
ID Workbench
IBMIDDoc User’s Guide and Reference

Release 3.6

SH21-0783-10

October 30, 2001

Mike Temple

ID Workbench

IBMIDDoc User’s Guide and Reference
Release 3.6

SH21-0783-10

���

ID Workbench

IBMIDDoc User’s Guide and Reference
Release 3.6

SH21-0783-10

���

Note
Before using this information, be sure to read the general information under Appendix C, “Notices” on page 467.

This manual was produced using IBMIDDoc SGML, the Epic editor, and processed for print and online using the ID
Workbench.

Tenth Edition, October 30, 2001

This edition applies to the IBMIDDoc language, version 4.3.6; and to ID Workbench, release 3.6, and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1992, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book. ix
Who Should Read This Book. ix
What You Should Already Know ix
How This Book is Organized. ix

Summary of Changes xi

Part 1. Introduction to IBMIDDoc. . . 1

Chapter 1. Introduction to IBMIDDoc . . 3
What is IBMIDDoc? 3
IBMIDDoc Documents 3
IBMIDDoc Terms and Concepts 4

Documents and Markup 4
Elements and Tags 4
Containment 5
Entities 5
Marked sections 7
Processing instructions 7
Object Libraries 8
Attributes 8
Property and Class Definition. 9
Separation of Content and Style 9

IBMIDDoc Markup Considerations and Rules . . . 10
Ending an Element 10
Omitted Tags and Implied Elements 11
Markup Rules 11
Phrase-Like and Paragraph-Like Elements . . . 12
Element Groupings in IBMIDDoc 12

IBMIDDoc Input Codepages 12

Part 2. Using IBMIDDoc Markup . . 15

Chapter 2. Using basic IBMIDDoc
elements to create a document 19
IBMIDDoc Document Structure 19
Creating an IBMIDDoc Document 20

Creating the body of your document 20
Creating divisions (D element) 20
Creating paragraphs (P element) 21
Deciding which elements to use 21
Creating a heading hierarchy 22
Division prologs 23
Division introductions 24
Partial table of contents 24

Using parts to organize your chapters 24
Starting page number control 25
Chapter number control 25
Changing column layouts 26
Creating an information architecture 27

Architected online information and Information
Centers (vs books) 27

Chapter 3. All kinds of lists 29
Unordered lists 29
Simple lists 30
Ordered lists 30

Checkoff ordered lists 31
Customer setup lists 31
Continuing ordered lists 32

Definition lists 32
Parameter lists 34
Compacting lists. 36
Scaling list dingbats 36
Grouping list items 37
Separating or bridging list items 38
Message and code lists 38

Overriding the message list subheadings . . . 40

Chapter 4. Highlighting, Citing, Noting,
and Quoting 43
Highlighting 43
Simple title citations 45
Notes 45
Note lists 46
Footnotes 46
Quotes and excerpts 47
Labeled boxes 48
The perils of processing: Attention, caution, and
danger 48
Annotations 49
Qualifying information 49
Trademarks 50
Using document classes with XHTML style sheets 51

Chapter 5. Examples, figures, artwork,
and multimedia 53
Just plain lines 53
Examples of computer output 54
Literal text data 54
Including artwork in documents 55

Creating graphic links 56
Figures 57

Figure captions and descriptions 57
Multipart figures 58

Character graphics 59
Screens 59
Math formulas 60

Chapter 6. Cross-referencing 61
Referencing a figure 62
Referencing a table 63
Referencing a list item 63
Referencing anything at all 64
Controlling the form of cross references 65

Chapter 7. Creating IBMIDDoc Tables 67

© Copyright IBM Corp. 1992, 2001 iii

||

||

||
||
||
||
|
||

||

||

||

||

IBMIDDoc Table Markup Concepts 67
Creating simple tables 67
Specifying table column widths. 69
Table captions and descriptions. 69
Page, column, and line-wide tables 71
Splitting tables between pages 71
Affecting how a table appears: Rules, Separators,
Shading 72
Defining the Column Specifications 75
Defining Rows and Entrys 76
Making your tables accessible 76

A Few Simple Table Examples 77
A Simple Table 77
A Simple Table with More Options 78
A Simple Table with a Table Header and
IBMIDDoc Elements 78
A Complex Table with Row and Column Spans 79
A Complex Table Header 80
Adding footnotes to a table 80

Chapter 8. The document structure of
an IBMIDDoc document 83
About the IBMIDDoc tag 83

Getting in style, the document style, that is . . . 83
Setting the IBM copyright 85
Setting the security classification 85
Setting page numbering to sequential or
folio-by-chapter 85
Creating multiple volumes for a book 86
Controlling generated chapter, part, and
appendix titles 86
Specifying the language of the document . . . 87
Bookmarks for PDF tables of contents 87
Licensed and restricted materials 88
Line justification for DBCS languages. 88

About the prolog 88
Document title 88
Document number 89
Author and Address 89
Date 90
Improving the searching of PDF books 90
Other prolog elements 90
Adding to the front or back cover (CoverDef) . . 91
Using CopyRDefs 91
Using IBMProdInfo 92
Using Property Definitions (PropDefs) 92
PropDefs and Common Property Values 92
Using LDescs and Nameloc 95
Using GLDefs 96
Using BibEntryDefs. 96

Front matter (FrontM) 98
Notices and Edition notices 98
Table of contents 99
List of figures 100
List of tables 100
The preface 100
Summary of changes 100
Special sections. 100
IBM Safety text 101

About back matter (BackM) 101
Using appendix 101

Using glossary 101
Using bibiography (Bibliog) 102
Using part number index (PNIndex). 102
Using Index 102
Using reader’s comment form (RCF). 103

Chapter 9. Using definition tags . . . 105
Summarizing the initial setting override hierarchy 107

Chapter 10. Revision Elements and
Marked Notes 109
Using Revisions 109

Defining Revisions in the RevDefs Element . . 109
Indicating Revisions in the Document Markup 110
Marking text for deletion 111

Creating Collections of Marked Notes 111
Using the Mark Element. 112
Defining Marked Actions and Classes 112
Using the MkNote Element 112
Generating a Collection with MarkList Element 113
A Marked Notes Markup Example 113

Chapter 11. Indexing 115
Structuring a basic index 116
Basic index tagging 117
Placement of index tags 117

Position method 117
Cross referencing index entries 118

Where to put index entries 119
Defining index entries (central indexing) 120
Creating index entries by cross-indexing 120
Defining See and See-also references 121
Controlling the Index Sorting 123
Generating the index 123
Helping online reviewers see your index entries 124
Creating a master index 125

Chapter 12. All about linking 129
Linking 101 129
Creating links within a document 129
Linking to another document 131
Citation link to an IBMIDDoc document 131
Linking to an XHTML, HTML, or web document 132
Linking to items in another IBMIDDoc document 133
Making a graphic a link 134
Linking to an IPF document 134

Chapter 13. Glossaries 137
Defining Terms 138
Separating letter groups in a glossary 138
Defining Classes for Terms 138

Chapter 14. Bibliographies and
citations 141
Identifying books and documents 141
Using title citations 142
Citations 142
Generating a bibliography 143
Defining library entries 143

iv ID Workbench: IBMIDDoc User’s Guide and Reference

||

||

||

||

||
||

||
||

||

||
||

Linking BibEntry elements and other documents 144
An example of using BibEntry and BibEntryDefs 144

Chapter 15. Programming Syntax
Diagrams 147
Defining the syntax diagram 147

The Syntax element 149
The Group element 150
The KWD (keyword) element 152
The VAR (variable) element 153
The OPER (operator) element 153
The SEP (separator) element 153
The Delim (delimiter) element 154
The RepSep (repeat separator) element 154
The FRAGMENT and FRAGREF (fragment
reference) element 155

Syntax Notes 156
Syntax Phrases 157
Examples of Syntax Definitions and Markup . . . 158

Example 1: A simple syntax definition 158
Example 2: A simple syntax definition that
repeats 158
Example 3: A more complex syntax definition 159
Example 4: A variation on Example 3 159
Example 5: A syntax definition showing a
fragment and significant blanks 160
Example 6: A syntax definition with automatic
fragmenting 161

Chapter 16. Developing Programming
Language Reference Materials 165
The Structure of a Language Element Reference
Section 165
Describing Your Reference Section 166
Describing the language element 168
Example of a Simple Language Element Reference
Section 169

DISHDEF defining a dish 172
EVALUATE evaluate nutrition, cost, or
preparation time 173

Chapter 17. Defining Modular
Information 175
Examples of Using Modular Information 176

Chapter 18. File, text, and character
entities and reusing information . . . 179
File and text entities 179
Special characters 180
Reusing elements from an object library 191

Reusing attributes in the CONLOC reference 193
Cross-referencing items that use CONLOC . . 193

Chapter 19. Conditionally including
information 195
Property-Based Retrieval 195

Using the Props attribute to set text conditions 195
Setting the properties to true or false 197
Specifying boolean properties 197

Retrieval alternatives 198
Using Marked Sections 199

Controlling SGML Delimiter Recognition . . . 200

Chapter 20. Property and Class
Definitions 201
Defining Element Properties 201

Defining Element Properties Directly 201
Defining Element Properties Using Inheritance 202

Defining Element Classes 202

Chapter 21. Making some things
bigger or smaller 205
Scaling text up or down 205
Automatically scaling text for examples and such 205
Making things page-wide 205

Chapter 22. Creating maintenance
analysis procedures 207
MAP 0010: Baby Johnny is crying 208
MAP 0020: The Steak is Frozen 209
Using ProcEntry for Entry Requirements 209
Using ProcStep and ProcCmnd to Describe Each
Step 209
Using DecisionPnt for Outcome-Dependent Action
Descriptions 210
Using RefKeys to Refer to Labels in a Graphic . . 210
Using ProcExit to Complete a Procedure or
Sub-Procedure 211
Procedure Markup Examples 211

Starting the Procedure 211
Describing the Entry Point for the Procedure 211
Entering the Procedure Steps 211
Exiting the Procedure. 212

Controlling Procedure Output Styles 212

Chapter 23. Creating parts catalog
lists 215
Assembly 1: Bicycle 216
Markup source 216
Creating the heading for a component list 216
Developing the component list 217
Including comments in the component list . . . 218
Cross-referencing part assemblies and component
lists 218
Assembly 2: Wheel, front 219
Keeping track of assemblies and parts 219

Getting an assembly list 219
Getting a part number index 220

Part 3. IBMIDDoc Markup
Reference 221

Chapter 24. Reference Explanation 225
Element and Attribute Descriptions 225
How to Read the Syntax Diagrams 225
Common Element Attributes (large set). 227
Common Element Attributes (small set) 228

Contents v

||
|
||

||

||

|
||
||
||
||

Chapter 25. IBMIDDoc Elements . . . 231
Abbrev (abbreviations) 231
Abstract (abstract) 232
Address (address) 233
Annot (annotation) 233
AnnotBody (annotation body) 234
APL (APL data) 235
Appendix 235
Approvers (document approvers). 236
AreaDef (defines graphic hot spot area) 236
AsmList (list of parts assemblies) 237
Attention (safety notice) 238
Author 238
Authors 239
BackCover (back cover) 239
BackM (back matter) 240
BibEntry (bibliographic entry) 241
BibEntryDefs (contains bibliographic entries) . . . 241
Bibliog (bibliography) 242
BibList (bibliography entry list) 243
Bin (binary data) 244
Body (document body) 244
BOFNum (bill of forms number) 245
Bridge (bridge between concepts). 245
Cap (caption) 246
Caution (caution notice) 247
CGraphic (character graphic) 247
Char (character data) 248
CI (component item) 248
Cit (document citation) 249
ClassDef (element class definition) 250
CLE (content list entry) 251
Code (message code number) 253
ColSpec (column specification) 253
CompCmt (component comment) 254
CompL (component list) 255
Cond (procedure result) 255
ContainedDocs (documents in IBMLibEntry and
LibEntry) 257
CopyR (copyrights) 257
CopyRDefs (copyright definitions) 258
Corp (enterprise name and address) 259
CorpName (corporation name) 259
CoverDef (cover definition). 260
CritDate (critical date for a document) 260
CritDates (set of critical dates) 261
D (hierarchical division) 261
Danger (danger notice) 263
Date 264
DBlk (Division block). 265
DBody (division body) 266
Dec (decimal number) 266
DecisionPnt (decision point) 267
Defn (definition of a term) 268
DefnHd (definition description heading) 269
Delim (syntax delimiter). 269
Desc (element description) 270
DIntro (division introduction) 271
DL (definition list). 272
DLBlk (definition list block) 273
DLDef (Definition list definition) 274

DLEntry (definition list entry) 275
DocTitle (document title) 276
DProlog (division prolog) 276
DSum (division summary) 277
DVCFObj (DVCF Migration Element) 277
EdNotices (edition notices) 278
Else (other procedure path to follow) 278
Entry (table entry) 279
ExternalFileName 280
Fig (figure) 281
FigDef (Figure definition) 282
FigList (list of figures) 283
FigSeg (figure segment) 284
FileNum (file number) 284
Fn (footnote) 285
FNList (footnote list) 285
Formula (math formula) 286
Fragment (syntax fragment) 287
FragRef (syntax fragment reference) 288
FrontCover 289
FrontM (front matter). 289
GendTitle (default title specification) 290
GL (glossary list) 290
GLBlk (glossary list block) 292
GLDef (Glossary list definition) 293
GlDefs (glossary definitions) 294
GlEntry (glossary list entry) 294
Glossary 295
Group 296
Hex (hexadecimal). 296
IBMBibEntry (IBM bibliographic entry) 297
IBMBOFNum (bill of forms number) 298
IBMDocNum (IBM document number) 298
IBMFeatNum (IBM feature number) 299
IBMIDDoc (IBM-specific product documentation) 299
IBMLibEntry (IBM document library definition) 306
IBMMail (IBMMail e-mail address) 307
IBMPartNum (IBM part number) 308
IBMPgmNum (IBM program number) 308
IBMProdInfo (IBM product information) 309
IBMSafety (IBM safety notices) 309
IdxDefs (central index entries) 310
IdxTerm (index term) 311
Index 311
Internet (internet e-mail address) 312
IRef (index entry reference). 313
ISBN (document ISBN number) 313
I1 (primary index entry) 314
I2 (secondary index entry) 315
I3 (tertiary index entry) 316
Kwd (syntax keyword) 317
L (explicit link) 318
LDescs (link descriptions) 319
LE (language element) 320
LeDesc (language element description) 321
LEDI (language element description item) 322
Legend 324
LEN (language element name). 325
LERS (language element reference section) . . . 325
LERSDef (LERS property definition) 328
LI (list item) 330

vi ID Workbench: IBMIDDoc User’s Guide and Reference

||
||

||

||

||

||

LibEntry (document library definition) 331
LIBlk (list item block) 332
Library 333
Lines (text with line boundaries) 333
Litdata (literal data) 334
LQ (excerpt quotation) 335
Maintainer (reader comment) 336
Mark (marked note definition). 337
MarkList (marked note list). 338
MasterIndex (master index). 339
MasterIndexInfo (master index information) . . . 340
MasterIndexObj (master index object) 341
MasterIndexPrefix (master index prefix) 342
MD (marked deletion) 342
MetaData (information architecture) 343
MkAction (marked note action definition) 344
MkClass (marked note class definition) 345
MkDesc (mark description) 347
MkNote (marked note) 348
MMObj (multi-media object; artwork) 350
MMObjLink (multi-media object link) 352
Mod (information module) 352
ModDesc (modular content description) 353
ModInfo (modular information) 354
ModInfoDef (modular information property
definition) 356
ModItemDef (item class definitions) 357
ModItem (module description item) 358
ModLvl (modification level) 359
ModName (modular information element name) 359
Msg (message or code description) 361
MsgItem (message description item). 362
MsgItemDef (definition of message description
items) 363
MsgLDef (Message list definition) 364
MsgList (list of message or code descriptions) . . 366
MsgNum (message identifier) 368
MsgText (message text) 368
MV (message variable) 369
Name (person’s name) 370
NameLoc (named location) 371
NItem (notice item) 372
NMList (named list of IDs or entities) 373
Note 375
NoteBody (note body) 375
NoteList (ordered note list) 376
Notices (contains notices) 376
Notloc (notation-specific location) 377
Num (number) 378
ObjLib (object library) 378
ObjLibBody (object library body) 379
ObjRef (object reference). 380
Oct (octal number) 381
OL (ordered list) 382
OLDef (Ordered list definition) 383
Oper (syntax operator) 384
OrderNum (order number) 385
OrigIBMDocNum (original IBM document number) 385
Owners 386
P (paragraph) 386
Parm (parameter list entry) 387

ParmBlk (parameter list block) 388
ParmL (parameter list) 388
Part (major document part). 390
PartAsm (part assembly) 391
PartAsmSeg (part assembly segment) 392
PBlk (paragraph block) 392
Person (person’s name and address) 393
Ph (Phrase) 393
Phone (telephone number) 395
PK (programming keyword) 395
PNIndex (part number index) 396
PostalCode (postal or zip code) 397
Preface 397
Proc (procedure) 398
ProcCmnd (procedure command). 400
ProcEntry (procedure entry point) 400
ProcExit (procedure exit point) 401
ProcIntro (procedure introduction) 402
ProcStep (procedure step) 402
ProcSumm (procedure summary) 403
ProcSummItem (procedure summary item) . . . 403
ProdInfo (product information) 403
ProdName (product name) 404
Prolog (document metainformation) 404
PropDef (property set definition) 405
PropDefs (property definitions) 406
PropDesc (property description) 406
PropGroup (property group) 407
PrtLoc (country where printed) 408
PublicID (public identifier) 408
Publisher (document publisher) 409
PV (parameter variable) 409
Q (quotation phrase) 410
Qualif (qualification) 411
QualifDefs (qualification definitions) 412
RCF (reader comment form) 412
RefKey (reference key) 413
Release (product release identifier) 414
RepSep (syntax repeat separator) 414
RetKey (retrieval key) 415
Rev (revision) 415
RevDefs (revision tracking information) 416
Row (table row) 417
Safety (safety notices) 418
Screen (display screen) 419
ScreenDef (Screen definition) 420
Sem (semantic meaning). 421
Sep (syntactic separator). 421
SOA (summary of amendments) 422
SpanSpec (span specification) 423
SpecDProlog (special section division prolog). . . 424
StepNotes (step notes) 425
StepRef (procedure step reference) 425
STitle (shortened title) 425
SubTitle (descriptive subtitle) 426
SynBlk (syntax block). 426
SynNote (syntax note) 427
SynPh (syntax phrase) 428
Syntax (syntax diagram). 428
SyntaxDef (Syntax definition) 430
Table 431

Contents vii

||

||

||

||

||

TBody (table body) 434
Term 434
TermHd (term heading) 435
TextAlt (text alternative) 436
TFoot (table footer) 436
TGroup (table group). 437
THead (table heading) 438
Then (procedure action to take) 439
Title 440
TitleBlk (title information) 440
TList (list of tables) 441
TM (Trademark) 442
TOC (table of contents) 443
UL (unordered list) 444
ULDef (Unordered list definition) 445
Var (syntax variable) 446
Version (product version number) 447
VNet (IBM VNet mail address) 447
Volid (volume identifier) 448
Warning (warning notice) 448
WebPage 449
Xmp (example) 449
XmpDef (Example definition) 450

XPh (example phrase) 451
XRef (cross reference). 451

Part 4. Appendixes 455

Appendix A. IBMIDDoc Supported
Notations 457

Appendix B. Proposed IBM Standard
for Formal Public Identifiers 459
Owner Identifier 459
Public Text Class and Public Text Description . . 460
Public Text Language. 465

Appendix C. Notices 467
Trademarks 469

Part Number Index 471

Index 473

viii ID Workbench: IBMIDDoc User’s Guide and Reference

||

||

About This Book

This book describes how to use IBMIDDoc, which is a document markup language
based on Standard Generalized Markup Language (SGML).

Who Should Read This Book
Anyone who wants to create documents with IBMIDDoc markup or design a
library of documents that have IBMIDDoc markup should read this book.

If you are new to SGML and to the ID Workbench, please first get and read the
IDWB Getting Started and User’s Guide. Access the latest versions of these books
from the ID Workbench Documents page:
http://w3.rchland.ibm.com/projects/IDWB/documents/idwbdocs.htm

What You Should Already Know
You should be familiar with the process of creating a document and the general
concepts of document markup. You should also know how to use an SGML editor.

Although IBMIDDoc markup can be entered using a text editor, an SGML editor
such as the Arbortext Epiceditor or Frame2000 is strongly recommended. The
SGML-aware editors ensure your markup is correct before you do any formatting;
thus saving you time and money in extra formatting and debugging runs.

How This Book is Organized
This book is organized into the following parts:
v Part 1, “Introduction to IBMIDDoc” on page 1 describes basic IBMIDDoc terms

and concepts and IBMIDDoc markup rules.
v Part 2, “Using IBMIDDoc Markup” on page 15 describes how to use IBMIDDoc

markup to create the different parts of a document.
v Part 3, “IBMIDDoc Markup Reference” on page 221 describes the markup for

IBMIDDoc elements and attributes.

If you are planning or designing libraries or information, you should be generally
familiar with IBMIDDoc and be very familiar with the following information,
which is essential to planning and designing information:
v Chapter 1, “Introduction to IBMIDDoc” on page 3
v Chapter 2, “Using basic IBMIDDoc elements to create a document” on page 19
v Chapter 12, “All about linking” on page 129
v Chapter 16, “Developing Programming Language Reference Materials” on

page 165
v Chapter 18, “File, text, and character entities and reusing information” on

page 179
v Chapter 19, “Conditionally including information” on page 195

© Copyright IBM Corp. 1992, 2001 ix

http://w3.rchland.ibm.com/projects/IDWB/documents/idwbdocs.htm

x ID Workbench: IBMIDDoc User’s Guide and Reference

Summary of Changes

Changes for IBMIDDoc version 4.3.6 and IDWB release 3.6:

v You have more flexibility on setting page, column, or text wide items; see the
PGWIDE attribute on “Fig (figure)” on page 281, “Screen (display screen)” on
page 419, “Syntax (syntax diagram)” on page 428, “Xmp (example)” on page 449,
and “CGraphic (character graphic)” on page 247.

v You can more easily create architected information, using the metadata tag; see
“Creating an information architecture” on page 27.

v The XHTML output transform includes a way of passing classes of elements
through to style sheets. This allows a setting in the document to be reflected as a
style sheet setting. See “Using document classes with XHTML style sheets” on
page 51.

v You have an improved way of specifying simple lists, see “Simple lists” on
page 30.

v You can better control the highlighting of terms and headings on definition and
parameter lists; see “Definition lists” on page 32 and “Parameter lists” on
page 34.

v You can control the size of list item dingbats; see “Scaling list dingbats” on
page 36.

v There’s a new explanation of how to create multi-part figures; see “Multipart
figures” on page 58.

v You can control the shading for tables, table rows, or table cells; see “Affecting
how a table appears: Rules, Separators, Shading” on page 72.

v There’s a new explanation of how to make your XHTML tables accessible to
screen readers; see “Making your tables accessible” on page 76.

v You can override or change the number of columns (the layout) of your
document, chapters, or chapter-like divisions; see “Getting in style, the
document style, that is” on page 83.

v You can use the new definition tags to create defaults for corresponding tags; see
Chapter 9, “Using definition tags” on page 105.

v You can set more levels of active revisions in Xyvision PostScript or PDF
documents.

v The “See” and “See also” index entries now work in Xyvision PostScript or PDF
documents; see “Defining See and See-also references” on page 121.

v There is a new description of index sorting; see “Controlling the Index Sorting”
on page 123.

v You can have index entries appear as part of an online review; see “Helping
online reviewers see your index entries” on page 124.

v There is an improved explanation of cross-book linking; see “Linking to items in
another IBMIDDoc document” on page 133.

v You can scale text larger or smaller; see Chapter 21, “Making some things bigger
or smaller” on page 205.

v You can control the starting page number and chapter number for divisions; see
“D (hierarchical division)” on page 261.

v You can now show syntax diagrams without intervening spaces; the “composite”
value was added; see “The Group element” on page 150.

© Copyright IBM Corp. 1992, 2001 xi

|

|
|
|
|

|
|

|
|
|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

v A list of IBMIDDoc input codepages is now included; see “IBMIDDoc Input
Codepages” on page 12.

Changes for IBMIDDoc version 4.3.5 and IDWB release 3.4:

v Updates after October 12th:
– New symbols for the e(logo)server logos; see “Special characters” on page 180.
– New BRAND and NEWBRAND attributes added to the IBMIDDoc tag; see

“IBMIDDoc (IBM-specific product documentation)” on page 299.
v Add MMOBJ to the content model for Screen. Requirement R004878.
v Line justification for DBCS languages: ibmiddoc style=″xpp:(justify)″. This is

used only for DBCS languages. Requirement R005448.
v RETKEY=None | First | Last | FirstLast | NoDup on LERS, MSGLIST, and GL.

Used to enable or disable the automatic running heads for the LERS, Msglist, GL
in a document. Cannot set at the individual element level. All explicitly coded
Retkey elements are honored. If you nest elements that can generate a running
head (for example: msglist in lers), only the outer active generated head is used.
That is, if you have specified automated retkey generation for LERS and
MSGLIST, then a MsgNo inside LERs would not be used in the retkey area. But
if you had an explicit retkey inside the msg, then the retkey is honored as an
explicit override. The Xyvision transform will only use one style of retrieval per
retkey type First for Lers; NoDup for MsgList and GL. Requirement
RALMAR04.1997a.

v IBMIDDoc MAXTOC=number to enable you to specify the highest level head to
go in the Table of Contents. MAXTOC was picked to distinguish it slightly from
the Bookie :docprof toc=123 which actually let authors skip some heads
altogether but still get lower level heads. Requirement R004769.

v D toc=toc|notoc also for special D type elements. Controls whether this
particular heading is included in the TOC if the TOC includes those levels of
headings.

v Change PGWIDE values for TABLE: pgwide=0|1|2. The new value 2 on the
pgwide is to indicate width=textline behavior.

v Add FRAME attribute to Fig Frame: Fig frame=NONE|BOX|RULES.
Requirement R004763.

v Add SynStyle to syntax: SynStyle= Space| Box| Rule| LblBox. Requirement
R004763

v Add one and two character termwidth settings to DL and PARML. The defined
attribute values for termwidth are now small | medium | large | 1 | 2.
Requirement R005298.

v Change processing of DVCFOBJ to error message.
v Add DBLK to support including multiple divisions from an object library. It is

allowed wherever D is allowed.
v Add PBLK to content model for FrontCover, to allow for multiple paragraphs

and label boxes on cover. Requirement R005266
v Add LAYOUT to TOC, FIGLIST, TLIST, and Index. This is to support using less

columns than defined in the default style to provide room for long terms. The
values will be onecol, twocol, threecol, and default-layout. Requirements
R005530 and R005509

v Provide support for index folio prefix used for multiple volumes: Added
MULTIVOL=OneVol | Index-Folio to IBMIDDOC , which will add X- as a prefix
for the page numbers in the index and start the numbering from 1. Requirement
R004964.

xii ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

v Added comments to DTDs with Language and DocStyle values currently
supported.

v Allow compact lists: LINESPACE=SPACE|COMPACT on all lists (ol ul gl
msglist codel parml dl notel), sublists automatically inherit the linespace but
can override. We chose this attribute rather than
COMPACT=COMPACT|NOCOMPACT to allow for future growth like
doublespace. Requirement R005298

v With patch IDWXF036, the CONLOC attribute passes the attributes from the
elements contained in an OBJLIB. See “Reusing elements from an object library”
on page 191 for more information.

