli is a trademark of Tivoli Systems Inc. in the United States, other countries, or
both.

Windows is a trademark of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix C. Notices 469

470 1D Workbench: IBMIDDoc User’s Guide and Reference

Part Number Index

Part Asm-

Number Index Page
1230987 1-1 216
1234939 1-3 216
1238475 1-2 216
33-5234 2-1 219
4563423 1-1 216
56-2345 2- 219
56-3476 2-5 219
56-3489 2-3 219
56-4352 2-2 219
56-6534 2-4 219
56-8393 2-6 219
56-9845 2-7 219
56-9874 2-8 219

© Copyright IBM Corp. 1992, 2001

471

472 1D Workbench: IBMIDDoc User’s Guide and Reference

Index

Special Characters

_blank, linking 318
_self, linking 318
_top, linking 318

Numerics

1st-level headings 22
2nd-level headings 22

A

abbrev 101
Abbrev (abbreviations) 231
abbreviations 101
abbreviations, Abbrev 231
about this book 100
abstract 101
Abstract (abstract) 232
abstract, Abstract 232
accessibility
skip links for screen readers 134
accessible tables 76
Acrobat PDF bookmarks 87
action definition, MkAction marked
note 344
address 89, 233
address, IBMMail, email 307
address, Internet, e-mail 312
address, Person person’s name and 393
address, VNet IBM VNet mail 447
Adobe Acrobat PDF bookmarks 87
affecting how a table appears 72
alignment, table row 417
alphabetizing, index, changing 123
alternative index sorting 123
alternative, TextAlt text 436
alternatives, retrieval 198
amendments, SOA summary of 422
analysis procedures, creating
maintenance 207
and address, Person person’s name 393
Annot (annotation) 233
annot element 49
annotation body, AnnotBody 234
annotation, Annot 233
annotations 49
AnnotBody (annotation body) 234
another document, linking to 131
APL 44,235
appears, affecting how a table 72
Appendix 235
appendix heading prefix 300
appendix titles, controlling generated 86
appendixes 101
Approvers (document approvers) 236
architected online information and
information centers (vs books) 27
architecture, creating an information 27
architecture, information, metadata 343

© Copyright IBM Corp. 1992, 2001

AreaDef (defines graphic hot spot
area) 236
articles, HTML 300
artwork in documents, including 55
artwork links, making 134
artwork, MMODbj multi-media object 350
artwork, multimedia, examples, 53
artwork, object reference 380
AsmlList (list of parts assemblies) 237
assemblies, list of parts 237
assembly lists 219
assembly segment, PartAsmSeg part 392
assembly, PartAsm part 391
Attention (safety notice) 238
attention notices 48
Attribute Descriptions, Element and 225
attribute, Using Props to set text
conditions 195
attributes 8
ID
on INDEX tag 123
language 87, 302
qualif 49
REFID
on IREF tag 118
retkey 167, 291, 293, 326, 328, 360,
365, 367
rev 110
toc 231, 232, 242, 262, 295, 311, 321,
324, 339, 391, 396, 398, 423
attributes in the CONLOC reference,
reusing 193
Attributes, Common Element (large
set) 227
Attributes, Common Element (small
set) 228
Attributes, Table Tag 72
author 89
Author 238
author’s note 49
Authors 239
automatically scaling text for
examples 205

B

back cover page 98

back cover, adding 91

back cover, BackCover 239

back matter 101

back matter, BackM 240

BackCover (back cover) 239

BackM (back matter) 240

basic indexing 116

BibEntry (bibliographic entry) 241

BibEntryDefs (contains bibliographic
entries) 241

bibiographies 102

bibliog 101

Bibliog (bibliography) 242

bibliographic entries 241

bibliographic entry, BibEntry 241
bibliographic entry, IBMBibEntry,
IBM 297
Bibliographies and citations 141
bibliography 101
bibliography definitions 96
bibliography entry list, BibList 243
bibliography, Bibliog 242
BibList (bibliography entry list) 243
bigger or smaller, making some
things 205
bill of forms number, BOFNum 245
bill of forms number, IBMBOFNum 298
bin 44
Bin (binary data) 244
binary 44
binary data, Bin 244
blanks
keeping blanks inside of 304
removing blanks inside of 304
block, GLBIk, glossary list 292
block, LIBIK, list item 332
block, ParmBlk parameter list 388
block, PBlk paragraph 392
block, SynBlk syntax 426
blocking list items 37
Body (document body) 244
body element, using 20
body, NoteBody note 375
body, ObjLibBody object library 379
body, TBody table 434
bodyhdl 300
BOFNum (bill of forms number) 245
bold 43
bold-italic 43
book, multiple-language safety 305
BookManager
DWIDTH for tables 71
BookManager linking 133
Bookmarks for PDF tables of
contents 87
books vs architected online information
and information centers 27
books, identifying 141
books, Improving the searching of
PDF 90
boolean properties 197
box frames 57
boxed tables 72
boxes, Labeled 48
branding 305
breaks, Page 7
Bridge (bridge between concepts) 245
bridge between concepts, Bridge 245
Bridge element, using 38
bridging lists 38
broken lines 53
bulleted lists 29

473

C

Cap (caption) 246

caption, Cap 246

captions, table 69

catalog lists, creating parts 215

Caution (caution notice) 247

caution notice, Caution 247

caution notices 48

cells, table, combining 423

centers (vs books), architected online
information and information 27

central index entries, IdxDefs 310

central indexing 120

CGraphic (character graphic) 247

cgraphics 59

change bars 109

change bars, defining 415

changes, SOA summary of 422

changing column layouts 26

changing index sorting 123

chaper heading prefix 300

chapter number control 25

chapter titles, controlling generated 86

CHAPTERNUM, controlling chapter
numbers 25

char 44

Char (character data) 248

character 44

character data, Char 248

character encodings, IBMIDDoc 12

character entities 5, 179

character for a revision level 110

character graphic, CGraphic 247

character graphics 59

character graphics, automatically scaling
text for 205

characters, revision bars 416

characters, special 180

checkoff lists 31

choosing the proper element 21

CI (component item) 248

Cit (document citation) 249

CIT, using 142

citation link to another document 131

citations, Bibliographies and 141

citations, simple title 45

citations, title 142

class definition 201

Class Definition 9

class definition, MkClass marked
note 345

class definitions, ModItemDef item 357

ClassDef (element class definition) 250

classes with XHTML style sheets,
document 51

classes, LEDI 168

classification, document

classification, security 85

CLE (content list entry) 251

Code (message code number) 253

code description), Msg message 361

code descriptions, MsgList 366

code lists 38

code number, Code 253

code, PostalCode postal or zip 397

Codepages, IBMIDDoc Input 12

collections of marked notes 111

474

88, 300

ColSpec (column specification) 253
column headers 76
column layouts, changing 26
column separators in a table, turning
off 72
column specification, ColSpec 253
column widths
table 69
column-wide figures 57
column-wide tables 71
columns, spanning 79
combining table cells 423
command, ProcCmnd procedure 400
comment form, RCF reader 412
comment form, reader 103
comment, Maintainer, reader 336
Common Element Attributes (large
set) 227
Common Element Attributes (small
set) 228
compact lists 36
CompCmt (component comment) 254
CompL (component list) 255
component assembly lists 219
component comment, CompCmt 254
component item, CI 248
component list, CompL 255
component lists 215
cross-referencing 218
composite syntax diagrams 151
computer output, examples 54
concat=no for tables 76
concepts, IBMIDDoc 4
concepts, table 67
Cond (procedure result) 255
conditional processing 94
Conditional Processing 195
conditional text, translation
considerations for 196
conditional, Referring to something 196
conditions, Using the Props attribute to
set text 195
confidential, setting 85
CONLOC and cross-referencing 193
CONLOC reference, Reusing attributes in
the 193
conloc, object library 378
CONLOCG, reusing information 191
Considerations and Rules, Markup 10
considerations for conditional text,
translation 196
ContainedDocs (documents in
IBMLibEntry and LibEntry) 257
containment 5, 21
contains bibliographic entries,
BibEntryDefs 241
Content and Style, Separation of 9
content description, ModDesc
modular 353
content list entry, CLE 251
contents maximum heading level, table
of 303
contents, Bookmarks for PDF tables
of 87
contents, controlling the heading levels in
the table of 99