Summary of Changes xiii

xiv ID Workbench: IBMIDDoc User’s Guide and Reference

Part 1. Introduction to IBMIDDoc

Chapter 1. Introduction to IBMIDDoc 3
What is IBMIDDoc? 3
IBMIDDoc Documents 3
IBMIDDoc Terms and Concepts 4

Documents and Markup 4
Elements and Tags 4
Containment 5
Entities 5
Marked sections 7
Processing instructions 7
Object Libraries 8
Attributes 8
Property and Class Definition. 9
Separation of Content and Style 9

IBMIDDoc Markup Considerations and Rules . . . 10
Ending an Element 10
Omitted Tags and Implied Elements 11
Markup Rules 11
Phrase-Like and Paragraph-Like Elements . . . 12
Element Groupings in IBMIDDoc 12

IBMIDDoc Input Codepages 12

© Copyright IBM Corp. 1992, 2001 1

||

2 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 1. Introduction to IBMIDDoc

This chapter introduces IBMIDDoc and describes IBMIDDoc terms and concepts. It
also includes considerations and rules for IBMIDDoc markup.

What is IBMIDDoc?
IBMIDDoc is a document markup language based on Standard Generalized
Markup Language (SGML). SGML is an international standard for representing the
elements and structure of electronically stored information so that a person or
computer program can understand and use those elements and structure. The
electronically stored information can be one or more files that make up a
document.

IBMIDDoc Documents
An IBMIDDoc document is a valid SGML document. A valid SGML document is
comprised of:
v A document type declaration that contains or references a document type

definition (DTD)
v A document instance (your text) which conforms to the DTD contained in or

referenced in the document type declaration

The IBMIDDoc DTD must be referenced by all IBMIDDoc documents. Figure 1
illustrates a valid IBMIDDoc document type reference.

Figure 1 shows the document type declaration, which names the document type
(IBMIDDoc). It also references the PUBLIC identifier for the DTD. The public
identifier is a name that uses a format defined by the SGML standard. This name
format allows us to point to information in a system-independent way. The SGML
application that is processing the SGML data uses the identifier to transform the
data being read to an identifier that works on the SGML system being used.

The document instance must conform to the document type definition. For
IBMIDDoc documents, this is the IBMIDDoc DTD. Figure 2 shows the absolute
minimum IBMIDDoc document.

Figure 3 on page 4 shows a more complete, but still small, IBMIDDoc document:

<!DOCTYPE IBMIDDOC PUBLIC "+//ISBN 0-933186::IBM//DTD IBMIDDoc//EN" >

Figure 1. Document Type Declaration for an IBMIDDoc Document

<!DOCTYPE IBMIDDoc public "+//ISBN 0-933186::IBM//DTD IBMIDDoc//EN">
<IBMIDDOC>
<body>

Figure 2. Minimum IBMIDDoc Document Markup

© Copyright IBM Corp. 1992, 2001 3

When you save your document, give it a meaningful file name. The file extension
needs to be IDD (or idd), to ensure the ID Workbench processes properly recognize
the file. Use only letters and numbers in the file name; we recommend starting the
file name with a letter. Do not include special characters in the file name (such as
spaces, +, –, %, and so forth).

IBMIDDoc Terms and Concepts
This section introduces IBMIDDoc terms and concepts, including markup and tags,
containment, entities, object libraries, attributes, property and class definition, and
separation of content and style.

Documents and Markup
A document is a collection of information that is processed as a unit. An IBMIDDoc
document consists of information (text and graphics) and IBMIDDoc markup that
defines and identifies the structure and the elements of the document.

The IBMIDDoc document type definition (DTD, not ″DDT″) defines the document
type and the valid elements or tags you can use. Your document that contains the
information (text and graphics) and corresponding markup is called the document
instance.

Markup is information in a source document that enables a person or system to
process the document. The kinds of markup you can use in IBMIDDoc are:
descriptive markup (tags), markup declarations, entity references, marked sections,
and processing instructions.

Elements and Tags
An element is a component of a document such as a paragraph, an unordered list,
or a figure. Tags (or descriptive markup) are used to identify elements. A tag is
composed of a tag open delimiter (< for a start tag), an element identifier (for
example, p for a paragraph), and a tag close delimiter (>). Ending tags begin with
</, an element identifier, and >.

In the following example of a paragraph, <P> marks the start of the paragraph
element and </P> marks the end of the paragraph element:
<P>This is the content
of a paragraph element.
</P>

<!DOCTYPE IBMIDDoc public "+//ISBN 0-933186::IBM//DTD IBMIDDoc//EN">
<ibmiddoc>
<body>
<d>
<dprolog><titleblk>
<title>My Little Document</title>
</titleblk></dprolog>
<dbody>
<p>This is my first sample document. Thank-you for
reading it.</p>
</dbody></d>
</body>
</ibmiddoc>

Figure 3. IBMIDDoc Document

4 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|

The content of an element is whatever is between the start and end tags for the
element. An element can contain information (text or multimedia objects), other
elements, or a mixture of information and elements. Elements that have no content
do not have end tags, such as the XRef element.

Containment
One element can contain another element either directly or indirectly, known as
direct containment or indirect containment, respectively.

In the following example, the first paragraph directly contains an ordered list, the
ordered list directly contains two list items, and the first list item directly contains
a paragraph. The first paragraph indirectly contains the list items and the
paragraph contained by the first list item.
<p>This is a list:

First list item
<p>This is a paragraph within the
first list item.</p>

Second list item

</p>

This next example, the first paragraph does not contain the ordered list, because
the first paragraph is closed before the list is opened.
<p>This is a list:
</p>

First list item
<p>This is a paragraph within the
first list item.</p>

Second list item

The containment structure also determines the inheritance of properties from an
element to the elements it directly contains (its children). This structure also
determines the properties of elements that are indirectly contained by other
elements.

Containment also determines a hierarchical structure. Divisions within divisions
determine headings and subordinate headings. Several SGML editors can display a
tree view of a document. This view lets you see these containment and hierarchical
relationships. You can tell which elements are peers, parents, or children by this
kind of view.

Entities
An entity is any information that is referred to as a unit from a document. It can
be a character string, a file, a graphic, or a collection of files. It can even be an
entire document. Entities enable the reuse of information, and organization of that
information into separate files.

An entity must be defined by a markup declaration, which is a kind of markup
that controls the interpretation of other markup. Entities are not dynamic; the
definition of an entity cannot be changed after it is defined. In addition, all entities

Chapter 1. Introduction to IBMIDDoc 5

must be defined at the beginning of a document. Entity declarations are part of the
DTD. The declarations are usually put in the DTD subset, which is the part of the
DTD that is specific to a given document.

An entity reference requests that entity data replace the entity reference at the place
where the reference occurs. Entity references are delimited by the entity reference
open delimiter (&) and the entity reference close delimiter (;).

Entities are either internal or external. An internal entity is an entity whose
declaration includes the replacement text (the text that is to replace the entity
reference). In the following example, which shows how to define and refer to an
internal entity, IBMIDDoc is the replacement text and &product; the entity reference.
<!ENTITY product "IBMIDDoc">...
This book teaches you how to use &product;.

Internal entities that are defined by IBMIDDoc include special characters such as
the em-dash or backslash, which are referred to with the entity references &emdash;
and &bslash;, respectively.

These entities are contained in the IDDBKSYM.ENT file. Many of these character entity
declarations use the same names as the character entities that are defined by
BookMaster®.

An external entity is an entity whose declaration defines where the replacement
text can be found but does not include the replacement text in the declaration.
These are more commonly called symbols (replacement words or phrases) or
imbeds (files such as a chapter).

In the following example, which shows how to define and refer to an external
entity, the XXXL0INT.IDE file is the external entity and &introfile; is the entity
reference:
<!ENTITY introfile SYSTEM "xxxl0int.ide">...
&introfile;

The ENTITY line defines ″introfile″ as the name of the entity; ″system″ indicates
the following string ″xxxl0int.ide″ is a file name.

The example that follows shows the entity declarations for several IBMIDDoc files
that are included in a master file document. This is like using the .im Bookmaster
macro to imbed SCRIPT files in a master document.

...
<!Entity RKTL1EDN SYSTEM ’RKTL1EDN.IDE’>
<!Entity RKTL1NOT SYSTEM ’RKTL1NOT.IDE’>
<!Entity RKTL1PRE SYSTEM ’RKTL1PRE.IDE’>...
<!-- Edition notice This includes the entity containing Edition Info-->
&RKTL1EDN;
<TOC><GENDTITLE>
<!-- Notices This includes the entity containing the Notices -->
&RKTL1NOT;
<!-- Preface This includes the entity containing the EdNotices -->
&RKTL1PRE;
</FRONTM>

6 ID Workbench: IBMIDDoc User’s Guide and Reference

In the first line of the example, RKTL1EDN is the entity name, SYSTEM declares where
the entity is stored on the local system, and ’RKTL1EDN.IDE’ is the actual file name.
In the front-matter portion of the document, the entities are referenced where they
should appear during processing.

For more information about using entities and entity references, see Chapter 18,
“File, text, and character entities and reusing information” on page 179.

Epic Editor Note
For information about creating, declaring, and referencing internal and
external entities using Epic, see the chapter “Editing SGML Documents with
Epic” in the ID Workbench Getting Started and User’s Guide. If you’re not using
Epic, see the user guide for the SGML editor that you are using.

Migration Note
Internal entities are ″symbols″ in BookMaster*, and external entities are
″embedded files″ in BookMaster.

You will often see entities referred to in the following ways:

Character Entity
Contains values for a special character set, as in the IDDBKSYM.ENT file.

Text Entity
Contains the replacement text in the markup declaration.

File Entity
Contains a reference to the name of another file that you want to reference
within your document.

Marked sections
Marked sections are a special way of controlling a part of a document for
processing. You can indicate, in the source, a part to include or ignore. IBMIDDoc
has a better way of doing this at run time; using properties; see Chapter 19,
“Conditionally including information” on page 195.

To use a marked section to condition text (maybe to hide text and SGML source
you want to save but not have in the document), You use a marked section
parameter to surround the text. For example, this is hiding a paragraph; notice the
brackets and the %comment – these cause the tagged content to be ignored.
<![%comment; [<p>Here’s a little paragraph I want to hide.</p>]]>

The %comment needs to be declared,and set to ignore:
<!ENTITY % comment "IGNORE">

Processing instructions
These are special instructions that you add to your source. They are allowed
almost anywhere. You use them within IBMIDDoc documents to include special
formatting controls such as page breaks.

For example, the following processing instruction tells the Xyvision formatter to
start a new page:

Chapter 1. Introduction to IBMIDDoc 7

<?IDD:page>

You can force new pages, which should be used as little as possible. Place this
processing instruction outside of elements if possible. The syntax is:
<?IDD:page>
<?IDD:page odd>
<?IDD:page even>
<?IDD:page x.x>

where “page” forces a page eject; “page odd” forces a page eject to an
odd-numbered page; and “page even” forces a page eject to an even-numbered
page. “page x.x” specifies a measurement up from the bottom of the current page
(above the running foot). Supported measurements are: in (inches), pi (picas), and
cm (centimeters). Just specifying a number indicates the number of lines in the
current font. For example, this indicates that a new page should start if less than
4.5 centimeters remain in the current page:
<?IDD:page 4.5cm>

This specifies 3 picas and 6 points:
<?IDD:page 3.6pi>

You can also force new lines, which should be used as little as possible. The syntax
is:
<?IDD:break>

For example:
<p>Here is some text
<?IDD:break>that should start on a new line.

Object Libraries
An object library is a collection of elements that can be used elsewhere in a
document. Object libraries, like entities, also enable reuse of information. Elements
in an object library can be used only within the document that contains the object
library. Object libraries can also be used for conditional processing. Conditional
processing allows you to turn text on or off as you process your document.

For more information about using the elements in an object library, see Chapter 18,
“File, text, and character entities and reusing information” on page 179 and
Chapter 19, “Conditionally including information” on page 195.

Migration Note
Object libraries provide the function of BookMaster document version control
facility (DVCF) side files.

Attributes
An attribute is a characteristic of an element (other than type or content) that is
included with a start tag to further describe the element. Many attributes defined
by IBMIDDoc are common to all elements.

In IBMIDDoc, an attribute name must:
v begin with an alphabetic character, A-Z or a-z

v contain only A-Z, a-z, 0-9, - (hyphen), . (period), and _ (underscore)

8 ID Workbench: IBMIDDoc User’s Guide and Reference

v be no more than 64 characters in length

IBMIDDoc attributes are divided into the following classes:
v Identifying attributes identify a given element. The ID attribute, which is a

common attribute, is an identifying attribute.
<p id="fred">This paragraph has an identifier.</p>

v Property attributes define the properties of an element, such as its owner or
class, and control which elements are to be processed. Language and Props are
property attributes.
<p props="v2r3">This paragraph is used only for V2R3.</p>

v Link attributes define the link relationships between elements. Linkend and
Refid are link attributes for the L and XRef elements, respectively.
<P>A <L LINKEND="parahead">paragraph</L> is a chunk of information....
<P>See <XREF REFID="parahead"> for more information about paragraphs.</P>...
<D ID="parahead">

v Style attributes define presentation characteristics of an element. In this next
example, the OLTYPE attribute says this list should format as a step list.
<ol oltype="step">
Do this.
then that.

Property and Class Definition
Properties such as language, status, or classification can be associated with
elements and are defined by using property attributes. Also, elements can inherit
properties from other elements.

The PropDef element allows you to define one set of properties that can apply to
several elements.

The ClassDef element allows you to define element classes that enable processing
functions such as creating a detailed glossary or bibliography, generating precise
associative links, or automatically indexing certain kinds of information. Element
classes can also be used to control the inheritance of element properties.

In many cases, element classes are defined for an entire collection of documents by
someone responsible for designing the information in the collection, such as an
information designer or planner. If you are working on information for which
element classes have been defined, you need to know the class names, the affected
elements, and their intended use.

For more information about defining properties, see Chapter 20, “Property and
Class Definitions” on page 201.

Separation of Content and Style
The main intent with IBMIDDoc SGML markup is to separate the content from
how it appears. The output styles are determined by style “gurus” so that all our
documents look alike.

We need to write clearly and consisely; the formatters take care of how the
information appears. We don’t need to worry that a second-level heading is in the
proper type face and highlighting.

Chapter 1. Introduction to IBMIDDoc 9

IBMIDDoc Markup Considerations and Rules
This section describes markup considerations for ending elements and omitting
tags. It also lists IBMIDDoc markup rules.

Markup and SGML Editors
All discussions in this book about entering tags and other markup are in the
context of using a non-SGML text editor to create IBMIDDoc files. With a text
editor, minimizing typing is useful, and IBMIDDoc does what it can to keep
typing to a minimum. However, you should create and edit IBMIDDoc files
with editors that support SGML, like Epic or Frame+SGML.

With an SGML editor, you make selections from menus rather than typing in
tags. Thus, minimizing typing is not an issue with SGML editors.

The markup shown in this book is usually the minimum markup required.
However, SGML editors often insert omissible tags for elements. Also, SGML
editors often insert an optional attribute name when you enter a value for the
attribute. Thus, when you request a view that shows the markup in an SGML
editor, you can see tags that you did not select or, if you use a text editor,
that you do not need to type.

Ending an Element
In SGML markup, an element is ended either by an end tag or by another element
that cannot be directly contained by the first element. Elements that contain
nothing have no end tags, and some elements have optional end tags.

The paragraph element has an optional end tag. Because a paragraph cannot
directly contain another paragraph, one paragraph automatically ends when
another paragraph begins, regardless of whether a paragraph end tag is used.

It is almost never wrong to use an end tag. The exceptions are:
v When an element may never have content. Such elements are called Empty

elements. XRef is an example of an empty element.
v When attributes which force the element to be empty are specified on the

element. All elements have several possible such attributes. CONLOC is an
example of such a special attribute. LitData’s OBJ attribute is another example of
a special attribute.
In both of these examples, the attributes are content references. They point to
other elements by ID, or to other entities by name. The content of the elements
or entities that are the target of the content reference are used at the point where
the content reference is made.

Migration Note
Bookmaster’s Artwork tag has a name attribute which behaves the same
way as described for these special attribute content references.

To determine whether an end tag is required or optional for a particular element,
check the description for that element.

10 ID Workbench: IBMIDDoc User’s Guide and Reference

Omitted Tags and Implied Elements
In SGML, some start and end tags can be omitted and the corresponding elements
can be implied. The omission makes it easier to create IBMIDDoc documents if you
are using a text editor. Remember, however, that you may see error messages
about the implied elements. The following division element markup demonstrates
how omitted tags work. D contains two main elements, DProlog and DBody.
DProlog contains TitleBlk and Title which contain the title of the division, and
DBody contains the content of the division. You can type the following markup, in
which DProlog, Title, and DBody are all automatically implied:
<d>Using IBMIDDoc
<p>IBMIDDoc is IBM Information Development’s
implementation of the SGML standard for IBM documentation.

If you typed the complete markup, it would look like this:
<d>
<dprolog><titleblk>
<title>Using IBMIDDoc</title>
</titleblk></dprolog>
<dbody>
<p>IBMIDDoc is IBM Information Development’s implementation
of the SGML standard for IBM documentation.</p>
</dbody></d>

Start tags can be omitted only for required elements. Because TitleBlk, Title,
DProlog, and DBody are required elements on the D element, you can omit the
start and end tags. For each element with an optional title, you must explicitly
enter the TitleBlk start and end tags. To determine whether an element is required
in a particular context, check the description for the parent element.

Markup Rules
General markup rules for IBMIDDoc are as follows. This first set are good general
rules:
v Always use the appropriate markup to identify a document element. For

example, do not use a paragraph tag to create a blank line. If you use markup
incorrectly, the output might appear satisfactory when processed; however, if the
document is processed with a different processing program from the one you are
using, the results may be unsatisfactory.

v Use an SGML comment to indicate strange or interesting markup. This not only
helps you when you wonder why your did something, it also helps the poor
soul that has to take over your document when you get promoted and move to
other assignments. You can also include a comment in a declaration; it is
delimited by double hyphens (--), as follows:
<!ENTITY product "IBMIDDoc" --This comment describes the entity.-->
<!ENTITY introfile SYSTEM "xxxl0int.ide" --This comment describes
the entity and is too long to fit on one line.-->...
<!--This is a comment by itself.-->

Do not use double hyphens within a comment because they end the comment.
v To “comment out” a section (so it’s hidden but not deleted), use the

marked-section keyword IGNORE. See “Marked sections” on page 7 for an
example.

These rules are automagically enforced by any SGML editor; you typically do not
have to worry about them:

Chapter 1. Introduction to IBMIDDoc 11

v Specify elements in the right order. Elements that occur only once in a document
must be coded in the order shown in the syntax descriptions.

v Define all entities at the beginning of your document.
v For a multiple-word attribute value or for an attribute value that contains blanks

or special characters, enclose the value within single or double quotation marks,
as shown here:
<PH STYLE="bold italic">
This should be bold and italic
</PH>

If an attribute value contains apostrophes, use double quotation marks, as
follows:
<P XREFTEXT="operator’s tasks">tasks

If an attribute value contains one kind of quotation marks (single or double), use
the other kind of quotation marks, as follows:
style='color="cyan white" bold monospace'

style="color='cyan white' bold monospace"

If a single-word attribute value does not contain special characters, quotation
marks can be used but are not required.

v Do not hyphenate words at the end of an input line.
v You can omit the start tag only for a required element.
v You can use empty end tags as a shorthand way of ending the last element

started, as shown for the Phrase element in this example:
<P>Phyto-daemon is a example of <PH>Generation-X-speak</>.
<P>This is another paragraph.

Phrase-Like and Paragraph-Like Elements
In IBMIDDoc, Phrase-Like (%PhLike) is used to refer to all phrase-like elements.
Most %PhLike elements are valid anywhere that plain text is valid. There are a few
exceptions to this rule where a few elements have very specific content rules.

Paragraph-Like (%PLike) Elements include the IBMIDDoc elements that are
directly containable by division elements.

%DivLike Elements include the IBMIDDoc elements that can be contained (in most
cases) at the same hierarchical level as a Division element.

Element Groupings in IBMIDDoc
There are several groups of elements that are referred to using generic names as a
shorthand technique in this book. These are called parameter entities.

IBMIDDoc Input Codepages
IBMIDDoc documents have expected input codepage for each language. This
ensures the ID Workbench transforms do the proper character conversions and
sortings. The codepages are listed for each language as follows:
ENGLISH IBM-850
UKENGLISH IBM-850
DUTCH IBM-850
GERMAN IBM-850
ITALIAN IBM-850

12 ID Workbench: IBMIDDoc User’s Guide and Reference

|

|
|
|

|
|
|
|
|

FRENCH IBM-850
SPANISH IBM-850
PORTUGUESE IBM-850
DANISH IBM-850
FINNISH IBM-850
NORWEGIAN IBM-850
SWEDISH IBM-850
CFRENCH IBM-850
BFRENCH IBM-850
BDUTCH IBM-850
BPORTUGUESE IBM-850
CENGLISH IBM-850
ICELANDIC IBM-850
SGERMAN IBM-850
SFRENCH IBM-850
SITALIAN IBM-850
KOREAN IBM-1363
TCHINESE IBM-950
SCHINESE IBM-1386
JAPANESE IBM-943
CATALAN IBM-850
TURKISH IBM-857
GREEK IBM-813
POLISH IBM-852
CZECH IBM-852
SLOVAK IBM-852
HUNGARIAN IBM-852
CROATIAN IBM-852
SLOVENIAN IBM-852
RUSSIAN IBM-866
ROMANIAN IBM-852
BULGARIAN IBM-915
ESTONIAN IBM-922
LATVIAN IBM-921
LITHUANIAN IBM-921
MACEDONIAN IBM-855
SERBIAN IBM-855
THAI IBM-874
ARABIC IBM-864
HEBREW IBM-1255

Chapter 1. Introduction to IBMIDDoc 13

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

14 ID Workbench: IBMIDDoc User’s Guide and Reference

Part 2. Using IBMIDDoc Markup

Chapter 2. Using basic IBMIDDoc elements to
create a document 19
IBMIDDoc Document Structure 19
Creating an IBMIDDoc Document 20

Creating the body of your document 20
Creating divisions (D element) 20
Creating paragraphs (P element) 21
Deciding which elements to use 21
Creating a heading hierarchy 22
Division prologs 23
Division introductions 24
Partial table of contents 24

Using parts to organize your chapters 24
Starting page number control 25
Chapter number control 25
Changing column layouts 26
Creating an information architecture 27

Architected online information and Information
Centers (vs books) 27

Chapter 3. All kinds of lists 29
Unordered lists 29
Simple lists 30
Ordered lists 30

Checkoff ordered lists 31
Customer setup lists 31
Continuing ordered lists 32

Definition lists 32
Parameter lists 34
Compacting lists. 36
Scaling list dingbats 36
Grouping list items 37
Separating or bridging list items 38
Message and code lists 38

Overriding the message list subheadings . . . 40

Chapter 4. Highlighting, Citing, Noting, and
Quoting 43
Highlighting 43
Simple title citations 45
Notes 45
Note lists 46
Footnotes 46
Quotes and excerpts 47
Labeled boxes 48
The perils of processing: Attention, caution, and
danger 48
Annotations 49
Qualifying information 49
Trademarks 50
Using document classes with XHTML style sheets 51

Chapter 5. Examples, figures, artwork, and
multimedia 53
Just plain lines 53

Examples of computer output 54
Literal text data 54
Including artwork in documents 55

Creating graphic links 56
Figures 57

Figure captions and descriptions 57
Multipart figures 58

Character graphics 59
Screens 59
Math formulas 60

Chapter 6. Cross-referencing 61
Referencing a figure 62
Referencing a table 63
Referencing a list item 63
Referencing anything at all 64
Controlling the form of cross references 65

Chapter 7. Creating IBMIDDoc Tables 67
IBMIDDoc Table Markup Concepts 67

Creating simple tables 67
Specifying table column widths. 69
Table captions and descriptions. 69
Page, column, and line-wide tables 71
Splitting tables between pages 71
Affecting how a table appears: Rules, Separators,
Shading 72
Defining the Column Specifications 75
Defining Rows and Entrys 76
Making your tables accessible 76

A Few Simple Table Examples 77
A Simple Table 77
A Simple Table with More Options 78
A Simple Table with a Table Header and
IBMIDDoc Elements 78
A Complex Table with Row and Column Spans 79
A Complex Table Header 80
Adding footnotes to a table 80

Chapter 8. The document structure of an
IBMIDDoc document 83
About the IBMIDDoc tag 83

Getting in style, the document style, that is . . . 83
Setting the IBM copyright 85
Setting the security classification 85
Setting page numbering to sequential or
folio-by-chapter 85
Creating multiple volumes for a book 86
Controlling generated chapter, part, and
appendix titles 86
Specifying the language of the document . . . 87
Bookmarks for PDF tables of contents 87
Licensed and restricted materials 88
Line justification for DBCS languages. 88

About the prolog 88

© Copyright IBM Corp. 1992, 2001 15

||

||
||
||
||
|
||

||

||

||

||

||

||

||

Document title 88
Document number 89
Author and Address 89
Date 90
Improving the searching of PDF books 90
Other prolog elements 90
Adding to the front or back cover (CoverDef) . . 91
Using CopyRDefs 91
Using IBMProdInfo 92
Using Property Definitions (PropDefs) 92
PropDefs and Common Property Values 92

Limiting the Scope of PropDef Definitions . . 92
Using PropDefs for Conditional Processing . . 94

Using LDescs and Nameloc 95
Using GLDefs 96
Using BibEntryDefs. 96

Front matter (FrontM) 98
Notices and Edition notices 98

Other notices 99
Table of contents 99
List of figures 100
List of tables 100
The preface 100
Summary of changes 100
Special sections. 100
IBM Safety text 101

About back matter (BackM) 101
Using appendix 101
Using glossary 101
Using bibiography (Bibliog) 102
Using part number index (PNIndex). 102
Using Index 102
Using reader’s comment form (RCF). 103

Chapter 9. Using definition tags 105
Summarizing the initial setting override hierarchy 107

Chapter 10. Revision Elements and Marked
Notes. 109
Using Revisions 109

Defining Revisions in the RevDefs Element . . 109
Indicating Revisions in the Document Markup 110
Marking text for deletion 111

Creating Collections of Marked Notes 111
Using the Mark Element. 112
Defining Marked Actions and Classes 112
Using the MkNote Element 112
Generating a Collection with MarkList Element 113
A Marked Notes Markup Example 113

Chapter 11. Indexing 115
Structuring a basic index 116
Basic index tagging 117
Placement of index tags 117

Position method 117
Cross referencing index entries 118

Where to put index entries 119
Defining index entries (central indexing) 120
Creating index entries by cross-indexing 120
Defining See and See-also references 121
Controlling the Index Sorting 123

Generating the index 123
Helping online reviewers see your index entries 124
Creating a master index 125

Chapter 12. All about linking 129
Linking 101 129
Creating links within a document 129
Linking to another document 131
Citation link to an IBMIDDoc document 131
Linking to an XHTML, HTML, or web document 132
Linking to items in another IBMIDDoc document 133
Making a graphic a link 134
Linking to an IPF document 134

Chapter 13. Glossaries 137
Defining Terms 138
Separating letter groups in a glossary 138
Defining Classes for Terms 138

Chapter 14. Bibliographies and citations . . . 141
Identifying books and documents 141
Using title citations 142
Citations 142
Generating a bibliography 143
Defining library entries 143
Linking BibEntry elements and other documents 144
An example of using BibEntry and BibEntryDefs 144

Chapter 15. Programming Syntax Diagrams . . 147
Defining the syntax diagram 147

The Syntax element 149
The Group element 150
The KWD (keyword) element 152
The VAR (variable) element 153
The OPER (operator) element 153
The SEP (separator) element 153
The Delim (delimiter) element 154
The RepSep (repeat separator) element 154
The FRAGMENT and FRAGREF (fragment
reference) element 155

Syntax Notes 156
Syntax Phrases 157
Examples of Syntax Definitions and Markup . . . 158

Example 1: A simple syntax definition 158
Example 2: A simple syntax definition that
repeats 158
Example 3: A more complex syntax definition 159
Example 4: A variation on Example 3 159
Example 5: A syntax definition showing a
fragment and significant blanks 160
Example 6: A syntax definition with automatic
fragmenting 161

Chapter 16. Developing Programming Language
Reference Materials 165
The Structure of a Language Element Reference
Section 165
Describing Your Reference Section 166
Describing the language element 168
Example of a Simple Language Element Reference
Section 169

16 ID Workbench: IBMIDDoc User’s Guide and Reference

||

||
||

||
||

||

||
||

DISHDEF defining a dish 172
EVALUATE evaluate nutrition, cost, or
preparation time 173

Chapter 17. Defining Modular Information . . . 175
Examples of Using Modular Information 176

Chapter 18. File, text, and character entities and
reusing information. 179
File and text entities 179
Special characters 180
Reusing elements from an object library 191

Reusing attributes in the CONLOC reference 193
Cross-referencing items that use CONLOC . . 193

Chapter 19. Conditionally including information 195
Property-Based Retrieval 195

Using the Props attribute to set text conditions 195
Setting the properties to true or false 197
Specifying boolean properties 197
Retrieval alternatives 198

Using Marked Sections 199
Controlling SGML Delimiter Recognition . . . 200

Chapter 20. Property and Class Definitions . . 201
Defining Element Properties 201

Defining Element Properties Directly 201
Defining Element Properties Using Inheritance 202

Defining Element Classes 202

Chapter 21. Making some things bigger or
smaller 205
Scaling text up or down 205
Automatically scaling text for examples and such 205
Making things page-wide 205

Chapter 22. Creating maintenance analysis
procedures. 207
MAP 0010: Baby Johnny is crying 208
MAP 0020: The Steak is Frozen 209
Using ProcEntry for Entry Requirements 209
Using ProcStep and ProcCmnd to Describe Each
Step 209
Using DecisionPnt for Outcome-Dependent Action
Descriptions 210
Using RefKeys to Refer to Labels in a Graphic . . 210
Using ProcExit to Complete a Procedure or
Sub-Procedure 211
Procedure Markup Examples 211

Starting the Procedure 211
Describing the Entry Point for the Procedure 211
Entering the Procedure Steps 211
Exiting the Procedure. 212

Controlling Procedure Output Styles 212

Chapter 23. Creating parts catalog lists. . . . 215
Assembly 1: Bicycle 216
Markup source 216
Creating the heading for a component list 216
Developing the component list 217

Including comments in the component list . . . 218
Cross-referencing part assemblies and component
lists 218
Assembly 2: Wheel, front 219
Keeping track of assemblies and parts 219

Getting an assembly list 219
Getting a part number index 220

Part 2. Using IBMIDDoc Markup 17

||
|
||

||

||

|
||
||
||
||

18 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 2. Using basic IBMIDDoc elements to create a
document

This section describes the placement and use of divisions and other division-like
elements in your document. The elements discussed in this chapter include the
following:
v Body
v D, division
v P, paragraph
v Title
v TitleBlk, title block
v Part

IBMIDDoc Document Structure
The IBMIDDoc DTD defines the rules of structure and containment for all
IBMIDDoc elements, and the attributes that can be used on these elements.

At the document level, IBMIDDoc documents can contain the following:
v Prolog element
v FrontM (front matter) element
v Body element
v BackM (back matter) element

IBMIDDoc

Prolog

Front matter

Body

Back matter

Title
Properties

Table of contents
Preface

Chapters

Glossary
Index

Not all of these elements are required in an IBMIDDoc document. When you use
an SGML editor, the editor interprets the DTD rules for the correct structure and
containment rules for IBMIDDoc, and enforces these rules when you are authoring.

As long as the rules (sometimes called context checking) are active, an SGML
editor will only present the IBMIDDoc elements that are valid in the context in
which you are editing. An SGML editor will not, for example, allow you to insert a
P element directly within another P element.

© Copyright IBM Corp. 1992, 2001 19

While there are many aspects to creating an IBMIDDoc document, let’s first focus
on creating a simple one.

Creating an IBMIDDoc Document
Within the IBMIDDoc element, a IBMIDDoc document must have a Body element,
which must contain a division or division-like element. We’ll look at these basic
elements now, and look at other IBMIDDoc elements in the chapters that follow.

Creating the body of your document
The Body element contains the body of the document. This is where you put the
chapters for your document. The body can contain any number of D, LERS,
MSGList, Proc, and Part elements. In the example that follows, the Body element
contains two division (D) elements. Because the divisions are all contained at the
same level, each is a chapter (so this is a simple document with two chapters).
<ibmiddoc>
<body>
<d>
<dprolog><titleblk>
<title>My Little Chapter</title>
</titleblk></dprolog>
<dbody>
<p>Here’s the beginning of my chapter.</p>
</dbody></d>
<d>
<dprolog><titleblk>
<title>Another little chapter</title>
</titleblk></dprolog>
<dbody>
<p>It was a dark and stormy night...</p>
</dbody></d>
</body>
</ibmiddoc>

Creating divisions (D element)
Most often, you will insert a D element after the Body element in your document.
The first division in the document body is the first chapter. This is analogous to an
<H1> tag in HTML. When you insert a D element, most SGML editors
automatically insert the required sub-elements for the division. In IBMIDDoc, the
elements that must be included in a D element are:

DProlog
The DProlog can contain a number of elements, but the only required
elements are TitleBlk and Title, which contain the heading text for that
division. Stitle is an optional element that indicates a shorted title. For
first-level headings, use this Stitle to shorten the running foot. Subtitle is
another optional element that does nothing in a book; it’s element is
defined, but it is not used.

DBody
The DBody element contains the text elements that comprise the content of
the division; that is, the paragraphs, lists, and your golden prose.

When you create a first-level division in the document hierarchy, the text contained
in the Title element is displayed as the chapter title. For example, this shows a
sample chapter, first-level division:
<ibmiddoc>
<body>
<d>

20 ID Workbench: IBMIDDoc User’s Guide and Reference

<dprolog><titleblk>
<title>My Little Chapter</title>
</titleblk></dprolog>
<dbody>
<p>Here’s the beginning of my chapter.</p>
</dbody></d>
</body>
</ibmiddoc>

Creating paragraphs (P element)
The element you will use most often is P for Paragraph. The P element contains a
paragraph, that is, a block of text representing a single idea. A paragraph can
contain other elements such as lists. Paragraphs should contain a single idea, and
can contain many other elements. In IBMIDDoc, paragraphs cannot directly contain
other paragraphs, but they can contain other elements that contain paragraphs.

Here’s a sample of a paragraph, in case you mised the examples shown in
previous topics:
<ibmiddoc>
<body>
<d>
<dprolog><titleblk>
<title>My Little Chapter</title>
</titleblk></dprolog>
<dbody>
<p>Here’s the beginning of my chapter.</p>
</dbody></d>
</body>
</ibmiddoc>

When creating paragraphs, keep in mind that each paragraph (like many
IBMIDDoc elements) is a container. If you do not wish another element (a list or
figure for example) to be contained by the current paragraph, you must enter that
element after the end tag for the paragraph.

Deciding which elements to use
There is often more than one permissible way to markup the document content.
However, with IBMIDDoc, the intent of the markup is important. For example, you
could mark up a list as an unordered list:
v LI elements

List items contain individual list items.
v LIBlk elements

List item blocks contain logical groupings of list items.
v Bridge elements

Bridge elements bridge two concepts.

Here’s its markup:

LI elements
<p>List items contain individual
list items.</p>
LIBlk elements
<p>List item blocks contain logical
groupings of list items.</p>
Bridge elements
<p>Bridge elements bridge two
concepts.</p>

Chapter 2. Using basic IBMIDDoc elements to create a document 21

On the other hand, you could markup up the same information using a definition
list:

LI elements
List items contain individual list items.

LIBLK elements
List item blocks contain logical groupings of list items.

BRIDGE elements
BRIDGE elements bridge two concepts.

Here’s its markup:
<dl>
<dlentry><term>LI elementS</term>
<defn>List items contain individual list items.</defn>
</dlentry>
<dlentry><term>LIBLK elements</term>
<defn>List item blocks contain logical groupings of
list items.</defn>
</dlentry>
<dlentry><term>BRIDGE elements</term>
<defn>BRIDGE elements bridge two concepts.</defn>
</dlentry>
</dl>

While either way is acceptable and valid IBMIDDoc markup, consistency in
deciding how to mark up your information is important to the successful
exploitation of IBMIDDoc markup. You need to mark up information according to
its intent. Decide which IBMIDDoc markup best describes the type of information
you are containing, and use that markup consistently in your information.

IBMIDDoc allows you to separate the markup from the final presentation. You
should not mark up information so that it will “look good” a certain way in:
v a PostScript or PDF file
v an XHTML or HTML set of files
v an IPF panel

If you are consistent in how you mark up your information, the resulting
formatted output, for any target medium, will be treated consistently in that
medium. This consistency contributes to our customer’s satisfaction with the
information.

Creating a heading hierarchy
You create subheadings in your document by creating a heading hierarchy. For
example, a division may be a chapter title (1st-level heading), a topic (2nd-level
heading), a subtopic (3rd-level heading), and so forth. Nested divisions define this
division hierarchy. Nested divisions are divisions that are contained within a
division. The level of the headings produced is determined by the nesting. At this
point in the book, the previous division is a third-level division.

Here’s the markup for two nested divisions; the bold shows the second-level
division:
<d>
<dprolog><titleblk>
<title>My Little Chapter</title>
</titleblk></dprolog>
<dbody>
<p>Here’s the beginning of my chapter.</p>

22 ID Workbench: IBMIDDoc User’s Guide and Reference

<d>
<dprolog><titleblk>
<title>My teeny topic</title>
</titleblk></dprolog>
<dbody>
<p>Here’s the beginning of a topic.</p>
</dbody></d>
</dbody></d>

If you need more the 6 levels of divisions, an editor might say you have
“heading-itis”.

Migration Note: All other contained divisions will be treated like subheadings are
treated in BookMaster. However, unlike headings in BookMaster, IBMIDDoc
divisions are automatically arranged according to their hierarchical position in the
markup. Each contained division is handled at a lower heading level, so to speak.

Division prologs
After you enter the title, you can enter a number of optional elements in the
division prolog, including:
v Approvers
v Authors
v BibEntryDefs, bibliography entry definitions
v CopyrDefs, copyright definitions
v CritDates, critical dates
v GlDefs, glossary definitions
v IBMProdInfo, IBM® product information
v IdxDefs, Index definitions
v LDescs, Link descriptions
v Owners
v ProdInfo, product informaiton
v PropDefs, property definitions
v QualifDefs, qualification definitions
v RevDefs, revision definitions

When you use these items in a division prolog; they take effect on that division
and any nested divisions. To have these items affect the whole document, put them
in the prolog. Here’s a sample of a revision definition that affects this division; not
the whole document:
<d>
<dprolog><titleblk>
<title>My Little Chapter</title>
</titleblk>
<revdefs>
<rev id="v3r4" ident="use">
<date>June 5th</date>
<desc>Something happened...</desc>
</rev>
</revdefs></dprolog>
<dbody>
<p>Here’s the beginning of my chapter.</p>
<p rev="v3r4">Something that changed on June 5th.
</p>
</dbody></d>

Chapter 2. Using basic IBMIDDoc elements to create a document 23

Division introductions
You can introduce the division’s content with the DIntro element. This element is
optional; you should usually have your first paragraph of the DBody introduce the
division’s content. Anyway, Dintro follows the DProlog element. The next example
shows the DIntro element.
<d>
<dprolog><titleblk>
<title>My Little Chapter</title>
</titleblk></dprolog>
<dintro>
<p>My little division introductory sentence.</p>
</dintro>
<dbody>
<p>Here’s the beginning of my chapter.</p>

Partial table of contents
Division introductions can also create a partial table of contents for their
corresponding chapter or part. In the part or division’s introduction (DINTRO) tag,
you code a table of contents (TOC) tag. This causes a partial table of contents to be
generated at that point.

Here’s the sample coding for a PTOC for a chapter:
<d>
<dprolog><titleblk>
<title>Sample chapter heading</title>
</titleblk></dprolog>
<dintro>
<toc><gendtitle></toc>
</dintro><dbody>
<d>
<dprolog><titleblk>
<title>Next heading</title>
</titleblk></dprolog>
<dbody></dbody></d>
<d>
<dprolog><titleblk>
<title>Another heading</title>
</titleblk></dprolog>
<dbody></dbody></d>
</dbody></d>

The partial table of contents lists the subordinate headings for the corresponding
part or chapter.

Using parts to organize your chapters
IBMIDDoc includes the Part element, which you can use to divide your document
into logical parts. This book has many divisions, but contains three parts (plus the
appendixes). Parts do not affect the hierarchical ordering and numbering of
divisions.

This example shows a sample book with 2 parts and 4 chapters:
<ibmiddoc>
<body>
<part>
<dprolog><titleblk>
<title>Introduction</title>
</titleblk></dprolog>
<dbody>
<d>

24 ID Workbench: IBMIDDoc User’s Guide and Reference

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

<dprolog><titleblk>
<title>Salads of our neighborhood</title>
</titleblk></dprolog>
<dbody></dbody></d>
<d>
<dprolog><titleblk>
<title>Salads of the world</title>
</titleblk></dprolog>
<dbody></dbody></d>
</dbody></part>
<part>
<dprolog><titleblk>
<title>Recipies</title>
</titleblk></dprolog>
<dbody>
<d>
<dprolog><titleblk>
<title>Egg salad</title>
</titleblk></dprolog>
<dbody></dbody></d>
<d>
<dprolog><titleblk>
<title>Tuna fish salad</title>
</titleblk></dprolog>
<dbody></dbody></d>
</dbody></part></body>
</ibmiddoc>

Starting page number control
The STARTPAGE (starting page) attribute allows you to assign the beginning page
number to a section. You use that attribute on a division tag. It can be used with
all first-level division tags. The STARTPAGE attribute value can be any positive
integer, starting with 1. For example, if you use the following markup:
<d startpage="101"><dprolog><titleblk><title>Help information
...
<d startpage="201"><dprolog><titleblk><title>Safety information

the first chapter “Help information” starts on page 101, and the next chapter
“Safety information” starts on page 201. Do not use the STARTPAGE attribute on
the tags to create duplicate page numbers. Doing so can cause the wrong retrieval
subject text to be associated with the page.

This can be used with the CHAPTERNUM attribute. For example, you could start
formatting a document at chapter 21, page 83 with the following:
<d chapternum=21 startpage=83>

Chapter number control
You can use the CHAPTERNUM attribute on any first-level division tag to assign
the chapter number. For example, this markup:
<d chapternum="13"><dprolog><titleblk><title>End of the line

would cause the chapter number for the “End of the line” chapter to be thirteen. In
an appendix, the number becomes the corresponding letter. A ChapterNum of 4
would be appendix D.

This can be used with the STARTPAGE attribute. For example, you could start
formatting a document at chapter 21, page 83 with the following:
<d chapternum=21 startpage=83>

Chapter 2. Using basic IBMIDDoc elements to create a document 25

|

|
|
|
|

|
|
|

|
|
|
|

|
|

|

|
|

|
|

|

|
|
|

|
|

|

For Options-by-IBM use: For example, if the French section needed to start on
1-37, the translator would create his section as follows:
<d chapternum=1 startpage=35>
<dprolog><titleblk>
<title>The title for this section -- goes in running foot</title>
</titleblk></dprolog>
<dbody>
<!-- The following bit skips two pages to start on page 37 -->
<p>&rbl;</p>
<?idd:page>
<p>&rbl;</p>
<?idd:page>
<!-- End of page skipping -->
<d>
<dprolog><titleblk>
<title>Translated title</title>
</titleblk></dprolog>
<dbody>
<p>Translated information</p>
.
.
.
</dbody></d>
</dbody></d>

If the translated section is supposed to start on an even page, the STARTPAGE
would be one less than the first desired page, and just one blank page added
before the level-2 heading section. When composing, you can specify /SHEET:2
(for starting on an even page) or /SHEET:3 (for starting on an odd page) to create
the PostScript file without the dummy starting page. The dummy page could also
be stripped when combining the files.

Changing column layouts
Normally, your document’s style determines the number of columns, also called
the layout, of your document. You can, if you want, change from one column
layout to another.

You can override this layout for your document by using the layout attribute on
the IBMIDDoc tag.

You can also use the layout attribute on Division tags (and other major headings
such as Preface) to override the layout style for that chapter, appendix, or magor
heading.

You can pick from the following values; not all tags support all these values:

LAYOUT=Default-Layout | OneCol | TwoCol | ThreeCol
Specifies the column-style for this portion of the book.

Default-Layout
The section uses the default layout for the document style.

OneCol
The entries format across the entire page.

TwoCol
The entries format in two columns.

ThreeCol
The entries format in three columns.

26 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|

|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

Creating an information architecture
You can use the Metadata tag to classify the type, audience, and task information
for a topic. This helps search programs and other programs find, filter, or select
information. This is passed through to the XHTML output as metadata keywords.

For example, here is an example of a division that has a Metadata tag; the tag
classifies the information:
<d id="feederinst">
<dprolog><titleblk>
<title>Installing your Fruit-Bat Feeder</title>
</titleblk>
<metadata type="task" job="installing"
audience="user" experiencelevel="general">
</dprolog>
...

Subordinate topics inherit the metadata classifications from their parent topics.

See “MetaData (information architecture)” on page 343 for a description of the tag
and the attributes allowed.

See “Architected online information and Information Centers (vs books)” for tips
on creating architected information.

Architected online information and Information Centers (vs
books)

Notes from an XML workgroup conference call; presented Sept. 4/2001 by Leigh
Davidson

Here are tips for creating architected online information; these are not books. The
information here was usde by several sites that create Information Centers.
v The basic unit of information is a topic, not chapter or section. A topic is a

division in IBMIDDoc.
v Organization: The information is a hyperlinked web, not a linear presentation.
v Entry points to the information includes the following:

– Search hit list
– Links from other topics
– Hierarchical navigation frame
– Any combination/permutation of these techniques

What is a topic?
v Granular piece of information
v Probably “information-typed” (more on this below)
v Some examples:

– One or two paragraphs to explain a concept
– A procedure consisting of a half-dozen steps
– The syntax of a single command
– Description of a single user interfacecontrol

v Should usually fit into one screen with no scrolling

Information types:

Chapter 2. Using basic IBMIDDoc elements to create a document 27

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|

|
|

|

|

|
|

|
|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

v Refer to UA Central: http://ua.raleigh.ibm.com/ua
v Categories of information
v Examples:

– Task information provides procedural details such as step-by-step
instructions.

– Concept information provides background information that users need to
know before they can successfully work with a product or interface.

– Reference information provides quick access to facts, but no explanation of
concepts or procedures. It is usually assumed that users already understand
the base technology.

v Other possible types or subtypes: context-sensitive help, sample, tutorial,
troubleshooting, and so forth.

v Fundamental principle: separate information according to type

Recommended approach:
v Write task-oriented information; not function-oriented information
v Use task analysis to organize your task list
v Write task topics
v As you go, identify prerequisite concepts and other supporting information

(reference, tutorials, samples, glossary entries, etc.)
v Design the linking structure
v Never stop thinking about your users:

– What tasks will they want or need to perform?
– What does “completeness” mean to them? Value their time; don’t bog them

down with too much information.
– What might they want or need to know next? Don’t add your list of related

links as an afterthought.

Challenges:
v Write less.
v Retrievability
v Consistency - organization, linking techniques, and chunking should all follow

recognizable patterns (as well as style and tone)

28 ID Workbench: IBMIDDoc User’s Guide and Reference

|

|

|

|
|

|
|

|
|
|

|
|

|

|

|

|

|

|
|

|

|

|

|
|

|
|

|

|

|

|
|

http://ua.raleigh.ibm.com/ua

Chapter 3. All kinds of lists

Several types of list elements are explained in this chapter, including:
v UL, unordered (see “Unordered lists”) and simple (see “Simple lists” on page 30)
v OL, ordered (see “Ordered lists” on page 30)
v DL, definition (see “Definition lists” on page 32)
v ParmL, parameter (see “Parameter lists” on page 34)
v MsgList, message (see “Message and code lists” on page 38)

In addition, we discuss other things that are often used in lists:
1. List items can be compacted (see “Compacting lists” on page 36)
2. LiBlk, list item block; these allow you to group related list items into

information blocks (see “Grouping list items” on page 37)
3. Bridges; these are for transitions between list items (see “Separating or bridging

list items” on page 38)

Unordered lists
Unordered lists are used when the items in the list are fairly long, maybe even
many paragraphs, but you don’t want to imply any particular sequence (as you
would with an ordered list). The default appearance for an unordered list is as a
bulleted list. Here’s an example of an unordered list:
v This is an item in an unordered list. To separate it from other items in the list,

the formatter puts a bullet beside it.
v The paragraph that is contained in the LI element is part of the list item which

contains it.
This is the contained paragraph.

v This is a separate list item in our unordered list.

Here is the IBMIDDoc markup for the unordered list in the previous example.

This is an item in an unordered list. To separate
it from other items in the list, the formatter puts
a bullet beside it.
The paragraph that is contained in the LI element
is part of the list item which contains it. <p>This
is the contained paragraph.</p>
This is a separate list item in our unordered
list.

Many IBMIDDoc elements can contain lists. If you do not want the list to be
contained in the element that precedes it, be sure to end the preceding element
before starting the list element.

The example that follows illustrates an unordered list that is not contained by the
paragraph element that immediately precedes it.
<p>
Text of paragraph.
</p>

Abbrev

© Copyright IBM Corp. 1992, 2001 29

Abstract
Bibliog
Appendix
Glossary

You can also use ULTYPE=CHECKOFF on an unordered list to create an
unordered checkoff list. For example, here’s an unordered, checkoff list:
__ v Abbrev
__ v Abstract
__ v Bibliog
__ v Appendix
__ v Glossary

Simple lists
Simple lists are just what you’d think they are; they have no dingbat.1 For
example, here’s a simple list:

bread
butter
cheese
bananas

A simple list starts with an unordered list, then you set the style attribute to
″simple″:
<ul ultype="simple">
bread
butter
cheese
bananas

You can also use ULTYPE=SimpleCheckoff on an unordered list to create a simple
checkoff list. For example, here’s a simple, checkoff list:
__ bread
__ butter
__ cheese
__ bananas

Ordered lists
An ordered list contains information that must be listed in a specific sequence. This
is often a list of steps which must be performed in a certain order, such as a recipe
or tearing apart a PC. An ordered list looks like this:
1. Cream butter and sugar together until fluffy.
2. Beat in egg yolks one at a time.
3. Add nutmeg, cinnamon, and vanilla, and mix thoroughly. The batter should be

smooth and glossy and stream off the spoon in ribbons.
4. Fold in beaten egg whites.

1. dingbat. (1) In printing: Any typographical ornament not further specified. (2) In old TV Shows: What Archie Bunker would call
his wife, Edith.

30 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|

|

|

|

|

|

|
|

|

|

|

|

|
|

|
|
|
|
|
|

|
|

|

|

|

|

Do not overmix; the batter should be light and fluffy.

(I’m getting hungry.) The corresponding IBMIDDoc markup is as follows:

Cream butter and sugar together until fluffy.
Beat in egg yolks one at a time.
Add nutmeg, cinnamon, and vanilla, and mix thoroughly.
The batter should be smooth and glossy and stream
off the spoon in ribbons.
Fold in beaten egg whites.
<p>Do not overmix; the batter should be light and fluffy.</p>

Checkoff ordered lists
Sometimes when describing procedures, you need to give your reader a checkoff
space as an aid to ensure that they perform every step. The checkoff list is an
ordered list; you get it adding the OLTYPE=CHECKOFF attribute to your OL tag.
For example:
__ 1. Verify that air pressure is in normal range.
__ 2. Verify that fuel level is in safe zone.
__ 3. Verify that water valve is in open position.

Here’s the coding:
<ol oltype="checkoff">
Verify that air pressure is in normal range.
Verify that fuel level is in safe zone.
Verify that water valve is in open position.