ID Workbench: IBMIDDoc User’s Guide and Reference

contents, controlling which headings
appear in the table of 99
contents, partial table 24
contents, table of
controlling which headings
appear 99
hiding headings from 99
contents, Table of 99
contents, TOC table of 443
continuing lists 32
controlling chapter numbers 25
controlling generated chapter, part, and
appendix titles 86
controlling index sorting 123
controlling page separation, LERS 166
controlling SGML delimiter
recognition 200
controlling the form of cross
references 65
controlling the heading levels in the table
of contents 99
controlling which headings appear in the
table of contents 99
controlling, starting page number 25
conventions
file names 4, 179
CopyR (copyrights) 257
CopyRDefs (copyright definitions) 258
copyright 301
copyright definition 91
copyright definitions, CopyRDefs 258
copyright, IBM 302
copyright, other company 91
copyright, setting 85
copyrights, CopyR 257
Corp (enterprise name and address) 259
CorpName (corporation name) 259
corporation name, CorpName 259
country where printed, PrtLoc 408
cover art or text 91
cover definition, CoverDef 260
cover page 98
cover spine 98
cover, front 289
coverdef 91
CoverDef (cover definition) 260
Creating
graphic links 56
information architecture 27
creating a document 20
creating a master index document 125
creating links 129
creating maintenance analysis
procedures 207
creating paragraphs 21
creating parts catalog lists 215
creating simple documents 19
creating simple tables 67
CritDate (critical date for a
document) 260
CritDates (set of critical dates) 261
critical date for a document,
CritDate 260
cross reference, XRef 451
cross references
controlling the form of 65
cross-indexing 120

cross-referencing 61
anything 64
component lists 218
figures 62
list items 63
tables 63
Cross-referencing items that use
CONLOC 193
cross-referencing, PDF 280
CSS (cascading style sheets), using
document classes with XHTML 51
customer checkoff lists 31
customer setup lists 31

D

D (division) elements, using 20
D (hierarchical division) 261
Danger (danger notice) 263
danger notice, Danger 263
danger notices 48
dash level, specifying 89
data, Litdata, literal 334
data, literal text 54
date 90
Date 264
date for a document, CritDate 260
dates, copyright 85
dates, CritDates 261
DBCS Languages, Line Justification
for 88
DBIk (Division block) 265
DBody (division body) 266
dbscale (scaling dingbats) 36
dec 44
Dec (decimal number) 266
decimal 44
decimal number, Dec 266
decision point, DecisionPnt 267
DecisionPnt (decision point) 267
DEF tags
DLDEF, definition list definition 274
FigDef (Figure definition) 282
GLDef (Glossary list definition) 293
MsglLDef (Message list
definition) 364
OLDef (Ordered list definition) 383
ScreenDef (Screen definition) 420
SyntaxDef (Syntax definition) 430
ULDef (Unordered list
definition) 445
XmpDef (Example definition) 450
default title specification, GendTitle 290
defines graphic hot spot area,
AreaDef 236
defining glossary terms 138
defining rows and entrys 76
defining the syntax diagram 147
definition , MkClass marked note
class 345
definition description heading,
DefnHd 269
definition list
headings 33
definition list block, DLBlk 273
definition list entry, DLEntry 275
definition list, DL 272

definition list, DL (continued)
definition 274
definition lists 32
term-width 33
definition of a term, Defn 268
definition of message description items,
MsgltemDef 363
definition, IBMLibEntry, IBM document
library 306
definition, LERSDef, LERS property 328
definition, LibEntry, document
library 331
definition, Mark 337
definition, MkAction marked note
action 344
definition, ModInfoDef modular
information property 356
definition, PropDef property set 405
definition, property and class 201
Definitions
Property and Class 9
definitions, GlDefs, glossary 294
definitions, ModItemDef item class 357
definitions, PropDefs property 406
definitions, QualifDefs qualification 412
Defn (definition of a term) 268
DefnHd (definition description
heading) 269
deletion, marking text 111
deletion, MD marked 342
Delim (syntax delimiter) 269
DELIM element 154
delimiter recognition, controlling
SGML 200
delimiter syntax element 154
delimiter, Delim, syntax 269
Desc (element description) 270
description heading, DefnHd 269
description item, LEDI, language
element 322
description item, ModItem module 358
description item, Msgltem (message 362
description items, MsgltemDef definition
of message 363
description, Desc 270
description, LeDesc, language
element 321
description, MkDesc mark 347
description, ModDesc modular
content 353
description, Msg message or code 361
description, PropDesc property 406
Descriptions, Element and Attribute 225
descriptions, LDescs, link 319
descriptions, MsgList 366
descriptions, tables 69
descriptive subtitle, SubTitle 426
diagram, defining the syntax 147
diagram, Syntax syntax 428
SyntaxDEF tag for 430
Diagrams, Programming Syntax 147
dictionary-like retrieval 167, 291, 293,
326, 328, 360, 365, 367, 415
dingbats, controlling the size of 36
dintro (division introduction) 24
Dintro (division introduction) 271
display screen, Screen 419

display screen, Screen (continued)
ScreenDEF tag for 420
display width for tables 71
dividing lists 32
division (D) elements, using 20
Division block, DBlk 265
division body, DBody 266
division introduction 24
division introduction, DIntro 271
division prolog, DProlog 276
division prolog, SpecDProlog special
section 424
division summary, DSum 277
division, D 261

divisions
division introduction 24
nesting 22
organizing with parts 24
prologs 23

DL (definition list) 272
DLDEF tag for 274
DL element, using 32
DLBIk (definition list block) 273
DLDef (definition list definition) 274
DLEntry (definition list entry) 275
DocTitle (document title) 276
document approvers, Approvers 236
document body, Body 244
document citation, Cit 249
document classes with XHTML style
sheets 51
document classification 88, 300
document ISBN number, ISBN 313
document language 87, 302
document library definition,
IBMLibEntry 306
document library definition,
LibEntry 331
document metainformation, Prolog 404
document number 89
document number, IBMDocNum 298
document number, OrigIBMDocNum,
original IBM 385
document part, Part major 390
document prolog 88
document publisher, Publisher 409
document structure 19, 83
prolog 120
document style 83
document styles 83, 301
document title 88
document title, DocTitle 276
document, linking to another 131
documentation, IBMIDDoc 299
documents
creating 20
documents in IBMLibEntry and LibEntry,
ContainedDocs 257
documents, including artwork in 55
documents, simple, creating 19
dprolog (division prolog) 23
DProlog (division prolog) 276
draft title page 98
DSum (division summary) 277
DVCF (document version control
facility) 195

475

Index

DWIDTH (display width), BookManager,
for tables 71

E

e-mail address, Internet 312
edition notices 98
edition notices, EdNotices 278
EdNotices (edition notices) 278
ejects, page 7
element 120
Element and Attribute Descriptions 225
Element Attributes, Common (large
set) 227
Element Attributes, Common (small
set) 228
element class definition, ClassDef 250
element description item, LEDI,
language 322
element description, Desc 270
element description, LeDesc,
language 321
element name , ModName modular
information 359
element name, LEN, language 325
element reference section, LERS,
language 325
element, LE, language 320
elements
body, using 20
DELIM 154
division (D), using 20
group 150
IBMIDDoc 83
KWD 152
OPER 153
RepSep 154
SEP 153
syntax 149
VAR 153
Xref 61
elements and tags 4
elements from an object library,
reusing 191
Elements, Omitted Tags and Implied 11
Else (other procedure path to
follow) 278
email address, IBMMail 307
enabling revisions 110
enterprise name and address, Corp 259
entities 5
file 179
text 179
entities, file, text, and character 179
entities, NMList, named list of 373
entity reference 5
entries, IdxDefs, central index 310
entries, index
basic 117
entries, index, helping online reviewers
see your 124
Entry (table entry) 279
entry point, ProcEntry procedure 400
entry reference, IRef, index 313
entry, GlEntry, glossary list 294
entry, I1, primary index 314
entry, 12, secondary index 315

entry, 13, tertiary index 316
entry, IBMBibEntry, IBM

bibliographic 297
entry, Parm, parameter list 387
entrys, defining 76
EPS graphics 55
eServer branding 305
example phrase 44
example phrase, XPh 451
example screens 59
example width 54
example, Xmp 449

definition 450

examples of computer output 54
examples, artwork, multimedia 53
examples, automatically scaling text

for 205
excerpt, long quote 335
excerpts, long quotes 47
exit point, ProcExit(procedure 401
Explanation, Reference 225
explicit link, L 318
external entity 5
ExternalFileName 280

F

false, setting the properties to true
or 197
FBC (folio-by-chapter) page
numbering 85

feature number, IBMFeatNum 299
Fig (figure) 281

FIGDEF tag for 282
FIG tag, description 57
FigDef (Figure definition) 282
FigList (list of figures) 283
FigSeg (figure segment) 284
figure

referencing 62

segments 58
figure list 100
figure segment, FigSeg 284
figure text, scaling up or down 205
figure, Fig 281

definition 282
figures 57

frames 57

Multipart 58

width 57
figures, FigList, (list of 283
file entities 5, 179
file name, external 280
file names 4, 179
file number, FileNum 284
FileNum (file number) 284
first-level headings 22
Fn (footnote) 285
FNList (footnote list) 285
folio-by-chapter page numbering 85
fonts

Sechighlighting
footer, TFoot table 436
footnote list, FNList 285
footnote, Fn 285
footnotes 46
footnotes in a table 80

476 1D Workbench: IBMIDDoc User’s Guide and Reference

form of cross references, controlling 65
form, RCF reader comment 412

forms number, bill of 245

forms number, IBMBOFNum, bill of 298
Formula (math formula) 286

formulas, math 60

Fragment (syntax fragment) 287
fragment reference, FragRef, syntax 288
fragment, Fragment, syntax 287
fragments, syntax 155

FragRef (syntax fragment reference) 288
frame-based articles 300

front cover, adding 91

front matter 98

front matter, FrontM 289

FrontCover 289

FrontM (front matter) 289

full window, linking 318

G

GendTitle (default title specification) 290
generated titles, controlling 86
generating the index 123
GIF graphics 55
GIF links, making 134
GL (glossary list) 290

GLDEF tag for 293
GLBIk (glossary list block) 292
GLDef (Glossary list definition) 293
GlDefs (glossary definitions) 294
GlEntry (glossary list entry) 294
glossaries 101, 137
glossary

separation letters 138
Glossary 295
glossary definitions 96
glossary definitions, GlDefs 294
glossary list block, GLBlk 292
glossary list entry, GlIEntry 294
glossary list, GL 290

definition 293
glossary, defining terms 138
graphic entities 5
graphic hot spot area, defines 236
graphic links, Creating 56
graphic links, making 134
graphics, character 59
green-screens 59
Group 296
group element 150
group, PropGroup property 407
group, TGroup table 437
grouping list items 37

H

H1, H2 headings 22

header row 76

heading hierarchy 22

heading in a PDF document, linking
to 133

heading level, table of contents
maximum 303

heading levels in the table of contents,
controlling 99

heading prefix, appendix 300

heading prefix, chaper 300

heading prefix, part 304

heading, D 261

heading, DefnHd 269

heading, TermHd term 435

heading, THead table 438

headings appear in the table of contents,
controlling which 99

headings from the table of contents,
hiding 99

headings, definition lists 33

headings, nesting 22

headings, using 20

helping online reviewers see your index
entries 124

hex 44

Hex (hexadecimal) 296

hexadecimal 44

hexadecimal, Hex 296

hiding headings from the table of
contents 99

hierarchical division, D 261

hierarchy, heading 22

highlighting 43

highlighting, citing, noting, and
quoting 43

hot spot area, defines graphic 236

how a table appears, affecting 72

HTML

indexing metadata 124

HTML articles 300

HTML document, linking to 132

HTML linking 133

hypertext linking 129

I1 (primary index entry) 314

12 (secondary index entry) 315

I3 (tertiary index entry) 316

IBM bibliographic entry,
IBMBibEntry 297

IBM copyright 302

IBM copyright, setting 85

IBM document library definition,
IBMLibEntry 306

IBM document number,
IBMDocNum 298

IBM document number,
OrigIBMDocNum original 385

IBM feature number, IBMFeatNum 299

IBM home page reader 76

IBM part number, IBMPartNum 308

IBM product information 92

IBM product information,
IBMProdInfo 309

IBM program number,
IBMPgmNum 308

IBM registered logo 98

IBM safety 101

IBM safety notices, IBMSafety 309

IBM VNet mail address, VNet 447

IBM-specific product documentation,
IBMIDDoc 299

IBMBibEntry (IBM bibliographic
entry) 297

IBMBOFNum (bill of forms
number) 298
IBMDocNum (IBM document
number) 298
IBMFeatNum (assigned IBM feature
number) 299
IBMIDDoc
creating documents 20
document structure 19
introduction 3
Markup Considerations and Rules 10
Markup Rules 11
terms 4
IBMIDDoc (IBM-specific product
documentation) 299
IBMIDDoc element 83
IBMIDDoc Input Codepages 12
IBMLibEntry (IBM document library
definition) 306
IBMLibEntry, ContainedDocs = 257
IBMMail (IBMMail email address) 307
IBMMail email address, IBMMail 307
IBMPartNum (IBM part number) 308
IBMPgmNum (IBM program
number) 308
IBMProdInfo (IBM product
information) 309
IBMSafety (IBM safety notices) 309
ID attribute
on INDEX tag 123
identifier, MsgNum message 368
identifier, PublicID, public 408
identifier, Release product release 414
identifier, Volld volume 448
Identifying attributes 8
identifying books 141
IDs or entities, NMList, named list
of 373
IdxDefs (central index entries) 310
IdxTerm (index term) 311
imbedding examples 54
Implied Elements, Omitted Tags and 11
Improving the searching of PDF
books 90
including artwork in documents 55
index 102
master, creating 125
Index 311
index entries
positioning 117
index entries, helping online reviewers
see your 124
index entries, IdxDefs 310
index entry
placement 119
index entry reference, IRef 313
index entry, I1, primary 314
index entry, 12, secondary 315
index entry, I3, tertiary 316
index information, MasterIndexInfo,
master 340
index object, MasterIndexObj master 341
index prefix, MasterIndexPrefix
master 342
index sorting, controlling 123
INDEX tag 123
index term, IdxTerm 311

index, MasterIndex, master 339
index, part number 102
index, PNIndex Part number 396
indexes
part number 220
indexing 115
basic entries 117
central 120
cross-indexing 120
meta data 124
placement in back matter 123
primary entries 117
secondary entries 117
see and see-also 121
tertiary entries 117
indexing tags
placing 117
indexing tips 116
INDEXSHOW, helping online reviewers
see your index entries 124
information and information centers (vs
books), architected online 27
information architecture, creating 27
information architecture, MetaData
tag 343
Information centers 300
information centers (vs books),
architected online information and 27
information element name, ModName
modular 359
information module, Mod 352
information property definition,
ModInfoDef modular 356
information, conditioning 195
information, IBMProdInfo, IBM
product 309
information, MasterIndexInfo, master
index 340
information, ModInfo modular 354
information, modular 175
information, ProdInfo(product 403
information, qualifying 49
information, RevDefs revision
tracking 416
information, TitleBlk title 440
Input Codepages, IBMIDDoc 12
internal entity 5
Internet (internet e-mail address) 312
internet e-mail address, Internet 312
introduction, DIntro, (division 271
introduction, IBMIDDoc 3
introduction, ProcIntro procedure 402
IPF document linking 134
IRef (index entry reference) 313
ISBN (document ISBN number) 313
iSeries branding 305
italic 43
item , ModItem module description 358
item block, LIBIk, list 332
item class definitions, ModItemDef 357
item, LI, list 330
item, Msgltem (message description 362
item, NItem notice 372
item, ProcSummItem procedure
summary 403
items that use CONLOC,
cross-referencing 193

477

Index

items, MsgltemDef definition of message
description 363

J

JPG links, making 134
Justification for DBCS Languages,
Line 88

K

keepblanks 304

keeping blanks in phrases 304
keeping list items together 38
key, RefKey reference 413

key, RetKey retrieval 415
keyword syntax elements 152
keyword, Kwd, syntax 317
keyword, PK programming 395
Kwd (syntax keyword) 317
KWD element 152

L

L (explicit link) 318
labeled boxes 48
language 87, 302
language element description item,
LEDI 322
language element description,
LeDesc 321
language element name, LEN 325
language element reference section,
LERS 325
language element, describing 168
language element, LE 320
language reference materials 165
languages 87, 302
large figures, fixing 58
large table rows, restriction 72
layout, document 83
layouts, changing column 26
LDescs (link descriptions) 319
LE (language element) 320
LeDesc (language element
description) 321
LEDI (language element description
item) 322
LEDI classes 168
legend 101
Legend 324
LEN (language element name) 325
LEN, suppressing new pages 166
LERS
compacting 166
controlling page separation 166
dictionary-like retrieval 166
LERS (language element reference
section) 325
LERS (language element reference) 165
LERS property definition, LERSDef 328
LERSDef (LERS property definition) 328
letter groupings, glossary 138
level, ModLvl modification 359
level, table of contents maximum
heading 303