Customer setup lists
Customer setup lists use the word “Step” in the list item, together with the
number. These lists also use the OLTYPE attribute on the ordered list tag (OL),
with a value of STEP. For example:
Step 1. Open the carton.
Step 2. Remove the top layer of packing material.
Step 3. Take the stuff out of the box.
Step 4. Give the box to the kids to play with, while you proceed with the next

step.

Here’s its coding:
<ol oltype="step">
Open the carton.
Remove the top layer of packing material.
Take the stuff out of the box.
Give the box to the kids to play with,
while you proceed with the next step.

You can also have checkoff-setup lists. These lists also use the OLTYPE attribute
with a value of CHECKOFFSTEP. For example:
__ Step 1. Fold along dotted line C.
__ Step 2. Insert tab B into slot A.
__ Step 3. Throw these instructions out the window.

Here’s its coding:

Chapter 3. All kinds of lists 31

<ol oltype="checkoffstep">
Fold along dotted line C.
Insert tab B into slot A.
Throw these instructions out the window.

Continuing ordered lists
Sometimes, you may have lists that need to continue around table cells or even
from division to division. The ordered list (OL) tag has the attributes SEQ, ID, and
SEQID to allow you to have an ordered list continue from where a previous list
left off. For example, here’s a continued checkoff list :

Formatted Example

__ 1. Open the carton.
__ 2. Remove the top layer of packing material.
__ 3. Take the stuff out of the box.

The first list is ended — honest, this is not a bridge. The list then continues:
__ 4. Fold along dotted line C.
__ 5. Insert tab B into slot A.

End of Formatted Example

Here’s its markup:
<ol seq="start" oltype="checkoff" id="swingsets">
Open the carton.
Remove the top layer of packing material.
Take the stuff out of the box.

<p>The first list is ended — honest, this is
not a bridge. The list then continues:</p>
<ol seqid="swingsets" seq="end" oltype="checkoff">
Fold along dotted line C.
Insert tab B into slot A.

Definition lists
Definition lists are a particular kind of list you can use when you want to pair a
term or phrase with a description of it.

Here’s a formatted example of a definition list:

gopher
A burrowing rodent that feeds on roots of plants.

lawn Gopher highway.

Can be identified by dinner-plate-sized mounds of dirt where grass used to
be.

agapanthus
Lovely flowering plant, the roots of which are the preferred food of
gophers.

If your flourishing agapanthus suddenly keels over, it means a gopher has
had a feast.

32 ID Workbench: IBMIDDoc User’s Guide and Reference

Here’s its coding:
<dl>
<dlentry><term>gopher</term>
<defn>A burrowing rodent that feeds on roots of plants.
</defn>
</dlentry>
<dlentry><term>lawn</term>
<defn>Gopher highway. <p>Can be identified by dinner-plate-sized
mounds of dirt where grass used to be.</p></defn>
</dlentry>
<dlentry><term>agapanthus</term>
<defn>Lovely flowering plant, the roots of which are
the preferred food of gophers. <p>If your flourishing
agapanthus suddenly keels over, it means a gopher
has had a feast.</p></defn>
</dlentry>
</dl>

You can use the TERMWIDTH attribute to determine the indentation size of the
definition list. The valid choices are: small (.5 inch, the default), medium (1 inch),
large (2 inches), and 1 (1-character) and 2 (2-characters).

Small Here’s a sample of the small setting.

Medium Here’s a sample of the medium setting.

Large Here’s a sample of the large setting.

1 Here’s a sample of the 1-character setting.

2 Here’s a sample of the 2-character setting.

Definition lists can also have headings; for example:

Setting Description

Low A good setting for simmering soups.

Medium
After the water has boiled, use this setting for cooking the spaghetti.

High Use this setting to get water boiling fast.

This is done with the TermHd and DefnHd tags. Here’s the source:
<dl><termhd>Setting</termhd>
<defnhd>Description</defnhd>
<dlentry><term>Low</term>
<defn>A good setting for simmering soups.</defn>
</dlentry>
<dlentry><term>Medium</term>
<defn>After the water has boiled, use this setting
for cooking the spaghetti.</defn>
</dlentry>
<dlentry><term>High</term>
<defn>Use this setting to get water boiling fast.
</defn>
</dlentry>
</dl>

If you want to change your list heading and term style, you can use the
TERMSTYLE and HEADSTYLE attributes to set a different highlight. For example:

Animal
Description

Cat A house pet that purrs when happy.

Chapter 3. All kinds of lists 33

|
|

|
|

||

Dog A house pet that wags its tail when happy.

Here’s the source:
<dl termstyle="bold-italic-underlined" headstyle="bold-italic-h">
<termhd>Animal</termhd>
<defnhd>Description</defnhd>
<dlentry><term>Cat</term>
<defn>A house pet that purrs when happy.</defn>
</dlentry>
<dlentry><term>Dog</term>
<defn>A house pet that wags its tail when happy.</defn>
</dlentry>
</dl>

You can also group terms together using the DLBlk (definition block) tag. You can
use DLBlk to create logical groups within a long definition list, or use two DLBlks
with a Bridge between them to highlight some relationship between groups of
entries. For example:

Cat A house pet that purrs when happy.

Dog A house pet that wags its tail when happy.

Fish A house pet with scales that swims.

Turtle A house pet with scales that swims and walks slowly.

Here’s the source:
<dl>
<dlblk>
<dlentry><term>Cat</term>
<defn>A house pet
that purrs when happy.</defn></dlentry>
<dlentry><term>Dog</term>
<defn>A house pet that wags
its tail when happy.</defn></dlentry>
</dlblk>
<dlblk>
<dlentry><term>Fish</term>
<defn>A house pet
with scales that swims.</defn></dlentry>
<dlentry><term>Turtle</term>
<defn>A house pet with
scales that swims and walks slowly.</defn></dlentry>
</dlblk>
</dl>

Parameter lists
Parameter lists are used in programming documentation when you have to explain
the elements of the programming syntax. Here’s an example of a parameter list:

KEYWORD = DEFAULT|VALUE
This is the description of the parameter above. It could go on for many pages,
if necessary. (Of course, that means we have a very complicated parameter to
describe.)

KEYWORD2 = {ABC|XYZ}
[KEYWORD3 = GGG]

This description applies to the two parameters above. Often in examples of
programming syntax, it is necessary to use symbols for the brackets and
braces.

34 ID Workbench: IBMIDDoc User’s Guide and Reference

||

|

|
|
|
|
|
|
|
|
|
|

KEYWORD3
Here’s a term that uses the syntax phrase (SYNPH); it allows you to use the
same items as a syntax diagram.

Parameter lists are similar to definition lists. They involve three elements: ParmL
(parameter list), Term, and Defn (definition). Term and Defn are used with other
elements for the same function, including glossary and definition lists, among
others. When doing parameter lists for programming syntax, you will also need to
use these elements:
v PK (programming keyword)
v PV (programming variable)
v SYNPH (syntax phrase), with KWD (keyword), VAR (variable), and DELIM

(delimiter)

The Term elements assume that what you are entering is a required or optional
programming keyword. For a default programming keyword or programming
variable, edit the attributes for these PK or PV elements, and set the OPTREQ
attribute value to DEF.

The IBMIDDoc markup for the example parameter list is shown in the example
that follows.
<parml>
<parm><term>KEYWORD = <pk optreq="DEF">DEFAULT</pk>|VALUE
</term>
<defn>This is the description of the parameter above.
It could go on for many pages, if necessary. (Of course,
that means we have a very complicated parameter to
describe.)</defn>
</parm>
<parm><term>KEYWORD2 = &lbrc;ABC|XYZ&rbrc;</term>
<term>&lbrk;KEYWORD3 = GGG&rbrk;</term>
<defn>This description applies to the two parameters
above. Often in examples of programming syntax, it
is necessary to use symbols for the brackets and braces.
</defn>
</parm>
<parm><term><synph><kwd>KEYWORD3</kwd></synph></term>
<defn>Here’s a term that uses the syntax phrase (SYNPH);
it allows you to use the same items as a syntax diagram.
</defn>
</parm>
</parml>

You can use the TERMWIDTH attribute to determine the indentation size of the
parameter list. The valid choices are: small, medium, and large. You can use the
TERMWIDTH attribute to determine the indentation size of the definition list. The
valid choices are: small (.25 inch, the default), medium (.5 inch), large (1 inch), and
1 (1-character), and 2 (2-character).

Small
Here’s a sample of the small setting.

Medium
Here’s a sample of the medium setting.

Large Here’s a sample of the large setting.

1 Here’s a sample of the 1-character setting.

2 Here’s a sample of the 2-character setting.

Chapter 3. All kinds of lists 35

If you want to change your list heading and term styles , you can use the
TERMSTYLE and HEADSTYLE attributes to set a different highlight. For example:

Animal
Description

Cat
A house pet that purrs when happy.

Dog
A house pet that wags its tail when happy.

Here’s the source:
<parml termstyle="bold-italic" headstyle="bold-italic-underlined-h">
<termhd>Animal</termhd>
<defnhd>Description</defnhd>
<parm><term>Cat</term>
<defn>A house pet that purrs when happy.</defn>
</parm>
<parm><term>Dog</term>
<defn>A house pet that wags its tail when happy.</defn>
</parm>
</parml>

Compacting lists
Compact specifies that you do not want a blank line between each list item.
Compact applies only to the space between list items and not to any space
between paragraphs within a list item. Compact lists are only available in
Xyvision, BookMaster, HTML, and IPF. Documents written in Xyvision
automatically have a half a line space.

To specify a list as compact, use the LineSpace attribute. For example:
<ul linespace="compact">

The lists you can compact are: DL, OL, UL, GL, Msglist, Parml, and Notelist.

Scaling list dingbats

dingbat. (1) A small object, such as a stick or stone, suitable for hurling at
another object. (2) Any unspecified gadget or other article. (3) Printing Any
typographical ornament not further specified. (4) Archie Bunker’s “pet” name
for his wife, the lovable Edith Bunker, from the 1970s TV series All in the
Family.

We are, of course, interested only in the third of these definitions, fascinating as the
others are to contemplate.

For our purposes, given an unordered list
v that looks
v like this

the dingbat is the v that signals each list item. In an ordered list
1. that looks
2. like this

our dingbats are “1” and “2” — the numbers.

36 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|

|

|

|

|

|

|

|

For unordered and ordered lists, you can specify a scaling factor (with DBSCALE).
With the scaling factor, you can make the dingbat bigger or smaller. We can make
each list fancier:

1. that looks

2. like this

The dbscale is 200 — twice the size of normal:
<ol dbscalepct="200">
that looks
like this

And for the unordered list:
v that looks
v like this

The dbscale is 50 — half the size of normal:
<ul dbscalepct="50">
that looks
like this

The dbscale only applies to the list on which is it specified. It does not apply or
inherit from outer lists to inner lists.

Grouping list items
You can use list item block (LIBlk, DLBlk, and ParmBlk) elements to contain
groups of similar items. LIBlk is for list items, DLBlk is definition list items, and
ParmBlk is for parameter list items. In the example that follows, hardware and
software are grouped into blocks of list items.

For example:
1. 1 GIG SCSI-2 Hard Disk
2. 32 MB RAM
3. 128-Bit 8MB VRAM Video
4. 21-Inch Monitor
5. Great Word Processor
6. Best Multimedia App
7. Voice Mail

Here’s its markup:

<liblk>
1 GIG SCSI-2 Hard Disk
32 MB RAM
128-Bit 8MB VRAM Video
21-Inch Monitor
</liblk>
<liblk>
Great Word Processor
Best Multimedia App
Voice Mail
</liblk>

Chapter 3. All kinds of lists 37

|
|
|

|

|

|

|
|
|
|

|

|

|

|

|
|
|
|

|
|

Processing Note
For Xyvision processing, if you want to have all the text in the LIBLK kept on
the same page, use the attribute style="xpp:(keep)". Be cautious when using
this feature. If the text does not fit on a page, you may get a formatting error.
Remove the style or shorten the content to have the pages print correctly.

Separating or bridging list items
Sometimes in an ordered list you want to break the list for some explanatory
material and then resume the numbering where you left off. You do this with the
Bridge element.

Suppose you wanted to do this:
1. Saute the shallots and chopped mushrooms until the shallots are tender and the

liquid from the mushrooms has cooked away.
2. Brown the sausage and add to the mushroom mixture.

The above may be prepared several hours in advance and refrigerated. Then, 30
minutes before serving time, finish the dish
3. Mix one can of tomato sauce with the mushroom and sausage mixture and

bring to a slow simmer.
4. Add the heavy cream and immediately pour into a casserole.
5. Pop into 350-degree oven for 15 minutes.

Here’s its markup:

Saute the shallots and chopped mushrooms until
the shallots are tender and the liquid from the mushrooms
has cooked away.
Brown the sausage and add to the mushroom mixture.

<bridge><p>The above may be prepared several hours in
advance and refrigerated. Then, 30 minutes before
serving time, finish the dish</p></bridge>
Mix one can of tomato sauce with the mushroom
and sausage mixture and bring to a slow simmer.

Add the heavy cream and immediately pour into
a casserole.
Pop into 350-degree oven for 15 minutes.

Message and code lists
If you don’t have any messages or codes to worry about, just skip this section and
go on.

Both message and code lists use the MsgList element. A code list documents
numeric values that have specific meaning, for example error codes. A message list
documents text messages, which may each have a message number. Each entry in
a message or code list is contained in a MSG element.

For the code list, use the Code element for the numeric value. For the message list,
use a MsgNum and MsgText element. If the message has no number, use just the

38 ID Workbench: IBMIDDoc User’s Guide and Reference

MsgText element. If the message text has a variable in it, you use the MV element
for the message variable. Use the MV element in both the message text and in any
descriptive text.

After you have entered the code or the message number and the text, you use the
MsgItem element to contain the information about the message, according to the
class of the information. IBMIDDoc has a number of predefined classes of message
item information. These pre-defined classes have a generated message subheading.
These classes are:

Class Default subheading text
author-defined Author defined class using the MsgItemDef element (currently not

supported by the output formatters).
DEST Destination
XPL or EXPLANATION

Explanation
MODULE Module
NUMBYTES Number of Error Bytes
ORESP Operator Response
PRESP Programmer Response
PROBD Problem Determination
SEVERITY Severity
SPRESP System Programmer Response
SYSACT System Action
URESP User Response

This is a sample message list:

DJI7832E This message is issued when no data set
of the name file-name is found.

Explanation: The processor could not locate the data
set named file-name.

Severity: 8

Problem Determination: You would appear to have a
problem.

User Response: Search high and low for the data set.

This message has no number

Explanation: This message has no message number;
only text. These are really insidious because it makes
finding the message very hard.

Here is the markup:
<msglist>
<msg>
<msgnum>DJI7832E</msgnum>
<msgtext>This message is issued when no data set of
the name <mv>file-name</mv> is found.</msgtext>
<msgitem class="xpl">
<p>The processor could not locate the data set named <mv>
file-name</mv>.</p>
</msgitem>
<msgitem class="severity">
<p>8</p>
</msgitem>
<msgitem class="probd">
<p>You would appear to have a problem.</p>
</msgitem>
<msgitem class="uresp">
<p>Search high and low for the data set.</p>
</msgitem>
</msg>
<msg>
<msgtext>This message has no number</msgtext>
<msgitem class="xpl">

Chapter 3. All kinds of lists 39

<p>This message has no message number; only text.
These are really insidious because it makes finding
the message very hard.</p>
</msgitem>
</msg>
</msglist>

Code lists are just the same, except that you use the Code element instead of MsgNum and MsgText.
Code lists still use MsgItem elements. Here is a short code list:

123

Explanation: This is a simple code.

Here’s its coding:
<msglist>
<msg><code>123</code>
<msgitem class="xpl">
<p>This is a simple code.</p>
</msgitem>
</msg>
</msglist>

Overriding the message list subheadings
The text generated in association with MsgItem classes (XPL, URESP, and the rest)
is not always suitable to every type of document containing these lists. For
instance, you might want to use the subheading “Cause” or “Reason” instead of
“Explanation”, and “Recovery” instead of “User Response”. Some people prefer
“Severity Code” to “Severity”. Some places don’t have system programmers, but
do have administrators or supervisors.

To meet all of these requirements and still preserve some order in the chaos, the
MsgItemDef element can be used to override the default text that corresponds to
the MsgItem classes. With these attributes you can specify the text that you want
printed when the tag is used.

Here is a sample message list with changed headings. The heading are overridden
for this list only; because the MsgItemDef tags are within the message list.

A12 Closet full: Insufficient storage to
proceed.

Why: There are too many clothes in the closet.

What to do: Remove some clothes from the closet and
restart.

Here is its coding:
<msglist>
<msgitemdef classname="xpl"><title>Why</title></msgitemdef>
<msgitemdef classname="uresp"><title>What to do</title>
</msgitemdef>
<msg>
<msgnum>A12</msgnum>
<msgtext>Closet full: Insufficient storage to proceed.
</msgtext>
<msgitem class="xpl">
<p>There are too many clothes in the closet.</p>
</msgitem>
<msgitem class="uresp">
<p>Remove some clothes from the closet and restart.

40 ID Workbench: IBMIDDoc User’s Guide and Reference

</p>
</msgitem>
</msg>
</msglist>

Note that when you use the class attribute, you should pick a value that is close in intent to the original
meaning of the tag. That is, if you want to print “Reason”, use the XPL class; don’t use one — for
instance, NUMBYTES — that is totally unrelated to the text you are printing. Do this because you may
have future applications for this text, such as extracting from a text data base all messages and their
explanations. If you don’t preserve the meaning of these tags, these future applications won’t be possible.

To globally override the message headings, use the MsgItemDef tags in the document prolog. For
example:
<prolog>
...
<propdefs>
<msgitemdef classname="xpl"><title>Why</title></msgitemdef>
<msgitemdef classname="uresp"><title>What to do</title>
</msgitemdef>
</propdefs>
...
</prolog>
...
<msglist>
<msg>
<msgnum>A12</msgnum>
<msgtext>Closet full: Insufficient storage to proceed.
</msgtext>
<msgitem class="xpl">
<p>There are too many clothes in the closet.</p>
</msgitem>
<msgitem class="uresp">
<p>Remove some clothes from the closet and restart.
</p>
</msgitem>
</msg>
</msglist>

Chapter 3. All kinds of lists 41

42 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 4. Highlighting, Citing, Noting, and Quoting

IBMIDDoc provides several different ways to highlight text and contains many
ways to create notes, annotations, and footnotes. This chapter introduces each of
these.

These element types include:
v Phrases (see “Highlighting”)
v Citations (see “Simple title citations” on page 45)
v Notes (see “Notes” on page 45)
v Note lists (see “Note lists” on page 46)
v Footnotes (see “Footnotes” on page 46)
v Quotes and long quotes (see “Quotes and excerpts” on page 47)
v The Perils of Processing (see “The perils of processing: Attention, caution, and

danger” on page 48)
v Labeled boxes (see “Labeled boxes” on page 48)
v Author notes (see “Annotations” on page 49)
v Trademarks (see “Trademarks” on page 50)
v Qualifications (see “Qualifying information” on page 49)

This chapter also describes how to create style classes for elements that can be
passed through to XHTML documents. See “Using document classes with XHTML
style sheets” on page 51 for that information.

Highlighting
You’ve already seen many examples in this book of things that are highlighted. By
highlighting, we mean emphasizing the text by setting it in a different font or
perhaps underscoring it. Many phrase styles are supported. They are mapped as
<PH style=attribute>. The style attribute values include:
v base
v bold

v italic

v bold italic

v underlined
v superscript

v subscript

v monospaced

v SMALLCAPS. Note that YOU need to do the uppercase conversion yourself. This is
because not all languages do proper uppercase conversion of lowercase letters.

v underlined bold

v underlined italic

v underlined bold italic

v UNDERLINED SMALLCAPS

These values are only valid on the PH tag’s style attribute. Here’s a sample:

© Copyright IBM Corp. 1992, 2001 43

|
|
|

Formatted Example

Hey there! This is very important! Don’t go out in the rain without your galoshes!

End of Formatted Example

Here’s its markup:
<ph style="Bold Italic">Hey there!</ph>
This is <ph style="Underlined Bold">very</ph>
<ph style="Bold">important</ph>! Don’t go out in the
<ph style="Italic">rain</ph> <ph style="Underlined Bold Italic">
without your galoshes</ph>!

Other elements included for denoting values and phrases are shown in Table 1.

Table 1. Phrase types

Description Markup Result

APL <apl>APL</apl> APL

binary (bin) <bin>0101</bin> B'0101'

character (char) <char>character</char> "character"

decimal (dec) <dec>123</dec> 123

example phrase (xph) <xph>example</xph> example

hexadecimal (hex) <hex>10FE</hex> X'10FE'

marked deletion (md) <md rev="rev1">marked
deletion</md>

marked deletion

message variable (mv) <mv>message variable</mv> message variable

number with specified
base (num)

<num base="3">120</num> 120

octal (oct) <oct>013 736</oct> O'013 736'

programming keyword <pk>keyword</pk> keyword

programming keyword
default

<pk optreq="def">default</pk> default

programming variable <pv>keyword</pv> keyword

reference key (refkey) <refkey>reference
key</refkey>

�reference key	

term <term>term</term> term

You can also nest highlighted phrases — that is, put one kind inside another. The
formatter causes the nested highlighting to inherit the highlighting of the previous
style. In the following example, the italic and underlined text are also bold because
the whole sentence is marked bold:

Speak softly and carry a BIG stick.

Here’s its markup:
<ph style="Bold">Speak <ph style="Italic">softly</ph>
and carry a <ph style="Underlined">BIG stick
</ph></ph>.

44 ID Workbench: IBMIDDoc User’s Guide and Reference

|

Simple title citations
While IBMIDDoc provides extensive bibliographic markup (see Chapter 14,
“Bibliographies and citations” on page 141), sometimes you just need a simple
inline title citation. For this you use the CIT element (and some others). For
example, here’s a reference to a non-IBM book:

Formatted Example

Huckleberry Finn, by Mark Twain, is a most excellent book.

End of Formatted Example

Here’s its markup:
<cit><bibentry><doctitle><titleblk><title>Huckleberry
Finn</title></titleblk></doctitle></bibentry></cit>,
by Mark Twain, is a most excellent book.

Here’s a reference to an IBM book:

Formatted Example

The BookMaster User’s Guide is the book to emulate.

End of Formatted Example

Here’s its markup:
The <cit><ibmbibentry><doctitle><titleblk><title>
BookMaster User’s Guide</title></titleblk></doctitle>
</ibmbibentry></cit> is the book to emulate.

Notes
The Note element contains a single note. For example:

Note: Thinking of a seashore, green meadow, or cool mountain overlook can help
you to relax and be more patient.

Here’s its coding:
<note><notebody>Thinking of a seashore, green meadow,
or cool mountain overlook can help you to relax and
be more patient.</notebody></note>

If you want the word “Note” to be something else, use the TITLE element; for
example:

Tip: Don’t sit under the apple tree with anyone else but me.

Here is its coding:
<note><title>Tip</title>
<notebody>Don’t sit under the apple tree with anyone else but me.
</notebody>
</note>

Chapter 4. Highlighting, Citing, Noting, and Quoting 45

Note lists
The NoteList element contains an ordered list of notes. The list is ordered because
there is usually a priority to the notes. For example:

Notes:

1. Make a To Do list
2. Prioritize sensibly
3. Avoid interruptions where possible
4. Check on your progress toward monthly goals
5. Plan for the next work week
6. Do something for the fun of it
7. Spend some quality time with your pet

Here’s its coding:
<notelist>
Make a To Do list
Prioritize sensibly
Avoid interruptions where possible
Check on your progress toward monthly goals
Plan for the next work week
Do something for the fun of it
Spend some quality time with your pet
</notelist>

Groups of notes can be organized into blocks using the LIBlk element.

You can also use your own title instead of “Notes” by adding a Title. For example:

Watch out for these:

1. things that go bump in the night
2. green eggs and ham

Here’s its markup:
<notelist><title>Watch out for these</title>
things that go bump in the night
green eggs and ham
</notelist>

You can compact, bridge, and group list items together. This is done in the same
way as ordered lists; see Chapter 3, “All kinds of lists” on page 29.

Footnotes
The FN element is used to annotate text with notes that are part of the narrative
content of the document, but that are not appropriate for inclusion inline with the
document text. The information contained in the FN element is associated with its
containing element.

46 ID Workbench: IBMIDDoc User’s Guide and Reference

Formatted Example

Here’s a footnote2 around here somewhere.

End of Formatted Example

Here’s its coding:
<p>There’s a footnote<fn>While some folks do not like
footnotes; they sometimes contain a nugget of priceless
lore. Did you know IBMIDDoc’s grandmother was named
ISIL?</fn> around here somewhere.</p>

You can also define a footnote and use it in multiple places. First, define the
footnote (FN tag) and give it an ID attribute. Then, use the FN tag with a REFID
attribute to refer to that footnote.

Formatted Example

Here’s a sentence3 that uses several footnotes3.

End of Formatted Example

Here’s its coding:
<p>
<fn id="multiple">Here’s another little footnote.</fn>Here’s
a sentence<fn refid="multiple"> that uses several
footnotes<fn refid="multiple">.</p>

Quotes and excerpts
IBMIDDoc provides for two different kinds of quotations — inline quotations and
excerpts (which we call “long quotations” although it really has nothing to do with
the length). For simple inline quotations, use the Q element. These can be nested.
For example, this contains two quotes, one inside the other. The formatter knows
to automatically switch from double quotes to single quotes (in hardcopy anyway).

Formatted Example

George said; “She said ‘Yes!’ to me.”

End of Formatted Example

Here’s its coding:
George said; <q>She said <q>Yes!</q> to me.</q>

For long quotations or excerpts, use the LQ element. Who remembers this quote
from History class:

The only thing we have to fear is fear itself.

Here’s its coding:

2. While some folks do not like footnotes; they sometimes contain a nugget of priceless lore. Did you know IBMIDDoc’s
grandmother was named ISIL?

3. Here’s another little footnote.

Chapter 4. Highlighting, Citing, Noting, and Quoting 47

<lq>The only thing we have to fear is fear itself.
</lq>

Labeled boxes
Labeled boxes are a special style of paragraph block. For example:

Here’s my cute little box
Here’s something that I’m really proud of.

Here’s its coding:
<pblk style="lblbox">
<title>Here’s my cute little box</title>
<p>Here’s something that I’m really proud of.</p>
</pblk>

Beware of over-using these; and of trying to put too much information into them.

The perils of processing: Attention, caution, and danger
These elements are used to contain information about situations that can
dangerous to people, equipment, or data.

Attention
Use an Attention notice to indicate the possibility of damage to a program,
device, system, or data.