478

levels, heading, in the table of contents,
controlling 99
LI (list item) 330
LibEntry (document library
definition) 331
LibEntry, ContainedDocs 257
LIBIk (list item block) 332
LiBlk element, using 37
libraries
object 8
Library 333
library body, ObjLibBody object 379
library definition, IBMLibEntry 306
library definition, LibEntry,
document 331
library entries 143
library, ObjLib object 378
library, reusing elements from an
object 191
Licensed material 88, 301
line boundaries, Lines 333
Line Justification for DBCS
Languages 88
line-spacing, lists 36
line-wide tables 71
LINELENGTH, automatically scaling text
down to fit 205
lines 53
Lines (text with line boundaries) 333
Link attributes 8
link descriptions 95
link descriptions, LDescs 319
link, L, explicit 318
link, MMODbjLink multi-media
object 352
linking 129
BookManager documents 133
HTML documents 133
IPF document 134
PDF document 132
headings 133
web document 132
linking to another document 131
linking to new windows 318
linking to web pages 95
linking, cross-referencing 61
links
creating 129
skip, for screen readers 134
links, Creating graphic 56
links, graphic 134
list block, DLBIk, definition 273
list block, GLBIk, glossary 292
list block, ParmBlk parameter 388
list entry, DLEntry, definition 275
list entry, GlEntry, glossary 294
list entry, Parm, parameter 387
list item block 37
list item block, LIBlk 332
list item, LI 330
list items
referencing 63
list items, scaling 36
list of figures, FigList 283
list of IDs or entities, NMList
named 373
list of parts assemblies, AsmList 237

ID Workbench: IBMIDDoc User’s Guide and Reference

list of tables, TList 441
list subheadings, overriding the
message 40
list, FNList, footnote 285
list, MarkList, marked note 338
listings, computer 54
listings, showing 449
lists 29
bridging items 38
checkoff 31
code 38
compacting 36
continuing 32
customer setup 31
definition 32
DL, definition 272
DLDEF, definition list definition 274
GL, glossary 290
GLDef (Glossary list definition) 293
grouping items 37
message 38
overriding the message list
subheadings 40
message or code descriptions,
MsglList 364, 366
NoteList, ordered note 376
OL ordered 382
OLDETF, note list definition 383
OLDEF, ordered list definition 383
ordered 30
parameter 34
ParmL parameter 388
scaling list items 36
separating items 38
simple 30
UL unordered 444
ULDEEF, unordered list definition 445
unordered 29
lists and paragraphs 21
lists, creating parts catalog 215
Litdata (literal data) 334
literal data, Litdata 334
literal text data 54
location, NameLoc named 371
location, Notloc notation-specific 377
logo, IBM registered 98
long quotes 47
looping, syntax diagrams 414
LQ (stand-alone quotation) 335

M

mail address, VNet IBM VNet 447

Maintainer (reader comment) 336

maintenance analysis procedures,
creating 207

major document part, Part 390

making some things bigger or
smaller 205

making things page-wide 205

Making your tables accessible 76

MAPS 207

Mark (marked note definition) 337

mark description, MkDesc 347

marked deletion 44

marked deletion, MD 342

marked note action definition,
MkAction 344

marked note class definition,
MkClass 345

marked note definition, Mark 337

marked note list, MarkList 338

marked note, MkNote 348

marked notes 109

marked notes, collections of 111

marked sections 199

marking text for deletion 111

MarkList (marked note list) 338

Markup Considerations and Rules 10

markup declaration 5

Markup Rules 11

master index document, creating a 125

master index information,
MasterIndexInfo 340

master index object, MasterIndexObj 341

master index prefix,
MasterIndexPrefix 342

master index, MasterIndex 339

MasterIndex (master index) 339

MasterIndexInfo (master index
information) 340

MasterIndexObj (master index
object) 341

MasterIndexPrefix (master index
prefix) 342

material, Licensed 88, 301

material, Restricted 88, 301

materials, language reference 165

math formula, Formula 286

math formulas 60

matter, FrontM, front 289

maximum heading level, table of
contents 303

md 44

MD (marked deletion) 342

meaning, Sem semantic 421

message code number, Code 253

message description item, Msgltem 362

message description items, MsgltemDef
definition of 363

message descriptions, MsgList 366

message identifier, MsgNum 368

message list subheadings, overriding
the 40

message list, MsgL.

definition 364

message lists 38

message or code description, Msg 361

message text, MsgText 368

message variable 44

message variable, MV 369

MetaData tag information
architecture 343

metadata, and indexing 124

metadata, creating an information
architecture 27

metainformation, Prolog document 404

MkAction (marked note action
definition) 344

MkClass (marked note class
definition) 345

MkDesc (mark description) 347

MkNote (marked note) 348

MMObj (multi-media object;
artwork) 350
MMODbjLink (multi-media object
link) 352
mocha conditions 195
Mod (information module) 352
ModDesc (modular content
description) 353
modification level, ModLvl 359
ModInfo (modular information) 354
modinfo element 175
ModInfoDef (modular information
property definition) 356
ModItem (module description item) 358
ModItemDef (item class definitions) 357
ModLvl (modification level) 359
ModName (modular information element
name) 359
modular content description,
ModDesc 353
modular information 175
modular information element name,
ModName 359
modular information property definition,
ModInfoDef 356
modular information, ModInfo 354
module description item, ModItem 358
module, Mod information 352
monospaced 43
MOREROWS, spanning of rows 79
Msg (message or code description) 361
Msgltem (message description item) 362
MsgltemDef (definition of message
description items) 363
Msgl element, using 38
MsglLDef (Message list definition) 364
MsglLDef (Glossary list
definition) 364
MsglList (list of message or code
descriptions) 366
MsgLDEF tag for 364
MsgNum (message identifier) 368
MsgText (message text) 368
multi-media object link,
MMObjLink 352
multi-media object; artwork,
MMObj 350
multimedia, examples, artwork 53
Multipart figures 58
multiple volume books 86
multiple volumes 303
multiple-language safety book 305
mv 44
MYV (message variable) 369

N

Name (person’s name) 370
name and address, Person person’s 393
name, LEN, language element 325
name, ModName modular information
element 359
name, Name person’s 370
name, ProdName product 404
named list of IDs or entities,
NMList 373
named location, NameLoc 371

NameLoc (named location) 371
NAMEST and NAMEEND, spanning
columns 79
naming files 4, 179
nesting divisions 22
new pages, LEN, suppressing 166
new window, linking 318
NItem (notice item) 372
NMList (named list of IDs or
entities) 373
no-recycle logo 98
non-boxed tables 72
nopage, LERS 166
notation-specific location, Notloc 377
Note 375
note action definition, MkAction
marked 344
note body, NoteBody 375
note class definition, MkClass
marked 345
note definition, Mark 337
note list, MarkList, marked 338
note list, NoteList
definition 383
note list, NoteList, ordered 376
note, MkNote marked 348
note, SynNote syntax 427
NoteBody (note body) 375
NoteList (ordered list)
OLDEF tag for 383
NoteList (ordered note list) 376
notes
footnote 46
lists 46
single 45
syntax 156
notes in a table 80
notes, marked 109
notes, StepNotes step 425
notice item, Nltem 372
notice, Warning warning 448
notices 48, 98
Notices (contains notices) 376
notices, edition 98
notices, EdNotices, edition 278
notices, IBMSafety, safety 309
notices, Safety safety 418
Notloc (notation-specific location) 377
num 44
Num (number) 378
number control, chapter 25
number control, starting page 25
number index, PNIndex Part 396
number with specified base 44
number, Dec 266
number, document 89
number, FileNum, file 284
number, IBMBOFNum, bill of forms 298
number, IBMDocNum, IBM
document 298
number, IBMFeatNum, IBM feature 299
number, IBMPartNum, part 308
number, IBMPgmNum, IBM
program 308
number, ISBN, document 313
number, Num 378
number, Oct octal 381

479

Index

number, OrderNum order 385

number, OrigIBMDocNum, original IBM
document 385

number, Phone telephone 395

number, Version product version 447

numbered lists 30

o)

object libraries 8
object library body, ObjLibBody 379
object library, ObjLib 378
object library, reusing elements from
an 191
object link, MMODbjLink
multi-media 352
object reference, ObjRef 380
object, MasterIndexObj master index 341
object; artwork, MMODbj
multi-media 350
ObjLib (object library) 378
ObjLibBody (object library body) 379
ObjRef (object reference) 380
oct 44
Oct (octal number) 381
octal 44
octal number, Oct 381
of message description items,
MsgltemDef definition 363
offset layout 83
OL (ordered list) 382
OLDEF tag for 383
OL element, using 30
OLDef (Ordered list definition) 383
oltype=checkoff 31
oltype=step 31
Omitted Tags and Implied Elements 11
one-column layout 83
online information and information
centers (vs books), architected 27
online reviewers see your index entries,
helping 124
Oper (syntax operator) 384
OPER element 153
operator syntax element 153
operator, Oper syntax 384
or smaller, making some things
bigger 205
or zip code, PostalCode postal 397
order number, OrderNum 385
ordered
checkoff lists 31
lists 30
continuing 32
setup lists 31
ordered list, OL 382
definition 383
ordered note list, NoteList 376
OrderNum (order number) 385
OrigIBMDocNum (original IBM
document number) 385
original IBM document number,
OrigIBMDocNum 385
output, examples of computer 54
overriding column layouts 26
overriding the message list
subheadings 40