Warning
Use a Warning notice to indicate the possibility of damage to a program,
device, system, or data.

Caution
Use a Caution notice to call attention to a situation that is potentially
hazardous to people because of some existing condition. For example, you
might use a Caution notice to warn about the hazard of paper cuts when
someone opens a fresh ream of paper.

Danger
Use a Danger notice to call attention to a situation that is potentially lethal
or extremely hazardous to people. For example, after a computer side
panel is removed, exposed high-voltage wires might be lethal.

Attention: Here’s a way to get someone’s attention.

CAUTION:
Watch out for these!

DANGER

Really watch out for these!

Here are their codings:
<attention>Here’s a way to get someone’s attention.</attention>
<caution>Watch out for these!</caution>
<danger>Really watch out for these!</danger>

48 ID Workbench: IBMIDDoc User’s Guide and Reference

Annotations
The Annot element is used to contain comments about the content of its containing
element. These comments can be notes to reviewers, other writers, editors,
vendors, and so forth. Annotations do not contain comments you want to appear
in a final draft of your document. Annotation content is not part of the narrative
text of your document.

Annot has NO formatting associated with it. All formatting comes from the
markup within the annotation body.

Processing Note
The Xyvision formatter does not print annotations under any circumstances.
BookMaster hides the content by default, unless you specify this runtime
option:
sysvar(A yes)

Migration Note
Do not use the Annot element to comment out information. Because Annot is
an element in the document hierarchy, it cannot span structures in the
document.

If you want to selectively print annotations, each Annot element should be
contained in a marked section or use a PROPS value as shown below.

<P>Remove the cover from the system unit by unscrewing the tabs on the
rear of the unit.
<ANNOT PROPS="hide">
<TITLE>>System Test Note</TITLE>
<ANNOTBODY>
<P>
Please advise us of any discrepancies in the installation
instructions in this section.
</P>
</ANNOTBODY>
</ANNOT>
</P>

Migration Note
Any ANNOT tags used to comment out information in Bookmaster will be
presented within a labeled box. You can delete these or convert them to
SGML comments.

Qualifying information
When you have to qualify information as applying to a particular product or
system in a book about multiple products or systems, there are several techniques
you can use. One, of course, is simply to say, “If you are using Model 9, then....”.
Another method, for major differences, is to put some qualification in the section
heading. Still another method is to use a formatting convention such as the one
provided by the QualifDef (quilifying information definition) element and the
QUALIF (qualifying information) attribute. This is suitable only for qualification at

Chapter 4. Highlighting, Citing, Noting, and Quoting 49

the level of a paragraph or list item or greater. It is not suitable for single-phrase
qualifications, or for qualifications of many pages.

You begin by defining your qualification in the document’s prolog, using the
QualifDef and Qualif elements. For example, this specifies two qualifications, one
for Windows® 99 and another for OS/2.5:
<qualifdefs>
<qualif id="win99" ident="use">
<title>Windows/99</title>
<desc>Windows/99 information</desc>
</qualif>
<qualif id="os25" ident="use">
<title>OS/2.5</title>
<desc>OS/2.5 information</desc>
</qualif>
</qualifdefs>

Here are sample paragraphs for each type of qualification:

Windows/99

This operating system is great for home use.

End of Windows/99

OS/2.5

This operating system is the business-oriented, industrial-strength operating
system.

End of OS/2.5

Here is their markup:
<p qualif="win99">This operating system is great for
home use.</p>
<p qualif="os25">This operating system
is the business-oriented, industrial-strength operating system.</p>

QUALIFs cannot be nested. Also, the text must be short enough to fit within the
column along with the words “end of,” plus the blanks, corners, and at least a
little of the line. This can be a tight fit in a double-column layout. If you use the
Qualif inside a boxed figure or a ruled table, the corners may overlay the rules.

Trademarks
The TM tag identifies the trademark terms in your source by surrounding the
trademark term or phrase. This tag has attributes that are not translated; they
contain no “MRI”. The TM attributes contain information for the author. The
TMType attribute creates the appropriate trademarking character after the term or
phrase.

The ID Workbench files IDDIRTM.LST or IDTMSCAN.LST list the trademarks and
the attributes needed for the TM tag. Use the Epic or Frame2000 editor to insert
these tags and attributes. For more information about how to mark trademarks, see
the ID Workbench Getting Started and User’s Guide.

50 ID Workbench: IBMIDDoc User’s Guide and Reference

Using document classes with XHTML style sheets
This topic is sort of related to highlighting, so we placed it here.

Cascading style sheets (CSS files) are powerful feature of XHTML.4 CSS files allow
you to define the style used for the XHTML outside of your XHTML content itself.
This separation of style and content allows you as a writer to concentrate on the
content; without always being concerned about the style. You can make changes in
the CSS file; without affecting the content of hundreds (or thousands) of web
pages.

The ID Workbench XHTML output transform includes a way of passing style
elements through to the XHTML. The IBMIDDoc ClassDef tag defines an output
class. The Class attribute in a tag indirectly specifies the style for that tag. The
setting in the document is reflected as a style sheet setting.

Here’s a simple example. Follow the steps here to see how this works for you:
1. We want some chapter headings to look a certain way: 18pt bold. Here’s a

simple CSS file named MYSTYLE.CSS that has that setting; the style is named
“fred”.
h1.fred { font-size: 18pt; font-weight: bold }

2. To have this style used in our XHTML; we need to first define a ClassDef tag
in our document prolog, in a PropDesc section; like this:
<classdef classname="fredthing" eletypes="d" outputclass="fred">

You can make the classname and the output class the same; we just wanted to
show you that they can be different. The classname specifies the class for an
SGML tag; the outputclass specifies the class style in the CSS file.

3. To have a heading have that style; you use the class attribute on the D tag as
follows:
<d class="fredthing">
<dprolog>
<titleblk><title>Flintstone</title></titleblk>...

4. When you format using ID Workbench; and specify the MYSTYLE.CSS style
sheet on the XHTML-3 processing options page; your output will contain a link
to your style sheet; and the heading will have a class to point at that style
sheet:
<h1 class="fred">Flintstone

4. We won’t describe cascading style sheets (CSS files) here; there is plenty of discussion of them on the web.

Chapter 4. Highlighting, Citing, Noting, and Quoting 51

|

|

|
|
|
|
|
|

|
|
|
|

|

|
|
|

|

|
|

|

|
|
|

|
|

|
|
|

|
|
|
|

|

52 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 5. Examples, figures, artwork, and multimedia

In IBMIDDoc, all non-text objects are considered multimedia objects, including
graphics. This chapter explains how to use these objects in IBMIDDoc. The
elements discussed in this chapter include:
v Lines (see “Just plain lines”)
v Xmp (see “Examples of computer output” on page 54)
v LitData (see “Literal text data” on page 54)
v MMObj (see “Including artwork in documents” on page 55)
v Fig (see “Figures” on page 57)
v CGraphic (see “Character graphics” on page 59)
v Screen (see “Screens” on page 59).

Just plain lines
Use the Lines element to contain text that has record ends, or boundaries, that
need to be preserved when presented to the document user.

The LINES element allows you to control where lines break. That is, within the
content of the LINES element, IBMIDDoc will end each output line at the same
point where you ended the input line in the markup. In SGML terms, the record
ends must be respected. This occurs whether you include text characters within the
Lines element, or if you reference an entity that contains text characters or a
graphic.

You can include information within LINES by either of the following:
v The Lines tag contains text characters that should be presented “as-is”.
v Using the OBJ attribute to name an entity containing the text or other character

data to be presented

The next example illustrates using a Lines element to contain unflowed text:

a partridge in a pear tree
two turtledoves
three French hens
four calling birds
five golden rings
six geese a-laying
seven swans a-swimming
eight maids a-milking
nine ladies dancing
ten lords a-leaping
eleven pipers piping
twelve drummers drumming

Here’s its markup:
<LINES>
a partridge in a pear tree
two turtledoves
three French hens
four calling birds

© Copyright IBM Corp. 1992, 2001 53

|

five golden rings
six geese a-laying
seven swans a-swimming
eight maids a-milking
nine ladies dancing
ten lords a-leaping
eleven pipers piping
twelve drummers drumming
</LINES>

This next example shows how you would code the Lines tag to use the OBJ
attribute to insert a file named “lines.txt”:
<lines obj="samplelines">

Here’s the declaration:
<!ENTITY linestext SYSTEM "lines.txt" ndata linespec>

The lines typically have a space before and after them, except at the start of a page,
column, or table entry.

Examples of computer output
The Xmp element typically contains an example of computer input or output.
Sometimes you may have a very long example — possibly running for several
pages. In this case, you have to tell IBMIDDoc that it is okay to break the example
at any point after a specified number of lines have printed. You do this with the
KEEP attribute. This is illustrated in the example that follows.
<XMP STYLE=’BKM:(KEEP="10")’>
10 LET A = B
20 IF A GT C THEN GO 40
30 LET A = C
40 PRINT A, C
</XMP>

You can use the LINELENGTH attribute to automatically scale down the example
to fit the line length you specify. You can use the PGWIDE attribute to make your
examples page-wide (pgwide=1). The default is pgwide=2; the example is as wide
as the current textline.

As with Lines, you can also use the OBJ attribute to include the example. In the
example that follows, the OBJ attribute is the entity name sampcprg. This entity is a
small sample C program named sampcprg.c. The XMPs element uses the content of
this entity as its content.

...
<!ENTITY sampcprog SYSTEM "sampcprg.c" NDATA C>...
<XMP OBJ="sampcprg">

The example typically has a space before and after, except at the start of a page,
column, or table entry.

Literal text data
Literal data can be used to contain special information or code in which SGML
markup is not recognized. It may also refer to the content of other files whose
content will not be processed as SGML markup. Examples of this type of data
include character translation, special code pages, and samples of programming
code.

54 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|

For example, a sample C++ program could be contained in the LitData element:
<xmp>
<LITDATA>
// testprog.cpp
#include <iostream.h>
int main(void)
{
...
}
</LITDATA>
</xmp>

This same program could be referenced using the OBJ attribute that refers to an
entity that contains the program, as shown in the next example.
<!ENTITY testprg SYSTEM "testprg.c" ndata c>...
<FIG>
<CAP>A basic C++ program.
<LITDATA OBJ="TESTPRG">
</FIG>

Including artwork in documents
In most cases, the artwork you include will be constructed using a graphic/image
tool such as CorelDraw or Photoshop. It will be merged with the text during
processing for the output device. All you have to do is specify the file type of the
artwork that you want to include in your document; the formatter does the rest.

You use the MMObj and ObjRef elements to contain artwork such as images,
vector graphics, encapsulated PostScript, or video clips. The processing and
presentation systems in use determine the types of multimedia objects that are
supported.

In order to use graphic objects in your SGML markup, you must declare them as
entities using an entity declaration. Use the notation “graphics” on the declaration.
<!ENTITY bike system "bike.gif" ndata graphics>

In some cases, certain graphic formats are supported for in-line viewing during
your editor session. Use the file extension GIF, JPG, TIF, or EPS (if your EPS file
has a TIFF header) when you declare your graphic, and the editor will display the
artwork.

In the example that follows, the entity is defined first, and it is referred to later in
the document by the OBJ attribute on the ObjRef element contained in the MMObj
element. Here’s the declaration and the markup for an illustration of a bike:
<!ENTITY bike system "bike.gif" ndata graphics>

...
<MMOBJ>
<OBJREF OBJ="bike">
<TEXTALT>This is a two-wheeled bicycle.</TEXTALT>
</MMOBJ>

Chapter 5. Examples, figures, artwork, and multimedia 55

And here’s the bike:

3

1

2

The MMObj element also contains a TextAlt element. The TextAlt element contains
a text description that is presented as an alternative to the artwork.5 The text
appears in HTML when the user’s mouse hovers over the artwork. So be sure to
type something meaningful in the TextAlt; don’t be embarrassed by entering
something like “Fred, is this really true?” and then having that go out the door
and on to a website.

Normally a single space preceeds the artwork. You can use the setting
placement=runin to have the artwork put inline in a sentence. You can also use
placement=runin to have the artwork appear in the margin.

Creating graphic links
To create a graphic link for RTF, IPF, or HTML, you need to use the MMObjLnk
tag. The Linkend attribute specifies the link ID. The AreaDef element is not used
(that is, you cannot create hotspots with it; the entire graphic becomes a link).

Here is an example that will make the graphic part1 link to the ID “newdiv”:
<mmobj><objref obj="part1">
<mmobjlink linkend="newdiv">
<areadef coords="1 100">
</areadef></mmobjlink>
<textalt></textalt>
</mmobj>

5. Some say a picture is worth a thousand words; well, this is where you put the thousand words to express your picture to those
that cannot view pictures.

56 ID Workbench: IBMIDDoc User’s Guide and Reference

Figures
Figures typically contain examples, text, or artwork; so it makes sense to talk about
them here.

You can choose to have the figure formatted within the column or formatted the
full width of the page. You can choose to have it set off with rules across the page,
put in a box, or formatted with no frame at all. You can give it an identifier, which
will allow you to make cross references to it (which we’ll cover in a later chapter).
You can give the figure a caption, which will also cause it to be listed in the figure
list, if you have one. You can extend the figure caption with a figure description,
too (only the caption itself goes in the figure list). And, if you have a very large
figure, you can have it split into pieces with a caption that says “Part x of y” on
each piece.

Here’s a sample, column-wide figure:

Here’s its markup:
<fig pgwide="0">
<lines>Here are some lines
in the sample, simple figure.</lines>
</fig>

The pgwide attribute sets the figure as column-wide.

Your figure can also have a caption or description.

To have a full-page figure, you specify this PgWide attribute:
<fig pgwide="1">
<lines>Here are some lines in a page-wide figure.</lines>
</fig>

You can choose to add a box around your figure, or to have lines or rules appear
before and after your figure. You add these with the FRAME attribute. For
example:
<fig frame="rules">

Or:
<fig frame="box">

Figure captions and descriptions
Your figures can have a short caption and an optional longer description. The
caption can appear in a figure list at the beginning of your book. A good place for
the figure list is after your table of contents. If your figure has a caption, you
should also give it an ID; some processes (like BookMaster) complain about figures
that have captions but are missing the ID. Put the ID on the fig tag, not on the
caption. The caption should be entered like a heading, without ending
punctuation.

Here’s another sample figure. This one is page-wide and includes a caption:

Here are some lines
in the sample, simple figure.

Chapter 5. Examples, figures, artwork, and multimedia 57

Here’s its markup; note the FIG tag has an identifier:
<fig id="samplefig" style="bkm:(place=inline width=page)">
<cap>Here’s a sample, page-wide figure</cap>
<lines>Here are some lines
in the sample, simple figure.</lines>
</fig>

Here’s another sample figure with both a caption and a description. You enter a
description like a sentence, with punctuation. Note that the caption source has no
punctuation; if any is needed, it is added by the formatter.

Here’s its markup:
<fig id="samplefigdesc" style="bkm:(place=inline width=column)">
<cap>Here’s a sample figure with a caption and description
</cap>
<desc>This figure has a description. Note that descriptions
have punctuations like sentences.</desc>
<lines>Here are some lines
in the sample, simple figure.</lines>
</fig>

Multipart figures
There are times when your figure is too big to fit on a single page. Sorry, there’s no
way to automatically split a figure. The FIGSEG (figure segment) tag is used to
specify the points at which the figure can be broken into parts. The formatter takes
care of printing the figure caption with the “Part x of y” on each part for you.
Figure 6 shows a sample two-part figure.

In Xyvision PostScript output, the figures are split at the FIGSEG tag. For HTML,
the figure segments are ignored; the output appears as if it were one figure.

Here’s its source:
<fig id="idgifsegxmp"><cap>My little caption</cap>
<desc>My little description.</desc>
<figseg>
<p>First part of the figure.</p>
</figseg>
<figseg>
<p>Last part of the figure.</p>
</figseg>
</fig>

Here are some lines
in the sample, simple figure.

Figure 4. Here’s a sample, page-wide figure

Here are some lines
in the sample, simple figure.

Figure 5. Here’s a sample figure with a caption and description. This figure has a description.
Note that descriptions have punctuations like sentences.

First part of the figure.
Figure 6. My little caption (Part 1 of 2). My little description.

Last part of the figure.
Figure 6. My little caption (Part 2 of 2). My little description.

58 ID Workbench: IBMIDDoc User’s Guide and Reference

|

|
|
|
|
|

|
|
|

|

|

|
|
|
|
|
|
|
|
|

Character graphics
Use the CGraphic element to contain a graphic created using character graphics,
such as box and line characters.

Note: Ensure the cgraphics are external file entities. Having them inline increases
the chances of data corruption.

CGraphic will often use the OBJ attribute to reference an entity that contains the
actual cgraphic markup characters. The NOTATION attribute value is always
LINESPEC.
<!ENTITY ILLUS01 SYSTEM "ILLS01.CHG" ndata linespec>...
<CGRAPHIC OBJ="ILLUS01">

You can use the LINELENGTH attribute to automatically scale down the character
graphic to fit the line length you specify.

Screens
Use the Screen element to contain or refer to a representation of a computer
display or panel. There are several different ways to use this element in IBMIDDoc.

The Screen element is designed to hold “green” screen images which use fixed
pitch fonts. The Screen element can reference an entity using the OBJ attribute.
<SCREEN OBJ="scr1">

It can also just contain the content:
<screen>
EDFUSCRN SCRIPT A1 V 132 TRUNC=132 SIZE=69 LINE=45 COL=1 ALT=4

=====
=====
=====
=====
===== This is what
=====
===== the screen looked like
...
</screen>

The resulting output from a typical screen display would look similar to the
display illustrated below.

Chapter 5. Examples, figures, artwork, and multimedia 59

|

|
|

EDFUSCRN SCRIPT A1 V 132 TRUNC=132 SIZE=69 LINE=45 COL=1 ALT=4

=====
=====
=====
=====
===== This is what
=====
===== the screen looked like
=====
===== when I was writing
=====
===== this section on screens.
=====
===== ALL LINES IN THE SCREEN MUST BE ACCOUNTED FOR
=====
===== IN THE SOURCE FILE
=====
=====
=====
=====

====>
XEDIT 1 FILE

You can use the LINELENGTH attribute to automatically scale down the screen to
fit the line length you specify. You can use the PGWIDE attribute to make your
screens page-wide (pgwide=1). The default is pgwide=2; the screen is as wide as
the current textline.

Math formulas
Mathematical formulas are contained by the Formula element. Only formulas
created using the Script Mathematical Formula Formatter (SMFF) are supported at
this time. This is only supported for BookMaster hardcopy output.
<FORMULA NOTATION="smff">
integral from 0 to infinity of d x
</FORMULA>

60 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|

Chapter 6. Cross-referencing

At last we’re going to tell you what all those ID attributes are for!

IBMIDDoc manages cross references to headings, figures, tables, items in ordered
lists, and footnotes, indeed, to any spot in a document. Each of these types of cross
references is done with the ID (identification) and REFID (reference identification)
attributes — ID on the thing pointed to, and REFID on the thing doing the
pointing.

Also, when you take your BookMaster source and create an online document,
IBMIDDoc uses the REFID and ID attributes to set up hypertext links between
cross references within and between documents. See Chapter 12, “All about
linking” on page 129 for more information about interdocument cross-reference
linking.

The ID (identification) attribute is a way of giving something a name that
IBMIDDoc can use in providing a reference to that thing. You’ve already seen cases
in this book of cross references to headings, although you may not have realized it
at the time. For example, this is a cross reference to a heading:

Formatted Example

See Chapter 3, “All kinds of lists” on page 29.

End of Formatted Example

To get the cross reference, two things have to be done. First of all, the heading that
we referred to was entered like this:
<d id="lsts">
<dprolog><titleblk>
<title>All kinds of lists</title>
</titleblk></dprolog>

The “lsts” is a name we made up. It can be any combination of letters and
numbers as long as it is no more than 64 letters and numbers. The first character
must be a letter; and the other characters can be a period (.) or a dash (-). You can
use uppercase or lowercase letters. Each ID in the document must be unique. The
other thing you have to do is enter the cross reference itself, using the XREF tag
with a REFID attribute. It would look like this:
See <xref refid="lsts">.

Because we used the same value for the REFID attribute as for the ID attribute of
the heading we are referring to, IBMIDDoc knows which one we want. Because it
also knows what page it is on, it supplies that, too. If the heading had been on the
same page as the reference, IBMIDDoc would know that also, and it would not
give the page number.

The target of a cross-reference should be to an ID on the outer container (for
example, D, MSG, LE, FIG, TABLE) and not the title text or caption text.

© Copyright IBM Corp. 1992, 2001 61

Since online BookManager® books don’t have actual pages, cross references will
refer to topic numbers. For online HTML and other information, the references just
contains the heading.

Cross references can go in either direction; that is, the thing being referred to can
come before or after the cross reference.

It is a good idea to pick descriptive names for your ID attributes; if you name
things “chap1”, “chap2”, and so on, you will find that when you update the source
file and insert, delete, and rearrange material, your names will be more confusing
than useful in trying to keep track of what is going on.

There are times when you want to control the form of cross references using the
FORM attribute, as described in “Controlling the form of cross references” on
page 65.

You can use XREF to reference any heading level and to reference anything. These
next topics show cross references to common elements:
v “Referencing a figure”
v “Referencing a table” on page 63
v “Referencing a list item” on page 63
v “Referencing anything at all” on page 64

Referencing a figure
To reference a figure, ensure the figure has a caption. Here’s a sample figure that
we’re going to reference in a bit:

Formatted Example

End of Formatted Example

Here’s the markup for our little figure above:
<fig id="littlefig">
<cap>Captioned figure for cross reference</cap>
<p>A figure that is going to have a cross reference
must also have a caption.</p>
</fig>

Now we can code and XREF like this:
See <xref refid="littlefig"> for a sample of a figure
reference.

and the result is this:

Formatted Example

See Figure 7 for a sample of a figure reference.

End of Formatted Example

A figure that is going to have a cross reference must also have a caption.
Figure 7. Captioned figure for cross reference

62 ID Workbench: IBMIDDoc User’s Guide and Reference

Referencing a table
Cross referencing a table is just like referencing a figure. The table must have a
caption. Here’s a sample table:

Formatted Example

Table 2. Captioned table for cross reference

A table that is going to have a cross
reference...

... must also have a caption.

End of Formatted Example

Here’s the markup for our little table above:
<table pgwide="0" id="sampletable">
<cap>Captioned table for cross reference</cap>
<tgroup cols="2">
<colspec colname="col1">
<colspec colname="col2">
<tbody><row>
<entry colname="col1">A table that is going to have
a cross reference...</entry>
<entry colname="col2"></entry>
</row><row>
<entry colname="col1"></entry>
<entry colname="col2">... must also have a caption.
</entry></row></tbody></tgroup></table>

Now we can code and XREF like this:
See <xref refid="sampletable"> for a sample of a table
reference.

and the result is this:

Formatted Example

See Table 2 for a sample of a table reference.

End of Formatted Example

Referencing a list item
Another common phenomenon in the books we produce is the cross reference to
an item in an ordered list. To do this, we put an ID attribute on the LI (list item)
tag for the item we want to point to, and use an XREF tag with a REFID attribute
to do the pointing. Here’s a sample of some new tax instructions from the U.S
Department of Treasury:

Formatted Example

1. If the amount on line 37 is greater than the lesser of lines 5 and 6, go to step 5
on page 64.

2. Enter the sum of line 5 and line 37. If this exceeds your total annual income
before deductions, go to step 6 on page 64.

Chapter 6. Cross-referencing 63

3. If line 32 less the difference of lines 73 and 74 on Schedule C is greater than
line 36 plus line 17 of Schedule A and you are under 65 years of age, go to step
1 on page 63, where you will be in a loop until you are 65.

4. Use table 30-C to compute the number of bathrooms in your house and enter
on line 56.

5. Enter the root-mean-square of line 14.
6. Sign form and mail with remittance.

End of Formatted Example

Here’s its markup:

<li id="ageloop">If the amount on line 37 is greater
than the lesser of lines 5 and 6, go to
step <xref refid="squareit">.
Enter the sum of line 5 and line 37. If this exceeds
your total annual income before deductions, go to
step <xref refid="mailit">.
If line 32 less the difference of lines 73 and
74 on Schedule C is greater than line 36 plus line
17 of Schedule A and you are under 65 years of age,
go to step <xref refid="ageloop">, where you will
be in a loop until you are 65.
Use table 30-C to compute the number of bathrooms
in your house and enter on line 56.
<li id="squareit">Enter the root-mean-square of line
14.
<li id="mailit">Sign form and mail with remittance.

Referencing anything at all
Although we’ve given you a lot of ways to create cross references, there are times
when none of those ways exactly meets your requirements. So IBMIDDoc has IDs
on all its tags, which allow you to identify any spot in your document, by page
number, and to refer to it from another place.

A tag with an ID attribute has no effect on the formatting of the text around it, but
to get the result you want, it should be placed in the same places that are good for
index entries. These are described in “Where to put index entries” on page 119. You
can also specify some text that is associated with this tag, using the XREFTEXT
(cross-reference text) attribute on that tag. If there was no XREFTEXT, then the
XREF gives you just the page number of the tag. If there was XREFTEXT, then
XREF prints that text, followed by “on page” and the page number.

For example, here’s a paragraph we want to reference:

Here’s my little paragraph that I want to reference.

Here’s its markup, including xreftext:
<p id="samplepara" xreftext="My litle paragraph">
Here’s my little paragraph that I want to reference.
</p>

Then, to reference that, we would code the following:
See <xref refid="samplepara"> for a small bit of information.

64 ID Workbench: IBMIDDoc User’s Guide and Reference

And we would get this result:

See “My litle paragraph” on page 64 for a small bit of information.

Controlling the form of cross references
The “normal” form of a cross reference, as shown in the examples in the preceding
sections, is not always exactly suitable to your needs. IBMIDDoc has a FORM
attribute on the XREF tag that allows you to control what is generated. Table 3
shows the supported values of the FORM attribute for hardcopy output, for the
typical things you cross-reference.

Table 3. XREF forms for hardcopy output

Referenced
item

Form=

Normal1 Full Text Location Number

Heading Chapter 6,
“Cross-referencing” on
page 61

Chapter 6,
“Cross-referencing” on
page 61

Chapter 6,
“Cross-
referencing”

61 Chapter 6

Figure Figure 7 on page 62 Figure 7 on page 62 Figure 7 62 7

Table Table 2 on page 63 Table 2 on page 63 Table 2 63 2

List item 1 on page 63 1 on page 63 1 63 1

Anything
(first
paragraph in
this chapter
with xreftext)

“What are the IDs for?” on
page 61

“What are the IDs for?” on
page 61

What are the
IDs for?