480

Owners 386

P

P (paragraph) 386
P element, creating paragraphs 21
Page breaks 7
page number control, starting 25
page numbering 85
page prefix, MasterIndexPrefix master
index 342
page-wide figures 57
page-wide tables 71
page-wide, making things 205
page, web 449
paragraph block, PBlk 392
paragraph-like elements 12
paragraph, P 386
paragraphs and lists 21
paragraphs, creating 21
parameter list block, ParmBlk 388
parameter list entry, Parm 387
parameter list, ParmL 388
definition 274
parameter lists 34
term-width 35
parameter variable, PV 409
Parm (parameter list entry) 387
ParmBlk (parameter list block) 388
ParmL (parameter list) 388
DLDEF tag for 274
Parml element, using 34
Part (major document part) 390
part assembly segment, PartAsmSeg 392
part assembly, PartAsm 391
part heading prefix 304
part number index 102
Part number index, PNIndex 396
part number indexes 220
part number, IBMPartNum 308
part titles, controlling generated 86
part, Part major document 390
PartAsm (part assembly) 391
PartAsmSeg (part assembly
segment) 392
partial table of contents 24
parts assemblies, list of 237
parts catalog lists, creating 215
parts, organizing divisions 24
PBIk (paragraph block) 392
PDF bookmarks 304
PDF books, Improving the searching
of 90
PDF document, linking to 132
PDF external file name 280
PDF heading, linking to 133
PDF tables of contents, Bookmarks
for 87
perils of processing 48
Person (person’s name and address) 393
person’s name and address, Person 393
person’s name, Name 370
PGWIDE (page wide) 205
Ph (Phrase) 393
Phone (telephone number) 395
phrase-like elements 12
Phrase, Ph 393

ID Workbench: IBMIDDoc User’s Guide and Reference

phrase, Q quotation 410
phrase, SynPh syntax 428
phrase, XPh example 451
phrases
keeping blanks inside of 304
removing blanks inside of 304
syntax 157
phrases, conditioning 196
pictures, including in documents 55
pk 44
PK (programming keyword) 395
placing index tags 117
PNIndex (Part number index) 396
point, ProcEntry procedure entry 400
point, ProcExit procedure exit 401
positioning index entries 117
postal or zip code, PostalCode 397
PostalCode (postal or zip code) 397
preface 100
Preface 397
prefix, appendix heading 300
prefix, chaper heading 300
prefix, MasterIndexPrefix master
index 342
prefix, part heading 304
preformatted listings 54
preformatted text 53
primary index entry, I1 314
printed, PrtLoc, country where 408
Proc (procedure) 398
ProcCmnd (procedure command) 400
procedure action to take, Then 439
procedure command, ProcCmnd 400
procedure entry point, ProcEntry 400
procedure exit point, ProcExit 401
procedure introduction, ProcIntro 402
procedure result, Cond 255
procedure step reference, StepRef 425
procedure step, ProcStep 402
procedure summary item,
ProcSummlItem 403
procedure summary, ProcSumm 403
procedure, Proc 398
procedures, creating maintenance
analysis 207
ProcEntry (procedure entry point) 400
Processing, Conditional 195
processing, perils 48
ProcExit (procedure exit point) 401
ProcIntro (procedure introduction) 402
ProcStep (procedure step) 402
ProcSumm (procedure summary) 403
ProcSummltem (procedure summary
item) 403
ProdInfo (product information) 403
ProdName (product name) 404
product branding 305
product documentation), IBMIDDoc 299
product information, IBM 92
product information, IBMProdInfo 309
product information, ProdInfo 403
product name, ProdName 404
product release identifier, Release 414
product version number, Version 447
program number, IBMPgmNum 308
programming keyword 44
programming keyword default 44

programming keyword, PK 395
Programming Syntax Diagrams 147
programming variable 44
Prolog (document metainformation) 404
prolog, document 88
prolog, DProlog, division 276
prolog, SpecDProlog special section
division 424
prologs, division 23
PropDef (property set definition) 405
PropDefs (property definitions) 406
PropDesc (property description) 406
properties boolean 197
properties to true or false, setting
the 197
properties, conditional text 195
Property attributes 8
property definition 201
Property Definition 9
property definition, LERSDef, LERS 328
property definition, ModInfoDef modular
information 356
property definitions 92
property definitions, PropDefs 406
property description, PropDesc 406
property group, PropGroup 407
property set definition, PropDef 405
property-based retrieval 195
PropGroup (property group) 407
Props attribute to set text conditions,
Using the 195
props, conditioning phrases 196
PrtLoc (country where printed) 408
pSeries branding 305
PTOC (partial table of contents) 24
public identifier, PublicID 408
PublicID (public identifier) 408
Publisher (document publisher) 409
publisher, Publisher document 409
pv 44
PV (parameter variable) 409

Q

Q (quotation phrase) 410

Qualif (qualification) 411

qualif atttribute 49

QualifDefs (qualification definitions) 412
qualification definitions, QualifDefs 412
qualification, Qualif 411

qualifying information 49

quotation phrase, Q 410

quotation, LQ, stand-alone 335

quotes 47

R

railroad track syntax diagrams 147

RCF (reader comment form) 412

reader comment form 103

reader comment form, RCF 412

reader comment, Maintainer 336

reader, screen 76

recognition, controlling SGML
delimiter 200

recycle logo, omitting 98

Reference Explanation 225
reference key 44
reference key, RefKey 413
reference materials, language 165
reference section, LERS, language
element 325
reference, FragRef, syntax fragment 288
reference, IRef, index entry 313
reference, ObjRef object 380
reference, StepRef procedure step 425
reference, XRef cross 451
references
controlling the form of 65
referencing
anything 64
component lists 218
figures 62
list items 63
reusing attributes in the
CONLOC 193
tables 63
referencing, cross 61
Referring to something that is
conditional 196
REFID attribute
cross-indexing primaries
description 118
on IREF tag 118
refkey 44
RefKey (reference key) 413
registered IBM logo 98
Release (product release identifier) 414
release identifier, Release product 414
removeblanks 304
removing blanks in phrases 304
repeat separator syntax element 154
repeat separator, RepSep syntax 414
RepSep (syntax repeat separator) 414
RepSep element 154
Restricted material 88, 301
restrictions
deep table rows 72
index sorting, Xyvision 315, 316
Xyvision PDF link "see” entry 123
RetKey (retrieval key) 415
retkey attribute 167, 291, 293, 326, 328,
360, 365, 367
retrieval alternatives 198
retrieval key, RetKey 415
retrieval subject, LERS 166
retrieval, dictionary-like 167, 291, 293,
326, 328, 360, 365, 367, 415
retrieval, property-based 195
reusing attributes in the CONLOC
reference 193
reusing elements from an object
library 191
Rev (revision) 415
REV attribute 110
RevDefs (revision tracking
information) 416
reverse key, RefKey 413
reviewers see your index entries, helping
online 124
revision
character 110
revision characters 416

revision elements 109
revision level, specifying 89
revision tracking information,
RevDefs 416

revision, Rev 415
revisions 109

defining 109

enabling 110

indicating 110
Row (table row) 417
row alignment, table 417
row headers 76
row separators in a table, turning off 73
row, Row(table 417
rows, defining 76
rows, spanning 79
rules frames 57
Rules, Markup 11
Rules, Markup Considerations 10
running foot short title 20
running head 415

S

Safety (safety notices) 418

safety book, multiple-language 305

safety notice, Attention 238

safety notices, IBMSafety 309

safety notices, Safety 418

safety, IBM 101

sample code, displaying 449

SCALEPCT, scaling text up or down 205

scaling 205

scaling examples 54

scaling figure and table text up or
down 205

scaling list items 36

scaling text for examples,
automatically 205

Screen (display screen) 419

ScreenDEF tag for 420

screen examples 59

screen reader 76

screen reader skip links 134

screen, Screen display 419

ScreenDEF tag for 420

ScreenDef (Screen definition) 420

screens, automatically scaling text
for 205

searching of PDF books, Improving
the 90

second-level headings 22

secondary index entry, 12 315

section division prolog, SpecDProlog
special 424

sections, marked 199

security 302

security classification 85

see-also index entries 121

seeing your index entries, helping online
reviewers 124

segment, FigSeg, figure 284

segment, PartAsmSeg part assembly 392

segments, figure 58

Sem (semantic meaning) 421

semantic meaning, Sem 421

Sep (syntactic separator) 421

481

Index

SEP element 153

separating list items 38

Separation of Content and Style 9

separator, RepSep syntax repeat 414

separator, Sep syntactic 421

separators, table rows 417

seperator syntax element 153

sequential page numbering 85

set definition, PropDef property 405

set of critical dates, CritDates 261

set text conditions, Using the Props
attribute to 195

setting the properties to true or
false 197

setup lists, customer 31

SGML delimiter recognition,
controlling 200

sheets, style, using document classes with
XHTML 51

short title 20

shortened title, STitle 425

simple lists 30

simple title citations 45

sizing 205

skip links, screen reader 134

small caps 43

smaller, making some things bigger
or 205

SOA (summary of amendments) 422

SOA (summary of changes) 100

some things bigger or smaller,
making 205

sorting, controlling index 123

span specification, SpanSpec 423

spanning rows and columns 79

SpanSpec (span specification) 423

SpecDProlog (special section division
prolog) 424

special characters 180

special section division prolog,
SpecDProlog 424

specification, SpanSpec span 423

specifying table column widths 69

spine 98

splitting tables between pages 71

spot area, defines graphic hot 236

stand-alone quotation, LQ 335

starting page number control 25

STARTPAGE, controlling starting
pages 25

step lists 31

step notes, StepNotes 425

step reference, StepRef procedure 425

step, ProcStep procedure 402

StepNotes (step notes) 425

StepRef (procedure step reference) 425

Stitle 20

STitle (shortened title) 425

structure, document 19, 83

Style and Content, Separation of 9

Style attributes 8

style overrides, IBMIDDoc tag 304

style sheets, using document classes with
XHTML 51

style, document 83

style=simple 30

482

styles
syntax 149
styles, document 83, 301
subheadings, overriding the message
list 40
subscripts 43
SubTitle (descriptive subtitle) 426
subtitle, SubTitle descriptive 426
summary item, ProcSummlitem
procedure 403
summary of amendments 100
summary of amendments) SOA 422
summary of changes xi, 100
summary, DSum, division 277
summary, ProcSumm procedure 403
superscript 43
symbols 180
SynBIk (syntax block) 426
SynNote (syntax note) 427
SynPh (syntax phrase) 428
syntactic separator, Sep 421
syntax
examples 158
phrases 157
Syntax (syntax diagram) 428
SyntaxDEF tag for 430
syntax block, SynBlk 426
syntax delimiter, Delim 269
syntax diagram, defining the 147
syntax diagram, Syntax 428
SyntaxDEF tag for 430
Syntax Diagrams, Programming 147
syntax element 149
syntax fragment reference, FragRef 288
syntax fragment, Fragment 287
syntax fragments 155
syntax keyword, Kwd 317
syntax lists 34
syntax note, SynNote 427
syntax notes 156
syntax operator, Oper 384
syntax phrase, SynPh 428
syntax repeat separator, RepSep 414
syntax styles 149
syntax variable, Var 446
SyntaxDef (Syntax definition) 430

—~

table
column specifications 75
referencing 63
Table 431
table body, TBody 434
table cell
alignement 75
column separators 75
row separators 76
width 75
table cells, combining 423
table entry, Entry 279
table footer, TFoot 436
table group, TGroup 437
table heading, THead 438
table list 100
table of contents
controlling the heading levels in 99

ID Workbench: IBMIDDoc User’s Guide and Reference

table of contents (continued)
controlling which headings appear in
the 99
hiding headings from 99
partial 24
Table of contents 99
table of contents maximum heading
level 303
table of contents, TOC 443
table row alignment 417
table row separators 417
table row, Row 417
table rows, too deep restriction 72
Table Tag Attributes 72
table text, scaling up or down 205
tables 67
appearance 72
captions 69
column widths 69
complex example 79
complex header 80
concepts 67
controlling inside lines 72
controlling the frame 72
controlling width 71
defining rows and entrys 76
DWIDTH (display width),
BookManager 71
examples 77
notes 80
sideways 73
simple example 77
simple headers 78
simple, creating 67
spanning rows and columns 79
splitting 71
unformatted text 76
width, column, page, or textline 71
tables accessible, Making your 76
tables of contents, Bookmarks for
PDF 87
tables, TList list of 441
Tag Attributes, Table 72
tags
INDEX 123
tags and elements 4
Tags and Implied Elements, Omitted 11
target="_blank” 318
target="_self” 318
target="_top” 318
TBody (table body) 434
telephone number, Phone 395
term 44
Term 434
term heading, TermHd 435
term lists 32
term-width
definition lists 33
parameter lists 35
term, Defn 268
term, IdxTerm, index 311
TermHd (term heading) 435
terms, IBMIDDoc 4
tertiary index entry, I3 316
text alternative, TextAlt 436
text conditions, Using the Props attribute
to set 195

text data, literal 54

text entities 179

text for deletion, marking 111

text for examples, automatically
scaling 205

text with line boundaries, Lines 333

text, changed 109

text, MsgText message 368

text, translation considerations for
conditional 196

text, turning on or off 195

TextAlt (text alternative) 436

textline width tables 71

TFoot (table footer) 436

TGroup (table group) 437

THead (table heading) 438

Then (procedure action to take) 439

things bigger or smaller, making
some 205

tips, indexing 116

Title 440

title citations 142

title citations, simple 45

title information, TitleBlk 440

title page, cover 98

title page, draft 98

title specification, GendTitle, default 290

title, DocTitle, document 276

title, document 88

title, STitle shortened 425

TitleBlk (title information) 440

titles, controlling generated chapter, part,
and appendix 86

TList (list of tables) 441

TM (Trademark) 442

TOC (table of contents) 443

toc attribute 231, 232, 242, 262, 295, 311,
321, 324, 339, 391, 396, 398, 423

tracking information, RevDefs
revision 416

Trademark, TM 442

trademarks 50

translation considerations for conditional
text 196

true or false, setting the properties
to 197

turning change bars on and off 416

two-column layout 83

typing information 343

U

UL (unordered list) 444
ULDEF tag for 445
UL element, using 29
ULDef (Unordered list definition) 445
underlined 43
unformatted tables 76
unordered list, UL 444
definition 445
unordered lists 29
using division (D) elements 20
using parts to organize divisions 24
using the body element 20
Using the Props attribute to set text
conditions 195

\' Z

values, property 195

vanilla conditions 195

Var (syntax variable) 446

VAR element 153

variable syntax element 153
variable, MV message 369

variable, PV parameter 409

variable, Var syntax 446

Version (product version number) 447
version number, Version product 447
VNet (IBM VNet mail address) 447
VNet mail address, VNet 447

Volld (volume identifier) 448
volume identifier, Volld 448
volumes, multiple 86, 303

zSeries branding 305

w

Warning (warning notice) 448
warning notice, Warning 448
warning notices 48
web page reader 76
web page, linking to 132
web pages, linking to 95
WebPage 449
what’s new xi
where printed, PrtLoc, country 408
where to place index entries 117
where to put index entries 119
widths

table column 69

X

XHTML
helping online reviewers see your
index entries 124
indexing metadata 124
style sheets, using document classes
with 51
XHTML document, linking to 132
Xmp (example) 449
XmpDEF tag for 450
XmpDef (Example definition) 450
xph 44
XPh (example phrase) 451
xpp:(justify=yes) 88
XREF
referring to something
conditionally 196
XRef (cross reference) 451
Xref element 61
xSeries branding 305
Xyvision override
keeping list items together 38
LEN nopage 166
Xyvision overrides
Line Justification for DBCS
Languages 88
PDF bookmarks 304

Index

zip code, PostalCode postal or 397

483

484 1D Workbench: IBMIDDoc User’s Guide and Reference

Readers’ Comments — We’d Like to Hear from You

ID Workbench
IBMIDDoc User’s Guide and Reference
Release 3.6

Publication No. SH21-0783-10

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Overall satisfaction]]] O O

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Accurate] O O]]
Complete O O]]]
Easy to find]]] O]
Easy to understand]]] O L]
Well organized O O O U U
Applicable to your tasks O O O] 0 U

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? [] Yes [] No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You

SH21-0783-10

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

SH21-0783-10

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
ATTN: Dept 542
3605 HWY 52 N
Rochester, MN
55901-9986

Please do not staple

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Printed in U.S.A.