61

1 The “on page pagenumber” only appears if the referenced item is on a different page.

Note that punctuation after a quoted reference remains outside the quote. It does
not “move inside” the quote as the IBM style guidelines recommend. This is
currently a Xyvision formatter and Frame2000 formatter restriction; it may be
removed in the future.

Chapter 6. Cross-referencing 65

66 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 7. Creating IBMIDDoc Tables

IBMIDDoc supports the CALS table elements, with a few modifications for
IBM-specific usage. This section describes fundamental IBMIDDoc table concepts,
and gives examples of markup for several tables.

Migration Note
For BookMaster tables that include DVCF text that will be reused across a
number of documents, or will be output in many different formats, use the
IBMIDDoc modular information elements instead of table elements.

IBMIDDoc Table Markup Concepts
You can use IBMIDDoc to create a wide variety of tables. From simple tables:

Table 4. Simple table

A B C

D E F

To complex tables:

Table 5. Complex table

A B C

D E

F G

You can select several different combinations of rules and framing. You can have a
table heading and a table caption. You can specify the alignment and formatting of
text in your table. You can combine several table definitions within a single table.
But you don’t have to use all of the power of table markup every time you want to
create a table. You can get handsome tables with fairly simple markup. So we’ll
take things one step at a time, beginning with simple table markup and moving on
to the more advanced stuff later.

IBMIDDoc tables are contained in a Table element. The Table element then can
contain TGroup elements. In most cases, you’ll assign values to the TGroup’s
attributes that define the structure and layout of the table.

Creating simple tables
Tables consist of cells, arranged in rows. Here is a simple example:

Table 6. A simple example

Header 1 Header 2 Header 3

Row 1, Cell 1 Row 1, Cell 2 Row 1, Cell 3; here’s a little
more text than the other cells
have

© Copyright IBM Corp. 1992, 2001 67

|

|

||

|||

|||
|
|

Table 6. A simple example (continued)

Header 1 Header 2 Header 3

Row 2, Cell 1 Row 2, Cell 2 Row 2, Cell 3

Table footer

Each little box in this table is a cell. This table consists of two rows, with three cells
in each. You can, of course, have more or fewer rows and cells, so this basic form
can take care of a lot of your table requirements. A table must have at least one
row (in addition to any headings, footings, and captions) to produce any output,
and each row must have at least one cell.

The markup for this table is as follows:
<table><cap>A simple example</cap>
<tgroup cols="3">
<colspec colname="col1">
<colspec colname="col2">
<colspec colname="col3">
<thead>
<row>
<entry colname="col1" valign="top">Header 1</entry>
<entry colname="col2" valign="top">Header 2</entry>
<entry colname="col3" valign="top">Header 3</entry>
</row>
</thead>
<tfoot>
<row>
<entry namest="col1" nameend="col3" valign="top" align="center">
Table footer</entry>
</row>
</tfoot>
<tbody>
<row>
<entry colname="col1">Row 1, Cell 1</entry>
<entry colname="col2">Row 1, Cell 2</entry>
<entry colname="col3">Row 1, Cell 3; here’s a little
more text than the other cells have</entry>
</row>
<row>
<entry colname="col1">Row 2, Cell 1</entry>
<entry colname="col2">Row 2, Cell 2</entry>
<entry colname="col3">Row 2, Cell 3</entry>
</row>
</tbody>
</tgroup>
</table>

We began the table with the TABLE tag and put in a caption with CAP. Next
comes TGROUP with the number of columns in the table, and COLSPECs
indicating the column names. The table header, THEAD, contains the column
headings. Some tables have table footers, contained in the TFOOT element. The
table content starts with the TBODY tag. We then started specifying rows and cells
with the ROW and ENTRY tags. The text within each cell is formatted the same
way regular body text is formatted (we’ll look later at how to redefine this.)
Finally, we ended the table with the proper ending tags.

Table headers repeat at the top of each table part for multi-part tables. The
Xyvision formatter places a table footer once, at the end of the table, for each part
of a multi-part figure. Frame2000 currently always repeats the table foot at the
bottom of each page of a multi-part table.

68 ID Workbench: IBMIDDoc User’s Guide and Reference

|

|||

|||

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

Specifying table column widths
If you want your columns to have different widths, like this:

Table 7. Simple table with different column widths

a b c

You use the COLSPEC tag and the COLWIDTH attribute, like this:
<table><cap>Simple table with different column widths
</cap>
<tgroup cols="3">
<colspec colnum="1" colname="col1" colwidth="1*">
<colspec colnum="2" colname="col2" colwidth="1*">
<colspec colnum="3" colname="col3" colwidth="2*">
<tbody>
<row>
<entry colname="col1">a</entry>
<entry colname="col2">b</entry>
<entry colname="col3">c</entry>
</row>
</tbody>
</tgroup>
</table>

In simple table markup, cell widths are the same as the corresponding column
widths, so COLWIDTH really specifies the cell widths. Omitting the COLWIDTH
from all the COLSPECS causes each column to have the same width. In our
example, the Xyvision formatter makes the whole table as wide as the text column
(this is the initial setting) and calculates the table columns based on that.

Of course, you won’t always want all your table columns to be the same width.
The COLWIDTH attribute and the asterisks tell the formatter that we want the
table divided porportionally; we don’t care what the exact width turns out to be.
So the formatter decides for us. You can specify 1*, 1*, and 2* if you want the first
and second columns to have the same width, and to have last column be twice as
wide as the first or second column.

When text is too big for a table cell, the Xyvision formatter continues to flow the
text into the next column or off the edge of the page; it currently issues no
message. You should check your output to ensure formatting is as you desire.

Table captions and descriptions
Your tables can have a short caption and an optional longer description. The
caption can appear in a table list at the beginning of your book. A good place for
the table list is after your table of contents. If your table has a caption, you should
also give it an ID; some processes (like BookMaster) complain about tables that
have captions but are missing the ID. Put the ID on the table tag, not on the
caption. The caption should be entered like a heading, without ending
punctuation.

Here’s a sample table with a small caption:

Table 8. Sample table caption

my little

sample table

Chapter 7. Creating IBMIDDoc Tables 69

|
|
|

Here’s its markup:
<table pgwide="0" id="tablesample">
<cap>Sample table caption</cap>
<tgroup cols="1">
<colspec colname="col1">
<tbody>
<row>
<entry colname="col1">my little</entry>
</row>
<row>
<entry colname="col1">sample table</entry>
</row>
</tbody>
</tgroup>
</table>

Here’s another sample table with both a caption and a description. You enter a
description like a sentence, with punctuation. Note that the caption source has no
punctuation; if any is needed, it is added by the formatter.

Table 9. Sample table caption. This table shows little remarkable information. You need to
read between the lines.

my little

sample table

Here’s its markup:
<table pgwide="0" id="tablesampledesc">
<cap>Sample table caption</cap>
<desc>This table shows little remarkable information.
You need to read between the lines.</desc>
<tgroup cols="1">
<colspec colname="col1">
<tbody>
<row>
<entry colname="col1">my little</entry>
</row>
<row>
<entry colname="col1">sample table</entry>
</row>
</tbody>
</tgroup>
</table>

If you want a table to have a description, but no caption, you can do that too:

Fred’s little table that he doesn’t want numbered

Here’s something Fred likes to talk about.

The secret to good ice fishing is keeping
your worms warm.

Here’s its markup:
<table><desc>Fred’s little table that he doesn’t want
numbered</desc>
<tgroup cols="2">
<colspec colname="col1">
<colspec colname="col2">
<tbody>
<row>
<entry colname="col1">Here’s something Fred likes

70 ID Workbench: IBMIDDoc User’s Guide and Reference

|

||

||

||
|

to talk about.</entry>
<entry colname="col2"></entry>
</row>
<row>
<entry colname="col1"></entry>
<entry colname="col2">The secret to good ice fishing
is keeping your worms warm.</entry>
</row>
</tbody>
</tgroup>
</table>

Page, column, and line-wide tables
You use the PGWIDE attribute on the TABLE tag to control the width of a table.

PGWIDE=0
(zero) makes the table column-wide

pgwide=0

PGWIDE=1
(one) makes the table page-wide.

pgwide=1

PGWIDE=2
(two) makes the table as wide as the current text line.

pgwide=2

In BookMaster, tables default to page wide. In Xyvision, tables default to column
wide.

If you need to have wide tables in BookManager BOOKs, use the DWIDTH
attribute to specify a wide display width. The normal setting is 75:
style=bkm:(dwidth=100)

Complex tables are NOT supported in RTF nor IPF. Complex tables are tables
whose contents include lists, definition lists, etc. or tables with complex
column/row spanning. If you are creating RTF or IPF output, you should avoid
making use of the complex features that the Epic table editor enables for you.

Splitting tables between pages
In BookMaster hardcopy, tables do not split. This may cause a BookMaster error
and the second part of the table will not have a caption. Use this override on your
large tables so they split in BookMaster without errors:
bkm:(split=yes)

In Xyvision, tables always split. You should accept this default due to possible
translation center impacts (expansion space in rows). If you can’t bear to split your
table, you can use this override:
bkm:(split=no)

Chapter 7. Creating IBMIDDoc Tables 71

If you have a table row that contains a lot of information, more information than
will fit on a hardcopy page for your document’s style, you will get an error during
Xyvision PostScript formatting. You will need to split the large row into two or
more smaller rows.

Affecting how a table appears: Rules, Separators, Shading
The Table tag allows several attributes and settings to control how your table
appears. These are all available in the Xyvision PostScript formatter. The other
transforms support some of these settings, but not all of them. Experiment with
your desired output formats to determine what you can use.
v To make the table have a frame, rules, or nothing, the FRAME attribute can be

set to:

all Rules appear on all four sides; the table is boxed.

frame=all

bottom

frame=bottom

none

frame=none

sides

frame=sides

top

frame=top

topbot

frame=topbot

v To control the vertical rules in the table, use the COLSEP attribute.

0 (zero) makes the table have no column separators

colsep=0

No vertical rules appear

1 (one) makes the table have column separators

colsep=1

72 ID Workbench: IBMIDDoc User’s Guide and Reference

The vertical rules appear

v To control the horizontal rules in the table, use the ROWSEP attribute.

0 (zero) makes the table have no row separators

rowsep=0

No horizontal rules appear

1 (one) makes the table have row separators

rowsep=1

The horizontal rules appear

v To shade an entire table, a row, or a cell, use the SHADE attribute:

Shade=NOShade | XLight | Light | Meduim | Dark | XDark
Use the Shade attribute to specify the shading. This table example shows the
shading values used in table cells:

Table 10. Cell entry shading. In the editor, use the modify attributes icon or Ctrl-A to set the
Shade attribute for the cell’s Entry tag.

noshade (0%) xlight (5%) light (26%) medium
(50%)

dark (74%) xdark (100%)

the quick brown fox jumps over the lazy dog

v To rotate a table, set the ORIENT attribute to LAND.

port Use this for normal, portrait-oriented tables.

orient=port

land Use this to turn your table on it’s side (landscape) for hardcopy.
PGWIDE is ignored (it is assumed to be full-page).

Chapter 7. Creating IBMIDDoc Tables 73

|

|
|
|

||
|

||||
|
||

||||||
|

|

or
ie

nt
=

la
nd

74 ID Workbench: IBMIDDoc User’s Guide and Reference

Defining the Column Specifications
A typical set of ColSpec attributes for a simple table is shown in the example that
follows.

Migration Note
At this time, the graphical table editor does not handle a mixture of
proportional and fixed COLWIDTH values in the same table. You should use
proportional COLWIDTHs until this issue is resolved.

<TABLE FRAME="ALL">
<TGROUP COLS="4" COLSEP="1" ROWSEP="1" ORIENT="PORT" PGWIDE="0">
<COLSPEC COLWIDTH="68*">
<COLSPEC COLWIDTH="127*">
<COLSPEC COLWIDTH="195*">
<COLSPEC COLWIDTH="66*">

...

The ColSpec attributes include:

COLNUM=col_number
This value indicates the number of the column.

COLNAME=col_name
Specifies the column name. This name is referenced by other table elements.

ALIGN=LEFT | RIGHT | CENTER | JUSTIFY | CHAR
This attribute specifies the horizontal positioning of text in the column.

LEFT
specifies left alignment (the default).

RIGHT
specifies right alignment.

CENTER
specifies center alignment.

JUSTIFY
specifies that the text should be justified.

CHAR
specifies the character that is used for alignment.

CHAROFF=number
Specifies the character offset for Entry elements in a column.

COLWIDTH=measure
Specifies a fixed, proportional, or mixed measure for the column width.

Migration Note
At this time, mixed measures are not supported. You should use
proportional measures.

COLSEP=0 | 1
This attribute’s value specifies that the internal column rules should be:
v to the right of each cell’s content (1)
v not displayed at all (0)

Chapter 7. Creating IBMIDDoc Tables 75

Note that BookMaster does not allow rules on only one side of a column.

ROWSEP 0 | 1
This attribute’s value specifies that the internal row rules should be:
v below each Entry element that ends a row (1)
v not displayed at all (0)

Note that BookMaster does not allow rules on only one side of a row.

Defining Rows and Entrys
Rows are defined using the Row element. Each Entry element contained in a Row
element occupies the consecutive column, from left to right. The two Row
attributes you will use are VALIGN (vertical alignment) ALIGN (horizontal
alignment). Unless the ROWSEP attribute is specified, the Row inherits the
ROWSEP value specified on the Table or TGroup element.
<TABLE FRAME="ALL">
<TGROUP COLS="3" COLSEP="1" ROWSEP="1">
<COLSPEC COLWIDTH="152*">
<COLSPEC COLWIDTH="152*">
<COLSPEC COLWIDTH="152*">
<TBODY>
<ROW>
<ENTRY VALIGN="TOP" ALIGN="LEFT">ROW 1, CELL 1</ENTRY>
<ENTRY VALIGN="TOP" ALIGN="LEFT">ROW 1, CELL 2</ENTRY>
<ENTRY VALIGN="TOP" ALIGN="LEFT">ROW 1, CELL 3;
HERE’S A LITTLE MORE TEXT THAN THE OTHER CELLS HAVE.</ENTRY>

</ROW>

...

To have unformatted text in a table, insert the LINES tag, then insert your cell
content within the lines.

Making your tables accessible
The requirement to make your documents accessible to screen readers is very
important. Tables are one of the more challenging items. IBMIDDoc has items to
help your tables be accessible.

First, ensure you have marked your table headers as a header row, so that the
THEAD tags are used. Ensure you are not just using a ROW tag and have made
the headings bold with a style. This allows the XHTML, when read by a screen
reader, to indicate your proper intention to the reader.

Second, if your table uses the first column as a row header; indicate that by using
the RowHeader attribute:

RowHeader=FirstCol | NoRowHeader
This specifies whether the first column is a row header. If your table’s first
column is really a row-header, specify the RowHeader=FirstCol setting. In the
same way that a column header introduces a table column; the row header
introduces the table row. This is to help make tables, whose first column is a
row-header, to be more accessible when the output is for XHTML. The default
is NoRowHeader. Here’s an example of a table where the FirstCol attribute
should be used:

Switch Location Setting

Hallway On

76 ID Workbench: IBMIDDoc User’s Guide and Reference

|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|

|||

||

Switch Location Setting

Kitchen Off

Bedroom On

And the markup:
<table pgwide="2" rowheader="firstcol">
<tgroup cols="2">
<colspec colname="col1">
<colspec colname="col2">
<thead>
<row>
<entry colname="col1" valign="top">Switch Setting
</entry>
<entry colname="col2" valign="top">Value</entry>
</row>
</thead>
<tbody>
<row>
<entry colname="col1">Hall switch</entry>
<entry colname="col2">On</entry>
</row>
<row>
<entry colname="col1">Kitchen switch</entry>
<entry colname="col2">Off</entry>
</row>
<row>
<entry colname="col1">Bedroom switch</entry>
<entry colname="col2">On</entry>
</row>
</tbody>
</tgroup>
</table>

A Few Simple Table Examples
Let’s look at a couple of simple tables. This section includes the IBMIDDoc
markup, and an approximation of the resulting formatted output.

A Simple Table
Let’s look at a simple IBMIDDoc table

Table 11. A simple example

Row 1, Cell 1 Row 1, Cell 2 Row 1, Cell 3; here’s a little
more text than the other cells
have

Row 2, Cell 1 Row 2, Cell 2 Row 2, Cell 3

Here’s its markup:
<table frame="all" pgwide="0">
<cap>A simple example</cap>
<tgroup cols="3" colsep="1" rowsep="1">
<colspec colname="col1" colwidth="1*">
<colspec colname="col2" colwidth="1*">
<colspec colname="col3" colwidth="1*">
<tbody>
<row>
<entry valign="top">Row 1, Cell 1</entry>
<entry valign="top">Row 1, Cell 2</entry>
<entry valign="top">Row 1, Cell 3; here’s a little

Chapter 7. Creating IBMIDDoc Tables 77

||

||

||
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

more text than the other cells have</entry>
</row>
<row>
<entry valign="top">Row 2, Cell 1</entry>
<entry valign="top">Row 2, Cell 2</entry>
<entry valign="top">Row 2, Cell 3</entry>
</row>
</tbody>
</tgroup>
</table>

A Simple Table with More Options
Now let’s take a similar table and add another column.

Table 12. Another simple table

Row 1, Cell
1

Row 1, Cell 2 Row 1, Cell 3; here’s a little more
text than the other cells have

Row 1, Cell
4

Row 2, Cell
1

Row 2, Cell 2 Row 2, Cell 3 Row 2, Cell
4

Here’s its markup:
<table frame="all" pgwide="0">
<cap>Another simple table</cap>
<tgroup cols="4" colsep="1" rowsep="1" style="BKM:(cols=’1* 2* 3* 1*’)">
<colspec colname="col1" colwidth="1*">
<colspec colname="col2" colwidth="2*">
<colspec colname="col3" colwidth="3*">
<colspec colname="col4" colwidth="1*">
<tbody>
<row>
<entry valign="top">Row 1, Cell 1</entry>
<entry valign="top">Row 1, Cell 2</entry>
<entry valign="top">Row 1, Cell 3; here’s a little
more text than the other cells have</entry>
<entry valign="top">Row 1, Cell 4</entry>
</row>
<row>
<entry valign="top">Row 2, Cell 1</entry>
<entry valign="top">Row 2, Cell 2</entry>
<entry valign="top">Row 2, Cell 3</entry>
<entry valign="top">Row 2, Cell 4</entry>
</row>
</tbody>
</tgroup>
</table>

A Simple Table with a Table Header and IBMIDDoc Elements
Now let’s take a similar table and add a THead element and some IBMIDDoc
Phrase elements with STYLE attribute specifications.

Table 13. Another sample table

Col #1 Col #2 Col #3 Col #4

Row 1, Cell
1

1. Row 1
2. Cell 2

Row 1, Cell 3; here’s a little more
text than the other cells have

Row 1, Cell
4

Row 2, Cell
1

Row 2, Cell 2 Row 2, Cell 3 Row 2, Cell
4

Here’s its markup:

78 ID Workbench: IBMIDDoc User’s Guide and Reference

<table frame="all" pgwide="0">
<cap>Another sample table</cap>
<tgroup cols="4" colsep="1" rowsep="1">
<colspec colname="col1" colwidth="1*">
<colspec colname="col2" colwidth="2*">
<colspec colname="col3" colwidth="3*">
<colspec colname="col4" colwidth="1*">
<thead>
<row>
<entry valign="top" rowsep="1">Col #1</entry>
<entry valign="top" rowsep="1">Col #2</entry>
<entry valign="top" rowsep="1">Col #3</entry>
<entry valign="top" rowsep="1">Col #4</entry>
</row>
</thead>
<tbody>
<row>
<entry valign="top">Row 1, Cell 1</entry>
<entry valign="top">
Row 1
Cell 2
</entry>
<entry valign="top">Row 1, Cell 3; here’s a little
more text than the other cells have</entry>
<entry valign="top">Row 1, Cell 4</entry>
</row>
<row>
<entry valign="top">Row 2, Cell 1</entry>
<entry valign="top">Row 2, Cell 2</entry>
<entry valign="top"><ph style="italic">Row 2, Cell
3</ph></entry>
<entry valign="top">Row 2, Cell 4</entry>
</row>
</tbody>
</tgroup>
</table>

A Complex Table with Row and Column Spans
Now let’s take a similar table and add NAMEST, NAMEEND, and MOREROWS
attribute values to change the look of the table. NAMEST and NAMEEND specify
the spanning of columns, and MOREROWS specifies the spanning of rows.

Table 14. Complex table example

Row 1, Cell 1 Row 1, Cell 2

Row 1, Cell 3 Row 1, Cell 4

Here’s its markup:
<table frame="all" pgwide="0" id="complxt"><cap>Complex table example</cap>
<tgroup cols="3">
<colspec colname="col1" colwidth="77*">
<colspec colname="col2" colwidth="100*">
<colspec colname="col3" colwidth="119*">
<tbody>
<row>
<entry namest="col1" nameend="col2">Row 1, Cell 1
</entry>
<entry colname="col3" morerows="1">Row 1, Cell 2</entry>
</row>
<row>
<entry colname="col1">Row 1, Cell 3</entry>
<entry colname="col2">Row 1, Cell 4</entry>

Chapter 7. Creating IBMIDDoc Tables 79

</row>
</tbody>
</tgroup>
</table>

A Complex Table Header
Here’s a complex table header. As in the previous example, NAMEST, NAMEEND,
and MOREROWS were used to combine the heading cells.

Head 1 Head 2

Sub 1 Sub 2 Sub 3

a b c d

Here’s it’s markup:
<table frame="all" pgwide="0">
<tgroup cols="4">
<colspec colname="col1">
<colspec colname="col2">
<colspec colname="col3">
<colspec colname="col4">
<thead>
<row>
<entry colname="col1" morerows="1" align="center">Head 1</entry>
<entry namest="col2" nameend="col4" align="center">Head 2</entry>
</row>
<row>
<entry colname="col2" align="center">Sub 1</entry>
<entry colname="col3" align="center">Sub 2</entry>
<entry colname="col4" align="center">Sub 3</entry>
</row>
</thead>
<tbody>
<row>
<entry colname="col1">a</entry>
<entry colname="col2">b</entry>
<entry colname="col3">c</entry>
<entry colname="col4">d</entry>
</row>
</tbody>
</tgroup>
</table>

Adding footnotes to a table
While you cannot have footnotes within a table using the FN tag, you can use
superscripts and a note list to have the same affect. For example, here’s a table
with some sample notes:

Sample1 And another2

Notes:

1. The first table note

2. And another table note.

Here is its coding:
<table pgwide="0">
<tgroup cols="2">
<colspec colname="col1">
<colspec colname="col2">

80 ID Workbench: IBMIDDoc User’s Guide and Reference

<tbody>
<row>
<entry colname="col1">Sample<ph style="superscript">1</ph></entry>
<entry colname="col2">And another<ph style="superscript">2</ph></entry>
</row>
<row>
<entry namest="col1" nameend="col2">
<notelist>
The first table note
And another table note.
</notelist></entry>
</row>
</tbody>
</tgroup>
</table>

Chapter 7. Creating IBMIDDoc Tables 81

82 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 8. The document structure of an IBMIDDoc document

This section illustrates the order and usage of elements in creating a document.
The high-level elements include:
v The IBMIDDoc tag itself (“About the IBMIDDoc tag”)
v Prolog (“About the prolog” on page 88)
v FrontM, front matter6 (“Front matter (FrontM)” on page 98)
v Body (already covered previously, see “Creating the body of your document” on

page 20)
v BackM, back matter(“About back matter (BackM)” on page 101)

This example gives an high-level view of the structure of an IBMIDDoc document:
<ibmiddoc>
<prolog>

...
</prolog>
<frontm>
...
</frontm>
<body>
<d>
...
</d>
</body>
<backm>
...
</backm>
</ibmiddoc>

About the IBMIDDoc tag
The IBMIDDoc tag contains information about the whole document. This includes
the document style, language used, security classification, and page-numbering
information.

Getting in style, the document style, that is
IBMIDDoc has a number of built-in styles. To use a style other than the default, set
the IBMIDDoc tag’s DocStyle attribute to one of these following values:

IBM8X11
8-1/2 by 11 inch style. Replaces BookMaster style IBMXAGD.

IBM7X9
7 by 9 inch style. Replaces BookMaster style IBMXGGD.

IBM2COL
8.5x11 style (2 column layout)

IBMCD
4.75x4.75 style (for CD Jewel Case booklets)

IBMREFC
Reference cards (3-5/8x9in.).

6. Some folks call this “don’t matter”, because customers seldom read it – do you read a preface?

© Copyright IBM Corp. 1992, 2001 83

IBM5X8
5.5x8.5 style (for hardware).

IBM4X6
4.25x6.25 style (for hardware).

IBM8X5
5.5x8.5 landscape style (for hardware).

IBM9X7
7x9 landscape style.

If you create a PDF from this style, the pages may switch between
landscape and portrait presentation in Adobe Acrobat Reader or Exchange.
Add the following lines to your PostScript file before distilling it to prevent
this from occurring:
/currentdistillerparams where {pop}
{userdict /currentdistillerparams {1 dict} put} ifelse
/setdistillerparams where {pop}
{userdict /setdistillerparams {pop} put} ifelse
<< /AutoRotatePages /All >> setdistillerparams

IBMLAND
Printer System’s landscape books. (Not for BookMaster)

IBMXAGD
User Guides (8.5x11in., A4); old BookMaster style.

IBMXARF
Reference (8.5x11in., A4); old BookMaster style. This can be replaced by
using a style of ibm8x11 and a layout of onecol.

IBMXGGD
Summary Guides (7-3/8x9in.); old BookMaster style.

TIV7X9
7x9 style for Tivoli®

This style creates automatic running headers for titles. The style puts Part,
Chapter, and Tivoli head 1 text in the RETKEY area. The STitle content, if
specified, replaces the Title content in the running heading.

TIV8X11
8.5x11 style for Tivoli

This style creates automatic running headers for titles. The style puts Part,
Chapter, and Tivoli head 1 text in the RETKEY area. The STitle content, if
specified, replaces the Title content in the running heading.

OBIPORT
5.5x8.5 style (for Options by IBM)

OBIWWA6P
4.25x5.75 style (for Options by IBM)

SMALLFLG
3.625x8.5 style (for hardware)

You can also vary the number of columns in the document. The IBMIDDoc tag has
a Layout attribute; it has these values:

LAYOUT=Default-Layout | OneCol | OffsetCol | TwoCol
Specifies the column-style for the book.