SH21-0783-10

	Contents
	About This Book
	Who Should Read This Book
	What You Should Already Know
	How This Book is Organized

	Summary of Changes
	Part 1. Introduction to IBMIDDoc
	Chapter 1. Introduction to IBMIDDoc
	What is IBMIDDoc?
	IBMIDDoc Documents
	IBMIDDoc Terms and Concepts
	Documents and Markup
	Elements and Tags
	Containment
	Entities
	Marked sections
	Processing instructions
	Object Libraries
	Attributes
	Property and Class Definition
	Separation of Content and Style

	IBMIDDoc Markup Considerations and Rules
	Ending an Element
	Omitted Tags and Implied Elements
	Markup Rules
	Phrase-Like and Paragraph-Like Elements
	Element Groupings in IBMIDDoc

	IBMIDDoc Input Codepages

	Part 2. Using IBMIDDoc Markup
	Chapter 2. Using basic IBMIDDoc elements to create a document
	IBMIDDoc Document Structure
	Creating an IBMIDDoc Document
	Creating the body of your document
	Creating divisions (D element)
	Creating paragraphs (P element)
	Deciding which elements to use
	Creating a heading hierarchy
	Division prologs
	Division introductions
	Partial table of contents

	Using parts to organize your chapters
	Starting page number control
	Chapter number control
	Changing column layouts
	Creating an information architecture
	Architected online information and Information Centers (vs books)

	Chapter 3. All kinds of lists
	Unordered lists
	Simple lists
	Ordered lists
	Checkoff ordered lists
	Customer setup lists
	Continuing ordered lists

	Definition lists
	Parameter lists
	Compacting lists
	Scaling list dingbats
	Grouping list items
	Separating or bridging list items
	Message and code lists
	Overriding the message list subheadings

	Chapter 4. Highlighting, Citing, Noting, and Quoting
	Highlighting
	Simple title citations
	Notes
	Note lists
	Footnotes
	Quotes and excerpts
	Labeled boxes
	The perils of processing: Attention, caution, and danger
	Annotations
	Qualifying information
	Trademarks
	Using document classes with XHTML style sheets

	Chapter 5. Examples, figures, artwork, and multimedia
	Just plain lines
	Examples of computer output
	Literal text data
	Including artwork in documents
	Creating graphic links

	Figures
	Figure captions and descriptions
	Multipart figures

	Character graphics
	Screens
	Math formulas

	Chapter 6. Cross-referencing
	Referencing a figure
	Referencing a table
	Referencing a list item
	Referencing anything at all
	Controlling the form of cross references

	Chapter 7. Creating IBMIDDoc Tables
	IBMIDDoc Table Markup Concepts
	Creating simple tables
	Specifying table column widths
	Table captions and descriptions
	Page, column, and line-wide tables
	Splitting tables between pages
	Affecting how a table appears: Rules, Separators, Shading
	Defining the Column Specifications
	Defining Rows and Entrys
	Making your tables accessible

	A Few Simple Table Examples
	A Simple Table
	A Simple Table with More Options
	A Simple Table with a Table Header and IBMIDDoc Elements
	A Complex Table with Row and Column Spans
	A Complex Table Header
	Adding footnotes to a table

	Chapter 8. The document structure of an IBMIDDoc document
	About the IBMIDDoc tag
	Getting in style, the document style, that is
	Setting the IBM copyright
	Setting the security classification
	Setting page numbering to sequential or folio-by-chapter
	Creating multiple volumes for a book
	Controlling generated chapter, part, and appendix titles
	Specifying the language of the document
	Bookmarks for PDF tables of contents
	Licensed and restricted materials
	Line justification for DBCS languages

	About the prolog
	Document title
	Document number
	Author and Address
	Date
	Improving the searching of PDF books
	Other prolog elements
	Adding to the front or back cover (CoverDef)
	Using CopyRDefs
	Using IBMProdInfo
	Using Property Definitions (PropDefs)
	PropDefs and Common Property Values
	Limiting the Scope of PropDef Definitions
	Using PropDefs for Conditional Processing

	Using LDescs and Nameloc
	Using GLDefs
	Using BibEntryDefs

	Front matter (FrontM)
	Notices and Edition notices
	Other notices

	Table of contents
	List of figures
	List of tables
	The preface
	Summary of changes
	Special sections
	IBM Safety text

	About back matter (BackM)
	Using appendix
	Using glossary
	Using bibiography (Bibliog)
	Using part number index (PNIndex)
	Using Index
	Using reader's comment form (RCF)

	Chapter 9. Using definition tags
	Summarizing the initial setting override hierarchy

	Chapter 10. Revision Elements and Marked Notes
	Using Revisions
	Defining Revisions in the RevDefs Element
	Indicating Revisions in the Document Markup
	Marking text for deletion

	Creating Collections of Marked Notes
	Using the Mark Element
	Defining Marked Actions and Classes
	Using the MkNote Element
	Generating a Collection with MarkList Element
	A Marked Notes Markup Example

	Chapter 11. Indexing
	Structuring a basic index
	Basic index tagging
	Placement of index tags
	Position method
	Cross referencing index entries

	Where to put index entries
	Defining index entries (central indexing)
	Creating index entries by cross-indexing
	Defining See and See-also references
	Controlling the Index Sorting
	Generating the index
	Helping online reviewers see your index entries
	Creating a master index

	Chapter 12. All about linking
	Linking 101
	Creating links within a document
	Linking to another document
	Citation link to an IBMIDDoc document
	Linking to an XHTML, HTML, or web document
	Linking to items in another IBMIDDoc document
	Making a graphic a link
	Linking to an IPF document

	Chapter 13. Glossaries
	Defining Terms
	Separating letter groups in a glossary
	Defining Classes for Terms

	Chapter 14. Bibliographies and citations
	Identifying books and documents
	Using title citations
	Citations
	Generating a bibliography
	Defining library entries
	Linking BibEntry elements and other documents
	An example of using BibEntry and BibEntryDefs

	Chapter 15. Programming Syntax Diagrams
	Defining the syntax diagram
	The Syntax element
	The Group element
	The KWD (keyword) element
	The VAR (variable) element
	The OPER (operator) element
	The SEP (separator) element
	The Delim (delimiter) element
	The RepSep (repeat separator) element
	The FRAGMENT and FRAGREF (fragment reference) element

	Syntax Notes
	Syntax Phrases
	Examples of Syntax Definitions and Markup
	Example 1: A simple syntax definition
	Example 2: A simple syntax definition that repeats
	Example 3: A more complex syntax definition
	Example 4: A variation on Example 3
	Example 5: A syntax definition showing a fragment and significant blanks
	Example 6: A syntax definition with automatic fragmenting

	Chapter 16. Developing Programming Language Reference Materials
	The Structure of a Language Element Reference Section
	Describing Your Reference Section
	Describing the language element
	Example of a Simple Language Element Reference Section
	DISHDEF defining a dish
	EVALUATE evaluate nutrition, cost, or preparation time

	Chapter 17. Defining Modular Information
	Examples of Using Modular Information

	Chapter 18. File, text, and character entities and reusing information
	File and text entities
	Special characters
	Reusing elements from an object library
	Reusing attributes in the CONLOC reference
	Cross-referencing items that use CONLOC

	Chapter 19. Conditionally including information
	Property-Based Retrieval
	Using the Props attribute to set text conditions
	Setting the properties to true or false
	Specifying boolean properties
	Retrieval alternatives

	Using Marked Sections
	Controlling SGML Delimiter Recognition

	Chapter 20. Property and Class Definitions
	Defining Element Properties
	Defining Element Properties Directly
	Defining Element Properties Using Inheritance

	Defining Element Classes

	Chapter 21. Making some things bigger or smaller
	Scaling text up or down
	Automatically scaling text for examples and such
	Making things page-wide

	Chapter 22. Creating maintenance analysis procedures
	Using ProcEntry for Entry Requirements
	Using ProcStep and ProcCmnd to Describe Each Step
	Using DecisionPnt for Outcome-Dependent Action Descriptions
	Using RefKeys to Refer to Labels in a Graphic
	Using ProcExit to Complete a Procedure or Sub-Procedure
	Procedure Markup Examples
	Starting the Procedure
	Describing the Entry Point for the Procedure
	Entering the Procedure Steps
	Exiting the Procedure

	Controlling Procedure Output Styles

	Chapter 23. Creating parts catalog lists
	Markup source
	Creating the heading for a component list
	Developing the component list
	Including comments in the component list
	Cross-referencing part assemblies and component lists
	Keeping track of assemblies and parts
	Getting an assembly list
	Getting a part number index