84 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|

Default-Layout
The section uses the default layout for the document style.

OneCol
The headings and text format across the entire page.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

TwoCol
The text formats in two columns. Headings format across the page or
with the two-column text.

You can vary the page layout at chapters and chapter-like elements. Just like on
the IBMIDDoc tag, you use the Layout attribute on these elements: D, lers, preface,
abstract, soa, legend, abbrev, bibilog, glossary, safety, IBMsafety, PNINDEX, and
MasterIndex.

Setting the IBM copyright
The dates for the IBM copyright are taken from the IBMCopyr attribute. You
typically enter either a single year or two years separated by a comma. Here’s the
setting for a new book, published for the first time in 1999:
<ibmiddoc ibmcopyr="1999">

Here’s the setting for a book that was originally published in 1985, and was last
published in 2000:
<ibmiddoc ibmcopyr="1985, 2000">

The date is printed in the edition notice; see “Notices and Edition notices” on
page 98.

Setting the security classification
Sometimes your document needs to be confidential. To make it so, set the
IBMIDDoc tag’s IBMSec attribute to IC.

You can also enter the security and other information in the SEC attribute. For
example, this shows the document as being confidential for company ABC. It also
includes a date and time stamp; which is very useful when you are preparing
multiple drafts for your reviewers.
<ibmiddoc sec="ABC Confidential - &date; &time;">

Setting page numbering to sequential or folio-by-chapter
Page numbering by chapter (known as folio-by-chapter) is a technique of
numbering where the chapter number (or in the case of appendixes, the appendix
letter) is prefixed to the page numbers, the figure numbers, and the table numbers.
Thus, the fifth page in chapter 3 is numbered 3-5, the second figure in chapter 7 is
numbered 7-2, and the fourth table in appendix E is numbered E-4. The page
numbers, figure numbers, and table numbers are reset to 1 at the beginning of each
chapter.

Adding the PageNumber=FBC attribute to the IBMIDDoc tag gives you
folio-by-chapter page numbering.

Chapter 8. The document structure of an IBMIDDoc document 85

|
|

|
|

|
|
|
|

|
|
|

|
|
|
|

|
|
|
|

|

If your book has more than one volume, see “Creating multiple volumes for a
book”.

Creating multiple volumes for a book
Sometimes you have a book that is just huge. To have the book printed, you need
to divide it into volumes. To do this, you need to add the MULTIVOL=Index-Folio
attribute to the IBMIDDoc tag. You can use either sequential or folio-by-chapter
page numbering; see “Setting page numbering to sequential or folio-by-chapter” on
page 85.

The Index-Folio setting adds X- as a prefix for the page numbers in the index and
starts the page numbering from 1.

The remaining steps to create a set of multiple volume books are as follows:
1. You format your book as one large book, to get the table of contents,

cross-reference, and index page numbers correct.
2. If your multi-volume books also have different cover pages and possibly order

numbers, you will need to create mini-documents with that cover information.
3. You then use Adobe Acrobat to separate your large document into pieces;

adding the separate pieces to the mini-documents.

A typical set of volumes would contain:
1. Volume 1

a. cover
b. edition notice
c. table of contents, figure list, table list (for entire set)
d. chapter 1 through 10, for example
e. index (for entire set)

2. Volume 2
a. cover
b. edition notice
c. table of contents, figure list, table list (for entire set)
d. chapter 11 through 20, for example
e. index (for entire set)

Controlling generated chapter, part, and appendix titles
Sometimes you may want to change the way “Chapter” or “Appendix” is added to
your headings. The IBMIDDoc tag attributes PartPrefix ChapPrefix AppPrefix have
attributes that allow you to control the form of this generated text. The have the
basic form show below:

Text-Part, Text-Chap, or Text-App
This is the default. This outputs: “Part 1.” for part headings, “Chapter 1.” for
chapter headings, or “Appendix A.” for appendix headings.

Numonly-Part, Numonly-Chap, or Numonly-App
This is omits the word from the number. This outputs: “1.” for part headings,
“1.” for chapter headings, or “A.” for appendix headings.

None-Part, None-Chap, or None-App
This is omits the word and the number from the heading. Only the heading
text itself appears.

86 ID Workbench: IBMIDDoc User’s Guide and Reference

Specifying the language of the document
The Language attribute specifies the language in which a document is written. It
also specifies how the IBMIDDoc-generated text should be printed.

The valid values for the Language attribute on IBMIDDoc element are:
v BDUTCH or nl_BE
v BFRENCH or fr_BE
v BPORTUGUESE or pt_BR
v BULGARIAN or bg_BG
v CATALAN or ca_ES
v CENGLISH or en_CA
v CFRENCH or fr_CA
v CROATIAN or hr_HR
v CZECH or cs_CZ
v DANISH or da_DK
v DUTCH or nl_NL
v ENGLISH, en_US, or USENGLISH
v ESTONIAN or et_EE
v FINNISH or fi_FI
v FRENCH or fr_FR
v GERMAN or de_DE
v GREEK or el_GR
v HUNGARIAN or hu_HU
v ICELANDIC or is_IS
v ITALIAN or it_IT
v JAPANESE or ja_JP
v KOREAN or ko_KR
v LATVIAN or lv_LV
v LITHUANIAN or lt_LT
v MACEDONIAN or mk_MK
v NORWEGIAN or no_NO
v POLISH or pl_PL
v PORTUGUESE or pt_PT
v ROMANIAN or ro_RO
v RUSSIAN or ru_RU
v SCHINESE or zh_CN
v SERBIAN or sr_SP
v SFRENCH or fr_CH
v SGERMAN or de_CH
v SITALIAN or it_CH
v SLOVAK or sk_SK
v SLOVENIAN or sl_SI
v SPANISH or es_ES
v SWEDISH or sv_SE
v TCHINESE or zh_TW
v THAI or th_TH
v TURKISH or tr_TR
v UKENGLISH or en_GB

Bookmarks for PDF tables of contents
Adobe Acrobat PDF documents can have bookmarks generated that match the
document’s table of contents. This creates a very usable method of navigating the
PDF file. The Xyvision PostScript formatter automatically adds these bookmarks.

Chapter 8. The document structure of an IBMIDDoc document 87

|

Licensed and restricted materials
If you have a licensed or restricted document, use the CLASSIF attribute to
indicate this. It is not within the scope of this book to explain what classification
category is to be used for a particular document. The attribute looks like this:

CLASSIF= CONFRES | RES | LIC
Identifies the classification of restricted materials.

CONFRES
Confidential restricted material

RES
Restricted material

LIC
Licensed material

CLASSIF=LIC for the style TIV8x11, causes that Tivoli style to include the
licensed statement on each page and on the cover.

Line justification for DBCS languages
This is used only for DBCS (double-byte character set) languages. While this is not
supported at this time, you can have it in the source. This is used for left and right
justification of text; the preferred format for DBCS languages. You specify the
justification control this way:
<ibmiddoc style="xpp:(justify)">

The default is to not justify; the values nojustify and ragged indicate that.

About the prolog
The prolog is where we put information (marked up with special tags) about the
whole document. For instance, the title, the author’s name and address, and so
forth.

Here is a simple prolog:
<prolog>
<ibmbibentry><doctitle><titleblk>
<title>My Cute, Little Document</title>
</titleblk></doctitle>
<ibmdocnum>SC99-1234-01</ibmdocnum>
<authors>
<author><person>
<name>Fred Mertz</name>
<address>East Overshoe, SD</address>
</person></author>
</authors>
</ibmbibentry>
</prolog>

Not all the tags you can use in the prolog are shown here. We’ll discuss the ones
shown first and then tell you about the others. The prolog itself does not cause
anything to be printed; instead, it is a place to collect information that will be used
in other places — for example, on the draft title page when the TIPAGE value is
used.

Document title
The document’s title is contained in the IBMBibEntry and Title elements. If the
document title is short, you enter it with the Title element alone. If you want

88 ID Workbench: IBMIDDoc User’s Guide and Reference

|

|
|
|

|
|

|
|

|
|

|
|

|
|

|

multiple lines in your title, you use the Title element and insert your lines as you
want them formatted; putting a carriage return after each line to be split.

So a short title would be entered like this:
<title>Tom Sawyer</title>

whereas a long title would be entered like this:
<title>The Do’s and Don’ts of
Caring for Your Fruit Bat</title>

If your title is very long, you may also want to use the STITLE element to get a
short title (used in some document styles for the even-page running foot). For
example:
<title>The Do’s and Don’ts of
Caring for Your Fruit Bat</title>
<stitle>Fruit Bat User’s Guide</stitle>

To have the title page appear in your document, see “Front matter (FrontM)” on
page 98.

IBMBibEntry contains all of the bibliographic information for the document. It can
contain the following:
v Authors
v DocTitle
v FileNum
v IBMDocNum
v IBMPartNum
v ISBN
v PublicID
v Publisher
v RetKey
v CoverDefs (“Adding to the front or back cover (CoverDef)” on page 91)

Document number
You enter the document number, if you have one, with the IBMDocNum element;
after the document title. For example:
</doctitle>
<ibmdocnum>SC99-1234-01</ibmdocnum>

The last two digit-number is commonly called the “dash-level” and indicates how
many times the book as been revised. This is always a two-digit number.

Author and Address
The Author and Address elements contain the author’s name and address
information. The address is entered using as many lines as needed, surrounded by
Address and its end tag. The text for each address line must be on a single line.
These go within the Authors tag; just before the ending IBMBibEntry tag. For
example:
<authors>
<author><person>
<name>Fred Mertz</name>
<address>
127 East Main Street,

Chapter 8. The document structure of an IBMIDDoc document 89

East Overshoe, SD <postalcode>59134</postalcode>
</address>
</person></author>
</authors>
</ibmbibentry>

Date
The CritDates element contains a date for your document. For example, this
specifies a date of September 9th, 2000:
</ibmbibentry>
<critdates>
<critdate>
<date>September 9th, 2000</date>
<desc>Date of publishing.</desc>
</critdate>
</critdates>

The current date prints on the draft title page. This critdate does not change the
setting of the date symbol. The Critdate goes within Critdates; which comes after
IBMBibEntry. Currently, it does not have much use.

Improving the searching of PDF books
Several prolog items will help in the focused searching of Adobe Acrobat PDF
books. Ensure you have these items; they are passed through to the PDF
document’s “Information” dialog:

IBMIDDoc Element PDF Document Information field

Library title (or stitle): document title (or
stitle)

Title

Desc in IBMBibEntry Subject

IBM, Tivoli, or blank (from company
attribute on IBMIDDoc)

Author

Retkey in IBMBibEntry (after ending
DocTitle)

Keywords

“XPP” Creator

(blank -- automatic by Distiller) Producer

(current date) Created

(blank -- automatic by Distiller Modified

Other prolog elements
The Prolog contains all tracking and control information for the document. Prolog
can contain a number of elements, including:
v Approvers (similar to Authors)
v BibEntryDefs (Chapter 14, “Bibliographies and citations” on page 141)
v CopyrDefs (“Using CopyRDefs” on page 91)
v GLDefs (“Using GLDefs” on page 96)
v IBMProdInfo, IBM product information (“Using IBMProdInfo” on page 92)
v IDXDefs (Chapter 11, “Indexing” on page 115)
v LDescs (Chapter 12, “All about linking” on page 129)
v Maintainer (“Using reader’s comment form (RCF)” on page 103)
v MasterIndexInfo (“Creating a master index” on page 125)

90 ID Workbench: IBMIDDoc User’s Guide and Reference

|

|
|

|
|
|
|
|
|
|

|
|
|

v ObjLib (“Reusing elements from an object library” on page 191)
v Owners (similar to Authors)
v ProdInfo
v PropDefs
v QualifDefs, qualification definitions (“Qualifying information” on page 49)
v RevDefs defines the revisions and marks that can be used in the document

(“Defining Revisions in the RevDefs Element” on page 109).

Adding to the front or back cover (CoverDef)
You use the CoverDefs element to define cover artwork for your book’s front and
back covers. It is contained in the IBMBIBENTRY; the title for your book. For
example:
<!entity front1 system "front1.eps" ndata graphics>
<!entity back1 system "back1.eps" ndata graphics>
...
<prolog><ibmbibentry><doctitle><titleblk>
<title>Sample Cover</title>
</titleblk></doctitle>
<coverdef>
<frontcover><mmobj><objref obj="front1">
<textalt>System/X cover artwork</textalt>
</mmobj></frontcover>
<backcover><mmobj><objref obj="back1">
<textalt>System/X back cover artwork</textalt>
</mmobj></backcover>
</coverdef>
</ibmbibentry></prolog>

You can also add text to the front cover. Inside the FrontCover tag, insert the PBLK
tag and any content that you want to appear on the cover. For example:
<frontcover>
<pblk style="lblbox"><title>Notice</title>
<p>
The IBM License Agreement for Machine Code is included in this book.
Carefully read the agreement. By using this product you agree to
abide by the terms of this agreement and applicable copyright laws.
</p>
</pblk>
</frontcover>

Using CopyRDefs
If you have copyrighted material from some other company, you need to enter that
company’s information in the document prolog.

The CopyRDefs element contains the primary copyright information for the
document. Use the CopyR element to specify this primary copyright information.

The primary CopyR element must have an ID attribute. This ID is referred to on
the IBMIDDOC element using the Copyr attribute, as shown in the example that
follows.
<IBMIDDOC COPYR="ibmprim">
<PROLOG>

...
<COPYRDEFS><COPYR ID="ibmprim">
<P>IBM Corporation

1994, 1995
All Rights Reserved</P></COPYR>

Chapter 8. The document structure of an IBMIDDoc document 91

</COPYRDEFS>

...
</PROLOG>

...
</IBMIDDOC>

Using IBMProdInfo
The IBMProdInfo element contains the IBM-specific product information about the
product described in the document.
v ProdName, product name
v Version
v Release
v ModLvl, modification level
v IBMPgmNum, IBM program number
v IBMFeatNum, IBM feature number

For example:
<ibmprodinfo>
<prodname>System/36</prodname>
<version>2</version>
<release>3</release>
<modlvl>1</modlvl>
<ibmprognum>223-3330</ibmprognum>
</ibmprodinfo>

Using Property Definitions (PropDefs)
PropDefs contains elements that define properties that can be used by other
elements in your document. These properties apply to elements contained within
the document or division with which the property definitions are associated.

All property definition elements can be used in PropDefs. These elements include:
v ClassDef (“Defining Element Classes” on page 202)
v PropDef (“Defining Element Properties” on page 201)
v LersDef (Chapter 17, “Defining Modular Information” on page 175)
v ModInfoDef (Chapter 17, “Defining Modular Information” on page 175)
v MsgItemDef (“Message and code lists” on page 38)
v PropGroup

PropDefs and Common Property Values
Use the PropDef element to define common property values. In the absence of
ELETYPES or ID attributes, the property specified applies to all elements. These
common properties are specified on common attributes. Examples of such common
attributes are:
v Props
v Status
v Style

Limiting the Scope of PropDef Definitions
The global effect of PropDef definitions can be limited by specifying PROPNAME
and ELETYPES. Scoping can also be limited by using a different set of PropDefs in
each DProlog, instead of having only one set in the Prolog of the document.

92 ID Workbench: IBMIDDoc User’s Guide and Reference

For example, specifying ELETYPES=’UL’ on a PropDef element causes the other
properties specified on the same PropDef element to apply to all UL elements.

The PROPNAME attribute with a value of P001 provides a name to refer to when
you want to apply the particular property definition to a specific element in your
document using the PROPSRC attribute.

If both ELETYPES and PROPNAME are specified, the properties specified on the
PropDef element apply to all of the specified element types, and may be referred
to by the PROPNAME value.

If you wish that all figures be boxed figures, you can use the property definition
described in the examples that follow.

...
<PROLOG>...
<PROPDEFS>
<PROPDEF PROPNAME="wider" ELETYPES="fig"

STYLE="BKM:(width=page place=inline frame=rules)">
</PROPDEF>
</PROPDEFS>

All Figure elements will now be framed.

In the next example, the PropDef has an ID of P001, and can be referenced by any
element where such properties are valid.

...
<PROLOG>...
<PROPDEFS>
<PROPDEF PROPNAME="P001" ELETYPES="fig"

STYLE="BKM:(width=page place=inline frame=rules)">
</PROPDEF>
</PROPDEFS>

The document markup for a figure that includes PowerPC artwork would look like
the example that follows.
<FIG ID="Unit" PROPSRC="P001">
<FIGCAP>The IBM PowerPC CPU</FIGCAP>
<MMOBJ>
<OBJREF OBJ="ppcfig">

...
</MMOBJ>
</FIG>

For hardcopy documents, you may have some column-wide figures. Instead of
specifying the override on each column-wide figure, define your figure PROPDEF
tags like this. The first PROPDEF (without the propname)sets the default for all
figures; the second PROPDEF sets the column-wide override.
<propdef eletypes="fig" style="bkm:(place=inline)">
</propdef>
<propdef propname="colfig" eletypes="fig" style="bkm:(width=column place=inline)">
</propdef>

To get a column-wide figure, you specify ″COLFIG″ on the PROPSRC attribute of
that figure. For example:
<fig propsrc="colfig">

Chapter 8. The document structure of an IBMIDDoc document 93

By default, the BookMaster output process places these at the top of the next page.
All other output processes place them inline. Use the INLINE override. For
example:
style="bkm:(width=column place=inline)"

For wide figures in BookManager BOOKs, you may need to use the DWIDTH
attribute. For example:
style="bkm:(width=column place=inline dwidth=100)"

For more information about using PropDefs, see Chapter 20, “Property and Class
Definitions” on page 201.

Using PropDefs for Conditional Processing
Properties may be used to include or exclude information. This is called
property-based retrieval.

For example, you can define a complex set of properties for doing conditional
processing using PropDef, and then use those values for other elements by
referring to the PropDef element, rather than having to explicitly specify those
attributes on each element.

In the example that follows, a PropDef element is used to define the properties for
including either RS6000 or PowerPC information.
<!DOCTYPE IBMIDDOC PUBLIC "+//ISBN 0-933186::IBM//DTD IBMIDDoc//EN"
"ibmiddoc.dtd"
<IBMIDDOC COPYR="ibmprim"><PROLOG>
</PROLOG>
<PROPDEFS>
<PROPDEF PROPNAME="ppc" PROPS="POWERPC #AND #NOT RS6000"
<DESC>This PropDef will be referred to when PowerPC information is
to be processed.</DESC>

</PROPDEF>
<PROPDEF PROPNAME="rs6" PROPS="RS6000 #AND #NOT POWERPC"
<DESC>This PropDef will be referred to when RS6000 information is
to be processed.</DESC>

</PROPDEF>
</PROPDEFS>
</PROLOG>
<BODY>
<D PROPSRC="PPC">
<DPROLOG>
<TITLEBLK>
<TITLE>Installing a 128-Bit Video Card in the IBM PowerPC</TITLE>
</TITLEBLK>
</DPROLOG>
<DBODY><P>This procedure describes how to insert the 128-Bit
video card in the IBM PowerPC.</P>
<PROC>

<TITLEBLK><TITLE>Installing a 128-Bit Video Card</TITLE></TITLEBLK>
<PROCENTRY>

...
</PROC>
</DBODY>
</D>

...
<D PROPSRC="RS6">
<DPROLOG>
<TITLEBLK>
<TITLE>Installing a 128-Bit Video Card in the RS6000</TITLE>
</TITLEBLK>

94 ID Workbench: IBMIDDoc User’s Guide and Reference

</DPROLOG>
<DBODY><P>This procedure describes how to insert the 128-Bit
video card in the RS6000.</P>
<PROC>
<TITLEBLK><TITLE>Installing a 128-Bit Video Card</TITLE></TITLEBLK>
<PROCENTRY>

...
</PROC>

</DBODY>
</D>

...
</BODY>

...
</IBMIDDOC>

Using LDescs and Nameloc
LDescs contains elements to describe links and the locations used in these links.

Contained location elements can:
v provide an indirect reference to another SGML element. This protects the link(s)

from changes made to the target element.
v associate a single ID with multiple elements
v support references to other documents, and to elements in other documents
v support references to non-SGML information.

For example, to link to multiple elements in the same document, you can use the
Nameloc element to contain a list of IDs that are used to identify the information
topic. In the example that follows, the LINKEND attribute refers to the Nameloc
element with the ID=DDInfo. The elements in the document that have the
ID=aboutDan and ID=REHero are linked to any link element which references the ID
DDInfo using the LINKEND attribute.
<IBMIDDOC>
<PROLOG>
<IBMBIBENTRY>
<DOCTITLE>
<TITLEBLK><TITLE>Our Saturday Heroes</TITLE>
</TITLEBLK>
</DOCTITLE>
</IBMBIBENTRY>
<LDESCS>

<NAMELOC ID="DDInfo">
<NMLIST>AboutDan REHero</NMLIST>
</NAMELOC>

</PROLOG>
<BODY>
<D>
<DPROLOG>
<TITLEBLK><TITLE>Movie Serials</TITLE>
</TITLEBLK>
</DPROLOG>
<DBODY>
<P>The <L LINKEND="ddinfo">Dan Danger serial hero</L>

was very popular in the 1940s.</P>
<D>
<DPROLOG>
<TITLEBLK><TITLE>Male Heros</TITLE>
</TITLEBLK>
</DPROLOG>

Chapter 8. The document structure of an IBMIDDoc document 95

<DBODY>
<P ID="aboutdan">Looking back, we now see Dan Danger as the
quintessential Saturday morning serial hero.</P>
<D>
<DPROLOG ID="REHero">
<TITLEBLK><TITLE>Heroes and Villains</TITLE>
</TITLEBLK>
</DPROLOG>
<DBODY><P>More stuff about heroes....</P>
</DBODY>

</D>
</DBODY>
</D>
</DBODY>
</D>
</BODY>
</IBMIDDOC>

Using GLDefs
Use GLDefs to contain GLEntry elements that can be used by reference from
anywhere in your document. For more information about using GLEntry, see
Chapter 13, “Glossaries” on page 137.

In the next example, terms are defined in GLDefs in the Prolog, and referred to by
CONLOC reference within the document.
<PROLOG>...
<GLDEFS>
<GLENTRY>
<TERM ID="mainec">Maine Coon</TERM>
<DEFN>A friendly and gentle breed of cat.</DEFN>
</GLENTRY>
<GLENTRY>
<TERM ID="ragdoll">Rag Doll</TERM>
<DEFN>A gentle breed of cat that may be even

more docile than the Maine Coon.
</DEFN>
</GLENTRY>
</GLDEFS>
</PROLOG>
<BODY>
<D>
<DPROLOG>
<TITLEBLK>
<TITLE>Movie Serials
</TITLE>
</TITLEBLK>
</DPROLOG>
<DBODY>
<P>The <L LINKEND="ddinfo">Dan Danger serial hero</L>

was very popular in the 1940s. Dan’s sidekick was a
<TERM CONLOC="mainec"> named Elvis.</P>

...
</IBMIDDOC>

Using BibEntryDefs
BibEntryDefs contains BibEntry, LibEntry, IBMBibEntry, and IBMLibEntry elements.

An IBMIDDoc document requires a IBMBibEntry element, which contains the
bibliographic information about the document.

96 ID Workbench: IBMIDDoc User’s Guide and Reference

BibEntryDefs is an optional Prolog element that can contain a variety of
bibliographic entries that can be referred to throughout the document, or to build a
bibliography by reference.

In the example that follows, BibEntryDefs contains several IBMBibEntry elements.
The first IBMBibEntry is used to contain information about the containing
document. The other IBMBibEntry elements contain entries for other referenced
documents, and an IBMBibEntryDef that uses the CONLOC attribute to get its
content from the containing document’s IBMBibEntry. The example also includes
an IBMLibEntry element.
<PROLOG>
<IBMBIBENTRY ID="BOOK0">
<DOCTITLE>
<TITLEBLK><TITLE>IBMIDDoc USER’S GUIDE</TITLE></TITLEBLK>
</DOCTITLE>
<AUTHORS>
<AUTHOR>
<PERSON>
<NAME>FRED MERTZ</NAME>
<ADDRESS>
<INTERNET>fredm@usa.ibm.com</INTERNET>
</ADDRESS>
</PERSON>
</AUTHOR>
</AUTHORS>
<IBMDOCNUM>SH21-0783-02</IBMDOCNUM>
</IBMBIBENTRY>...

<BIBENTRYDEFS>
<IBMBIBENTRY ID="BOOK1">
<DOCTITLE>
<TITLEBLK><TITLE>IBMIDDoc MIGRATION GUIDE</TITLE>
</TITLEBLK>
</DOCTITLE>
</IBMBIBENTRY>
<IBMBIBENTRY ID="BOOK2">
<DOCTITLE>
<TITLEBLK><TITLE>IBMIDDoc REFERENCE GUIDE</TITLE></TITLEBLK>
</DOCTITLE>
</IBMBIBENTRY>
<IBMBIBENTRY ID="BOOK3">
<DOCTITLE>
<TITLEBLK><TITLE>IBMIDDoc TUTORIAL </TITLE></TITLEBLK>
</DOCTITLE>
</IBMBIBENTRY>
<IBMLIBENTRY ID="IDDOCLIB">
<LIBRARY>
<TITLEBLK><TITLE>IBMIDDOC</TITLE></TITLEBLK>
</LIBRARY>
<PUBLISHER>
<CORPNAME>IBM</CORPNAME>
</PUBLISHER>
<CONTAINEDDOCS BIBIDS="BOOK1 BOOK2 BOOK3">
</IBMLIBENTRY>
</BIBENTRYDEFS>

</PROLOG>

For more information about IBMIDDoc bibliographic elements, see Chapter 14,
“Bibliographies and citations” on page 141.

Chapter 8. The document structure of an IBMIDDoc document 97

Front matter (FrontM)
The front matter contains the title page, notices (such as the edition notice), the
preface, the summary of changes, the table of contents, the table list, and the figure
list. The elements that can be used in FrontM include:
v EdNotices (see “Notices and Edition notices”)
v TOC (see “Table of contents” on page 99)
v FigList (see “List of figures” on page 100)
v TList (see “List of tables” on page 100)
v Preface (see “The preface” on page 100)
v SOA (see “Summary of changes” on page 100)
v Abbrev (abbreviations), Abstract, Legend, and others (see)
v D, divisions
v IBMSafety (see “IBM Safety text” on page 101)
v Safety (see “IBM Safety text” on page 101)

The FrontM Style attribute can specify the following values using the Display
keyword. You specify these in any combination.

TIPAGE
Causes a draft title page to appear (this should not be used for final
camera-ready output).

COVER
Causes a cover, inside title page, and back cover page to appear.

SPINE
Causes the spine to appear after the back cover. The spine contains the
IBM Logo, Library, Title, and Version number.