	Part 3. IBMIDDoc Markup Reference
	Chapter 24. Reference Explanation
	Element and Attribute Descriptions
	How to Read the Syntax Diagrams
	Common Element Attributes (large set)
	Common Element Attributes (small set)

	Chapter 25. IBMIDDoc Elements
	Abbrev (abbreviations)
	Abstract (abstract)
	Address (address)
	Annot (annotation)
	AnnotBody (annotation body)
	APL (APL data)
	Appendix
	Approvers (document approvers)
	AreaDef (defines graphic hot spot area)
	AsmList (list of parts assemblies)
	Attention (safety notice)
	Author
	Authors
	BackCover (back cover)
	BackM (back matter)
	BibEntry (bibliographic entry)
	BibEntryDefs (contains bibliographic entries)
	Bibliog (bibliography)
	BibList (bibliography entry list)
	Bin (binary data)
	Body (document body)
	BOFNum (bill of forms number)
	Bridge (bridge between concepts)
	Cap (caption)
	Caution (caution notice)
	CGraphic (character graphic)
	Char (character data)
	CI (component item)
	Cit (document citation)
	ClassDef (element class definition)
	CLE (content list entry)
	Code (message code number)
	ColSpec (column specification)
	CompCmt (component comment)
	CompL (component list)
	Cond (procedure result)
	ContainedDocs (documents in IBMLibEntry and LibEntry)
	CopyR (copyrights)
	CopyRDefs (copyright definitions)
	Corp (enterprise name and address)
	CorpName (corporation name)
	CoverDef (cover definition)
	CritDate (critical date for a document)
	CritDates (set of critical dates)
	D (hierarchical division)
	Danger (danger notice)
	Date
	DBlk (Division block)
	DBody (division body)
	Dec (decimal number)
	DecisionPnt (decision point)
	Defn (definition of a term)
	DefnHd (definition description heading)
	Delim (syntax delimiter)
	Desc (element description)
	DIntro (division introduction)
	DL (definition list)
	DLBlk (definition list block)
	DLDef (Definition list definition)
	DLEntry (definition list entry)
	DocTitle (document title)
	DProlog (division prolog)
	DSum (division summary)
	DVCFObj (DVCF Migration Element)
	EdNotices (edition notices)
	Else (other procedure path to follow)
	Entry (table entry)
	ExternalFileName
	Fig (figure)
	FigDef (Figure definition)
	FigList (list of figures)
	FigSeg (figure segment)
	FileNum (file number)
	Fn (footnote)
	FNList (footnote list)
	Formula (math formula)
	Fragment (syntax fragment)
	FragRef (syntax fragment reference)
	FrontCover
	FrontM (front matter)
	GendTitle (default title specification)
	GL (glossary list)
	GLBlk (glossary list block)
	GLDef (Glossary list definition)
	GlDefs (glossary definitions)
	GlEntry (glossary list entry)
	Glossary
	Group
	Hex (hexadecimal)
	IBMBibEntry (IBM bibliographic entry)
	IBMBOFNum (bill of forms number)
	IBMDocNum (IBM document number)
	IBMFeatNum (IBM feature number)
	IBMIDDoc (IBM-specific product documentation)
	IBMLibEntry (IBM document library definition)
	IBMMail (IBMMail e-mail address)
	IBMPartNum (IBM part number)
	IBMPgmNum (IBM program number)
	IBMProdInfo (IBM product information)
	IBMSafety (IBM safety notices)
	IdxDefs (central index entries)
	IdxTerm (index term)
	Index
	Internet (internet e-mail address)
	IRef (index entry reference)
	ISBN (document ISBN number)
	I1 (primary index entry)
	I2 (secondary index entry)
	I3 (tertiary index entry)
	Kwd (syntax keyword)
	L (explicit link)
	LDescs (link descriptions)
	LE (language element)
	LeDesc (language element description)
	LEDI (language element description item)
	Legend
	LEN (language element name)
	LERS (language element reference section)
	LERSDef (LERS property definition)
	LI (list item)
	LibEntry (document library definition)
	LIBlk (list item block)
	Library
	Lines (text with line boundaries)
	Litdata (literal data)
	LQ (excerpt quotation)
	Maintainer (reader comment)
	Mark (marked note definition)
	MarkList (marked note list)
	MasterIndex (master index)
	MasterIndexInfo (master index information)
	MasterIndexObj (master index object)
	MasterIndexPrefix (master index prefix)
	MD (marked deletion)
	MetaData (information architecture)
	MkAction (marked note action definition)
	MkClass (marked note class definition)
	MkDesc (mark description)
	MkNote (marked note)
	MMObj (multi-media object; artwork)
	MMObjLink (multi-media object link)
	Mod (information module)
	ModDesc (modular content description)
	ModInfo (modular information)
	ModInfoDef (modular information property definition)
	ModItemDef (item class definitions)
	ModItem (module description item)
	ModLvl (modification level)
	ModName (modular information element name)
	Msg (message or code description)
	MsgItem (message description item)
	MsgItemDef (definition of message description items)
	MsgLDef (Message list definition)
	MsgList (list of message or code descriptions)
	MsgNum (message identifier)
	MsgText (message text)
	MV (message variable)
	Name (person's name)
	NameLoc (named location)
	NItem (notice item)
	NMList (named list of IDs or entities)
	Note
	NoteBody (note body)
	NoteList (ordered note list)
	Notices (contains notices)
	Notloc (notation-specific location)
	Num (number)
	ObjLib (object library)
	ObjLibBody (object library body)
	ObjRef (object reference)
	Oct (octal number)
	OL (ordered list)
	OLDef (Ordered list definition)
	Oper (syntax operator)
	OrderNum (order number)
	OrigIBMDocNum (original IBM document number)
	Owners
	P (paragraph)
	Parm (parameter list entry)
	ParmBlk (parameter list block)
	ParmL (parameter list)
	Part (major document part)
	PartAsm (part assembly)
	PartAsmSeg (part assembly segment)
	PBlk (paragraph block)
	Person (person's name and address)
	Ph (Phrase)
	Phone (telephone number)
	PK (programming keyword)
	PNIndex (part number index)
	PostalCode (postal or zip code)
	Preface
	Proc (procedure)
	ProcCmnd (procedure command)
	ProcEntry (procedure entry point)
	ProcExit (procedure exit point)
	ProcIntro (procedure introduction)
	ProcStep (procedure step)
	ProcSumm (procedure summary)
	ProcSummItem (procedure summary item)
	ProdInfo (product information)
	ProdName (product name)
	Prolog (document metainformation)
	PropDef (property set definition)
	PropDefs (property definitions)
	PropDesc (property description)
	PropGroup (property group)
	PrtLoc (country where printed)
	PublicID (public identifier)
	Publisher (document publisher)
	PV (parameter variable)
	Q (quotation phrase)
	Qualif (qualification)
	QualifDefs (qualification definitions)
	RCF (reader comment form)
	RefKey (reference key)
	Release (product release identifier)
	RepSep (syntax repeat separator)
	RetKey (retrieval key)
	Rev (revision)
	RevDefs (revision tracking information)
	Row (table row)
	Safety (safety notices)
	Screen (display screen)
	ScreenDef (Screen definition)
	Sem (semantic meaning)
	Sep (syntactic separator)
	SOA (summary of amendments)
	SpanSpec (span specification)
	SpecDProlog (special section division prolog)
	StepNotes (step notes)
	StepRef (procedure step reference)
	STitle (shortened title)
	SubTitle (descriptive subtitle)
	SynBlk (syntax block)
	SynNote (syntax note)
	SynPh (syntax phrase)
	Syntax (syntax diagram)
	SyntaxDef (Syntax definition)
	Table
	TBody (table body)
	Term
	TermHd (term heading)
	TextAlt (text alternative)
	TFoot (table footer)
	TGroup (table group)
	THead (table heading)
	Then (procedure action to take)
	Title
	TitleBlk (title information)
	TList (list of tables)
	TM (Trademark)
	TOC (table of contents)
	UL (unordered list)
	ULDef (Unordered list definition)
	Var (syntax variable)
	Version (product version number)
	VNet (IBM VNet mail address)
	Volid (volume identifier)
	Warning (warning notice)
	WebPage
	Xmp (example)
	XmpDef (Example definition)
	XPh (example phrase)
	XRef (cross reference)

	Part 4. Appendixes
	Appendix A. IBMIDDoc Supported Notations
	Appendix B. Proposed IBM Standard for Formal Public Identifiers
	Owner Identifier
	Public Text Class and Public Text Description
	Public Text Language

	Appendix C. Notices
	Trademarks

	Part Number Index
	Index
	Readers’ Comments — We'd Like to Hear from You