OLDSPINE
Causes the spine to appear after the back cover. The spine Includes the
IBM Logo, Library, Title, Version number, and document number.

NORECYCLE
Prevents the recycle logo form appearing on the back cover. Removes the
recycled paper logo and text from the back cover of a US English
document

REGLOGO
This uses a registered logo on the back cover even when the PrtLoc
element is used in the document.

For example, this causes a draft title page, the cover, inside cover, back cover, and
spine to be output as part of your document:
<FRONTM STYLE="display=’TIPAGE COVER SPINE’">

Notices and Edition notices
Anything you want to put on the back of the title page are known collectively as
“notices”. Some documents have only an edition notice, which goes at the bottom
of the back of the title page; others have notices in addition to the edition notice.

The edition notice involves the EDNotice tag and the Title tag. The Title tag is used
immediately following the EDNotice tag, and specifies the text of the heading for
the edition notice. A sample edition notice might look like this:

98 ID Workbench: IBMIDDoc User’s Guide and Reference

<ibmiddoc ibmcopyr="1996, 1999">
...
<ednotices><title>First Edition (June 1997)</title>
<p>This edition applies to the IBMIDDoc language,
Version 4.2, and to all subsequent releases
and modifications until otherwise indicated in new
editions.</p>
</ednotices>

Look at the page following this book’s title page to see what IBMIDDoc does with
the edition notice. The EDNotice end tag brings in the copyright line, if the
IBMCopyr attribute was specified on your IBMIDDoc tag (or if the COPRNOTE
tag is used).

Other notices
If you have other things to put on the back of the title page besides the edition
notice, put them all within a NOTICES tag and its matching end tag before the
EDNotice tag (if there is one). It might look like this:
<notices><pblk style="lblbox"><title>Note</title>
<p>Before using this information, be sure to read
the general information under <xref refid="notices">.
</p>
<p>This manual was produced using IBMIDDoc SGML, the
Epic editor, and processed for print and online using
the ID Workbench.</p>
</pblk></notices>
<ednotices>

The NOTICES tag (with its end tag) is actually allowed anywhere in your
document. If you put it before the EDNotice tag, the notice associated with it
appears on the back of the title page.

Table of contents
The TOC contains the table of contents the document. You can choose to use the
GendTitle, for which the title text is generated automatically, or you can enter your
own title for this special division by using the Title element.

Typical markup for a TOC:
<toc><gendtitle></toc>

A TOC with a heading you’ve specified:
<toc><titleblk><title>
Here’s what’s in my cool, little booklet
</title></titleblk></toc>

You can control which heading levels appear in the table of contents by using the
MAXTOC attribute on the IBMIDDoc tag. For example, the default for the style
IBM8X11 is to show headings in the table of contents to heading level 3. Specifying
the following will include divisions to heading level 4 to appear:
<ibmiddoc maxtoc="4" docstyle="ibm8x11">

You can also control which headings appear in a table of contents by using the
TOC attribute on the Division or other heading tag.

To create a partial table of contents for a part or chapter; see “Partial table of
contents” on page 24.

Chapter 8. The document structure of an IBMIDDoc document 99

|
|

List of figures
Use the FigList element to contain a list of figures that appear in the document.
You can choose to use the GendTitle, for which the title text is generated
automatically, or you can enter your own title for this special division by using the
Title element.

Typical markup for a FigList:
<figlist><gendtitle></figlist>

List of tables
Use the TList element to contain a list of tables that appear in the document. You
can choose to use the GendTitle, for which the title text is generated automatically,
or you can enter your own title for this special division by using the Title element.

Typical markup for a TList:
<tlist><gendtitle></tlist>

The preface
Use the Preface element to contain explanatory or preparatory information about
the document. As with other FrontM elements, you may use the GendTitle element
or provide a unique title by using the TitleBlk element. Enter the preface text using
the same rules you follow when creating any other division.
<preface>
<specdprolog><gendtitle></specdprolog>
<dbody>
<p>This manual...</p>
</dbody>
</preface>

If you don’t want to use the generated title, you can enter another title within a
TitleBlk element.
<preface>
<specdprolog><titleblk>
<title>About this book</title>
</titleblk></specdprolog>
<dbody>
<p>This manual...</p>
</dbody>
</preface>

Summary of changes
Use the SOA element to contain a list or description of the important information
that has been changed or added since the last revision of the document. SOA is
valid in FrontM (recommmended) and BackM. For example:
<soa>
<specdprolog><titleblk><title>What’s new and different
</title></titleblk></specdprolog>
<dbody>
<p>Changes since the last edition include...</p>
</dbody>
</soa>

Special sections
There are a number of special sections that often occur in publications, typically in
either the front matter or the back matter. IBMIDDoc recognizes these special
sections (as well as the preface, which we’ve already covered):

100 ID Workbench: IBMIDDoc User’s Guide and Reference

Special Section Tag

List of Abbreviations ABBREV

Abstract ABSTRACT

Bibliography BIBLIOG

Legend LEGEND

IBM Safety text
Use IBMSafety to contain any IBM-specific safety concerns or issues that are
addressed in your information.
<FRONTM>
<IBMSAFETY SPEC="AUTO">
<GENDTITLE>
</IBMSAFETY>
</FRONTM>

Note: Not supported by Xyvision.

About back matter (BackM)
The BackM element can contain Appendicies, the bibliography, glossary, index, part
number index, and Divisions.

The Xyvision and BookMaster transforms provide a part separator for the back
matter when the body of the document contained a PART tag. If you want to
suppress the automatically-generated part separator, use the following coding on
the BACKM tag:
<backm style="xpp:(nopart)">

Using appendix
The Appendix element contains divisions that contain appendix information.
Appendix is valid in BackM.

You must enter titles for the appendixes. For example:
<BACKM>
<APPENDIX>
<D>
<DPROLOG>
<TITLEBLK>
<TITLE>Whantoozler Tuning Parameters</TITLE>
</TITLEBLK>
</DPROLOG>
<DBODY>
<P>There are many settings that you can adjust to

improve Whantoozler performance.
</P>
</DBODY>
</D>
</APPENDIX>
</BACKM>

Using glossary
Use the Glossary element to contain a list of the glossary terms for the document.
You can choose to use the GendTitle, for which the title text is generated
automatically, or you can enter your own title for this special division by using the
Title element. Glossary should contain a GL element, which can contain an explicit

Chapter 8. The document structure of an IBMIDDoc document 101

list of GLEntry elements, or can use the AUTO value on the SPEC attribute. The
AUTO value on the SPEC attribute causes the GL to contain a list of all the
GLEntry elements in the document. AUTO is the default value for the SPEC
attribute, and is the usual way to create a list of GLEntry elements in a GL.
<BACKM>
<GLOSSARY>
<SPECDPROLOG>
<GENDTITLE>
</SPECDPROLOG>
<DBODY>
<GL> ... </GL>
</DBODY>
</GLOSSARY>
</BACKM>

See Chapter 13, “Glossaries” on page 137 information about glossary.

Using bibiography (Bibliog)
Use the Bibliog element to contain a list of documents related to the document.
Bibliog is valid in both FrontM and BackM.

Bibliog should contain the BibList element, which can contain an explicit list of
BibEntry elements.

You can choose to use the GendTitle, for which the title text is generated
automatically, or you can specify the title of the Bibliog (″Related Publications″)
using the TitleBlk elements. For example:
<bibliog>
<specdprolog><gendtitle></specdprolog>
<dbody>
<biblist><bibentry><doctitle><titleblk><title>My Nice
Book</title></titleblk></doctitle></bibentry>
<bibentry><doctitle><titleblk><title>Your Nice Book
</title></titleblk></doctitle></bibentry>
</biblist>
</dbody></bibliog>

See Chapter 14, “Bibliographies and citations” on page 141 for more information.

Using part number index (PNIndex)
A Part Number Index can be automatically generated by including the PNIndex
element in the BackM element. In most cases, you will use the GendTitle element
to include the system-defined title for the PNIndex.
<PNINDEX><GENDTITLE></PNINDEX>

For more information on these, see Chapter 23, “Creating parts catalog lists” on
page 215.

Using Index
The Index element content is normally generated automatically at processing time
from the index tags you’ve sprinkled throughout the source.
<INDEX><GENDTITLE></INDEX>

For more information about creating indexes, see Chapter 11, “Indexing” on
page 115.

102 ID Workbench: IBMIDDoc User’s Guide and Reference

The Index should be the last item that has content in a document. Only the
reader’s comment form should follow the index.

Using reader’s comment form (RCF)
A Reader Comment Form can be automatically generated by including the RCF
element in the BackM element. In most cases, you will use the GendTitle element
to include the system-defined title for the RCF. There should no longer be a
“Contacting IBM” section before the RCF; that now belongs in the preface.

For the RCF to be generated, you need to specify the MAINTAINTER element
information in the prolog of your document:
<maintainer>
<corp>
<corpname>IBM Corporation</corpname>
<address>ATTN: Dept 542
3605 HWY 52 N
Rochester, MN
<postalcode>55901-9986</postalcode>
<phone equip="fax">1-800-555-1212</phone></address>
</corp>
</maintainer>

In the back matter, you need to include the RCF element; for example:
<backm>
<rcf><gendtitle></rcf>
</backm>

Chapter 8. The document structure of an IBMIDDoc document 103

104 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 9. Using definition tags

There are a number of elements that occur in IBMIDDoc documents that have
these properties:
v There are many things to say when describing the elements (that is, they have

many attributes).
v The element is likely to occur many times in the same document, using the same

(or nearly the same) set of attributes.

We would all like to save time in marking up these documents. Particularly, we’d
like to save time when we change our minds about the values of the attributes we
want to use. Wouldn’t it be nice to be able to do this in one place rather than
search through the document and change it in all places that it occurs?

To allow you to describe things once and then use the descriptions repeatedly,
IBMIDDoc provides a number of “definition” tags. They are all recognizable
because their names end with the letters “DEF.” The tags and their corresponding
definition tags are shown in Table 15.

Table 15. Tags and corresponding xxDEF tags

Element
Corresponding
DEF Element xxDEF Tag Attributes

DL DLDEF DefName, Props, LineSpace, TermWidth,
TermStyle, HeadStyle

FIG FIGDEF DefName, Props, Frame, ScalePct, PgWide

GL GLDEF DefName, Props, LineSpace, RetKey

LERS LERSDEF DefName, Props, Sep, Retkey, Auth, Comments,
Context, Defaults, ErrCond, Examples, Flags,
Format, Intrep, Messages, Other, Parms, Process,
Purpose, Restrict, Results, Retcodes, SysEnv, Usage,
Version, ClassName, Conloc, ID, Rev, Status, Style,
HyTime, RefType, InfoMast

MSGLIST MSGLDEF DefName, Props, Layout, RetKey

NOTELIST OLDEF DefName, Props, LineSpace.
An OLType attribute from any OLDEF tag is
ignored because NoteLists have no OLType
attribute..

OL OLDEF DefName, Props, LineSpace, OLType

PARML DLDEF DefName, Props, LineSpace, TermWidth,
TermStyle, HeadStyle

SCREEN SCREENDEF DefName, Props, PgWide LineLength

SYNTAX SYNTAXDEF DefName, Props, SynStyle, ScalePct, PgWide

UL ULDEF DefName, Props, LineSpace, ULType

XMP XMPDEF DefName, Props, PgWide

We’re not going to describe all of these tags and their attributes here; we just want
you to understand how definitions work so that we don’t have to explain it each
time we describe one of the tags above. The definition tags set the common

© Copyright IBM Corp. 1992, 2001 105

|

|

|
|

|
|

|
|

|
|
|
|

|
|
|
|

||

|
|
||

|||
|

|||

|||

|||
|
|
|
|
|

|||

|||
|
|
|

|||

|||
|

|||

|||

|||

|||
|

|
|
|

attributes of the using tags. Once your specify the attribute on the definition tag, it
is not necessary to specify it again on the using tag. Definition tags have a
DefName attribute, which is the means by which a using tag asks for a particular
definition with a matching DEF attribute. Definition tags can be specified without
a DefName attribute, in which case they essentially replace the initial settings of
attributes for the entire document.

In all IBMIDDoc definitions, the using tag (that is, the tag with the DEF on it that
uses the definition) can override individual attributes from the definition by
specifying them again. You are not required to use a definition tag; but they sure
make life easier.

The DEF tags go in your document’s prolog, inside a PropDefs tag. That way they
apply to your entier document. You can also put DEF tags in a division’s DProlog
tag (in a PropDefs tag); these only apply to the division and it’s children.

Let’s consider an example. The FIG tag, as initially shipped with IBMIDDoc, has
the attribute initial settings shown here:
FRAME=none
PGWIDE=0

Let’s say that for a document we need to work on, that most of the figures will
have ruled frames and be page-wide. We would specify a FIGDEF tag in the
Prolog with the following attributes. Note that there is no DefName attribute; this
overrides the document’s defaults.
<prolog>
...
<propdefs>
...
<figdef frame=rules pgwide=1>

However, a handful of our figures, will be column-wide, boxed, and have a
slightly larger type size. This shows an additional FIGDEF to handle these figures;
note that is has a DefName attribute::
<prolog>
...
<propdefs>
...
<figdef frame=rules pgwide=1>
<figdef defname=colfigs pgwide=0 frame=box scalepct=150>

Now most of the figures in our book can be described simply by using the FIG tag
with no attributes (except the FIG tag’s own ID for cross references), but the boxed
figures will have to use a DEF=COLFIGS attribute as well. Then there is always
one maverick that insists on being different from everyone else; this one suffers
from having too much content and must be scaled down:
<fig id=abc>
...
<fig id=jkl def=colfigs>
...
<fig id=xyz def=colfigs scalepct=50>

Let’s summarize what we did here: first, we redefined the FIG attribute initial
settings for our use in this document (the FIGDEF tag with no DefName). Then,
we set up the FIG attributes for some of our figures (the FIGDEF tag with a
DEFNAME). Finally, we show our figure markup (1) using the new initial settings,
(2) using the “colfigs” values, and (3) using the “colfigs” attribute values plus an
override for the SCALEPCT attribute.

DEFs

106 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

Here’s how the figures appear:

Summarizing the initial setting override hierarchy
“Initial setting override hierarchy” is a fancy way of describing a simple process.
IBMIDDoc has a set of initial values for attributes which can be overridden in your
document by:
1. Definition tags without DefName attributes, which can be overridden by:
2. Definition tags with DefName attributes and using tags with matching DEF

attributes, which can be overridden by:
3. The using tag itself.

Here’s a complete description of how ID Workbench processing checks each
attribute and determines its value:
1. An attribute placed on an element directly
2. An attribute placed on an element definition with defname=’mydef’, when the

current element has the attribute def=’mydef’
3. An attribute placed on a generic element definition for this element (for

example, a FIGDEF or OLDEF with no defname).
4. An attribute placed on a classdef with classname=’myclass’, when the current

element has the attribute class=’myclass’
5. An attribute placed on a propdef with propname=’myprop’, when the current

element has the attribute propsrc=’myprop’
6. An attribute placed on a propdef with no propname.

Each of these describes the behavior for a single attribute. Every attribute is
checked individually, in the order described above. This means, if a figure tag is
defined as follows:
<fig def=’mydef’ pgwide=0>

The pgwide will override any other definitions, but all other attributes (such as
frame, scalepct, or style) will follow the normal course of inheritance. This is the
case for every attribute on every tag covered by the new DEF elements. For any
other tags, the same order of precedence applies, except that numbers 2 and 3 are
skipped.

On the LERSDEF tag, there are both DefName and CLASSNAME attributes. If both
are specified, you get a warning in the transformation, and only the DefName
attribute is used. Otherwise, the CLASSNAME and DefName attributes are

Figure has a ruled frame and is page-wide.

Figure 8. ″default″

Figure has a boxed frame, is column-wide, with larger
type.

Figure 9. ″colfigs″

Figure has a boxed frame, is column-wide, with smaller type.

Figure 10. ″colfigs″ with an override

DEFs

Chapter 9. Using definition tags 107

|

||
|
|
|

|

|

||
|
|

|
||
|
|

|
||||

|
|

|
|
|

|

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|

|
|
|

|

|
|
|
|
|

|
|
|

considered identical, as are the DEF and CLASS attributes on the LERS tag. In step
2 of the attribute hierarchy above, any combination of classname/defname with the
class/def attributes is valid. For example:
<lersdef defname=’mydef’>

can be referenced either by
<lers def=’mydef’> or <lers class=’mydef’>

Similarly:
<lersdef classname=’myclass’>

can be referenced either by
<lers def=’myclass’> or <lers class=’myclass’>

DEFs

108 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|

|

|

|

|

|

|

|

Chapter 10. Revision Elements and Marked Notes

IBMIDDoc has a slick way of indicating changes in your document. Use RevDefs,
Rev, and Mark elements to track revisions in your documentation. These elements
are valid in the Prolog or DProlog elements of your document. You can also use a
marked deletion (MD) element to indicate some text you are going to remove.

Revision and Marked Notes elements include:
v Rev, define a revision level
v RevDefs, define several revisions
v REV attribute, assign a revision level to an element
v MD, indicate words or phrases the be removed; the text is formatted with a

strike-through font

The following Mark elements are not yet fully supported; they only work for
BookMaster output processing.
v Mark
v MkAction
v MKClass
v MKDesc
v MKNote
v MarkList

Using Revisions
In order to define revisions, you must place a Rev element in a RevDefs element.
The RevDefs can be in your document prolog to affect the whole document; or in a
division DProlog to affect only that division. The Rev element defines the specifics
for a single revision that can be used throughout the document or division. You
can have more than one revision in a document. This is useful for multiple drafts.
Normally, in hardcopy, a revised text is indicated by a vertical bar to the left of the
text. You can set different characters for your different revisions. Any element that
contains new, changed, or deleted information can refer to the ID attribute value
on the Rev element to denote why and how the information has changed.

Defining Revisions in the RevDefs Element
The RevDefs element contains several Rev elements. Each Rev defines a revision,
describes the reason for the revision, and states if the revision should be used or
ignored during document processing. If the Rev is to be used, the character
specified on the char attribute will be printed in the margin to the left of the
changed information. If the revision is ignored, no special characters will appear
beside the information.

To begin, get to the prolog of your document and insert a RevDefs element; then
insert a Rev element. Pick an identifier for your REV tag that makes sense.
Suggestions include:
v v4r5 — this indicates version 4, release 5
v r2m1 — this indicates release 2 modification 1; or 2.1

© Copyright IBM Corp. 1992, 2001 109

|

Then, set the IDENT attribute to USE; this enables the revision. If you want to turn
off the revisions, set IDENT to IGNORE.

If you want a special character to indicate the revision, type that one character into
the CHAR attribute. Normally, a vertical bar is used.

Here is a simple revision definition; only one revision is defined in the document’s
prolog:
<prolog>
...
<revdefs>
<rev id="v4r5" ident="use">
<date>9/9/99</date>
<desc>First draft for v4r5</desc>
</rev>
</revdefs>
...
</prolog>

Here is a more complicated set of revision definitions. ″v4r5″ and ″v4r5d2″ are
enabled, with characters ″|″ and ″+″ being used respectively. The other revision for
″v4r4″ is defined, but set to ignore.
<revdefs>
<rev id="v4r5" ident="use">
<date>9/9/99</date>
<desc>First draft for v4r5</desc>
</rev>
<rev id="v4r5d2" code="+" ident="use">
<date>9/10/99</date>
<desc>Second draft for v4r5</desc>
</rev>
<rev id="v4r4" ident="ignore">
<date>9/9/98</date>
<desc>V4R4 changes</desc>
</rev>
</revdefs>

Currently, you can have up to 20 different revision levels active in a document
being formatted for Xyvision PostScript or PDF.

Indicating Revisions in the Document Markup
To indicate that text is new or changed; you use the REV attribute on the element
that contains the text. The REV attribute refers to the REV elements defined in the
RevDefs. The revision characters start with the beginning tag, and continue
through to the ending tag.

Using the ″v4r5″ revision definition from “Defining Revisions in the RevDefs
Element” on page 109, the middle list item is changed:
v something old
v something new (or changed)
v something borrowed

Here’s its markup:

something old
<li rev="v4r5">something new (or changed)
something borrowed

Revisions

110 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|

If you need to revise a section that is part of another revision, IBMIDDoc allows
you to nest the revisions; that is, to place revisions inside other revisions. When the
formatter encounters the REV attribute for your new revision, it stops printing the
character associated with the old revision and starts printing the character you
assigned to the new revision. Then, when the formatter encounters the end tag for
your new revision, it resumes printing the character associated with the old
revision.

For example, if the whole list was changed for ″v4r5″, then the middle item was
added for the second draft; you would want something like this:
v something old
v something new (or changed)
v something borrowed
v something blue

Here’s its coding:
<ul rev="v4r5">
something old
<li rev="v4r5d2">something new (or changed)
something borrowed
something blue

The revision markup doesn’t evaluate the dates of the revision definitions, it works
on nested position. It’s totally possible to make a small change first and then make
a larger change that encompasses the first change. The inner revision will still
show its change bar. Watch out for these; you might need to delete the nested Rev
attributes if they should really be part of outer revision.

Marking text for deletion
Sometimes, as part of a revision, you may want to indicate that some text has been
deleted, but still leave that text in the document for your reader’s convenience. If
you precede the text to be deleted with the MD (marked deletion) tag and follow it
with the matching end tag, the formatter overstrikes the text with a horizontal line.
The MD element is like a phrase. For example:

You may want to eliminate repetitious redundancies.

Here’s its markup:
You may want to eliminate <md rev="v4r5">repetitious</md>
redundancies.

Creating Collections of Marked Notes
To use marked notes in IBMIDDoc, you enter mark elements that define the
marked note collection. These are contained in the RevDefs element, which is
contained in the Prolog or DProlog elements. You must define at least one
collection in order to use marked notes in your document. These collections of
notes of can be put in a number of forms, including a table.

Processing Note
Marked Notes currently only work in BookMaster output processing.

Revisions

Chapter 10. Revision Elements and Marked Notes 111

|

+

|

|

|

These are the elements you’ll need to use to create a marked collection of notes:
v Mark
v MKAction
v MKClass
v MKDesc
v MkNote
v MarkList

Using the Mark Element
The Mark element names a marked collection of changes and specifies whether or
not the other elements associated with this marked collection are processed when
your document is formatted. Mark elements are contained in the RevDefs element,
along with Rev elements.

A typical Mark element looks like the one in this example:
<mark id="mkv4r5" ident="use">
<desc>v4r5 marked message changes</desc>
</mark>

Defining Marked Actions and Classes
MkAction is used to define one or more actions that can be associated with
marked notes. These actions can be used with any marked class. MkClass defines a
marked note class within MkDesc. You can define as many classes as you need.
These class codes are also used on the MarkList element to tell IBMIDDoc which
class codes to make part of the marked notes table.
<propdefs>
<mkdesc>
<!--Define two classes for marked lists - notes and abends-->
<mkclass name="msg">Msg</mkclass>
<mkclass name="abend">Abend</mkclass>
<!--Define the actions for the changed info-->
<mkaction name="new">New</mkaction>
<mkaction name="change">Changed</mkaction>
<mkaction name="del">Deleted</mkaction>
<mkaction name="rep">Replaced</mkaction>
</mkdesc>
</propdefs>

Using the MkNote Element
The MkNote element identifies the actual text of your marked note. Several
attributes are used on the MKNote element. These include:

CLASS
defines one or more mark classes to which the marked note belongs.

ACTION
defines one or more actions associated with the marked note.

MKIDS
contains the ID of one or more Mark elements.

ITEM
defines an identifying label for the note, such as a message number or error
report.

The content of the tag displays in the description column of the marklist table.

Revisions

112 ID Workbench: IBMIDDoc User’s Guide and Reference

<mknote class="msg" action="change" mkids="mkv4r5" item="IDW0012">Hi there!
</mknote>

Generating a Collection with MarkList Element
The MarkList element causes a table of marked collection notes to be generated.
You can include any notes that you mark in the marked note list, and you can
headings for the table. For example, the marked note list can be used to generate a
definitive summary of changes. In addition, you can use marked notes to collect
information about document content, notes to yourself or others, or references to
certain locations in the document that you think will be very important to the
reader.

The MarkList element generates a list of marked notes at the place in the
document where the MarkList element is specified. Only notes of the specified
classes, collections, and actions will be included in the generated list.
<marklist mkids="mkv4r5" classes="msg abend" actions="change del rep"
display="item action page desc" classhd="Msg" actionhd="Reason"
itemhd="Msg" lochd="Page" deschd="Message text">

A Marked Notes Markup Example
The example that follows illustrates how to use marked notes in IBMIDDoc.
<ibmiddoc docstyle="ibmxagd">
<prolog><ibmbibentry><doctitle><titleblk>
<title>My Marked Changes Document for Messages</title>
</titleblk></doctitle></ibmbibentry>
<propdefs>
<mkdesc>
<!--Define two classes for marked lists - notes and abends-->
<mkclass name="msg">Msg</mkclass>
<mkclass name="abend">Abend</mkclass>
<!--Define the actions for the changed info-->
<mkaction name="new">New</mkaction>
<mkaction name="change">Changed</mkaction>
<mkaction name="del">Deleted</mkaction>
<mkaction name="rep">Replaced</mkaction>
</mkdesc>
</propdefs>
<revdefs>
<rev id="revv4r5" ident="use">
<date></date>
<desc></desc>
</rev>
<mark id="mkv4r5" ident="use">
<desc>v4r5 marked message changes</desc>
</mark>
</revdefs>
</prolog>
<body>
<d>
<dprolog><titleblk>
<title>List of changed items</title>
</titleblk></dprolog>
<dbody>
<marklist mkids="mkv4r5" classes="msg abend" actions="change del rep"
display="item action page desc" classhd="Msg" actionhd="Reason"
itemhd="Msg" lochd="Page" deschd="Message text"></dbody>
</d>
<msglist>
<msg rev="revv4r5">
<msgnum>IDW0012</msgnum>
<msgtext>Hi there!</msgtext>
<msgitem class="xpl">

Revisions

Chapter 10. Revision Elements and Marked Notes 113

<p>This is a friendly message.
<mknote class="msg" action="change" mkids="mkv4r5" item="IDW0012">Hi there!
</mknote></p>
</msgitem>
</msg>
<msg rev="revv4r5">
<msgnum>IDW0013</msgnum>
<msgtext>Farewell!</msgtext>
<msgitem class="xpl">
<p>This unlucky message was removed.
<mknote class="msg"
action="del" mkids="mkv4r5" item="IDW0013">Farewell!
</mknote></p>
</msgitem>
</msg>
</msglist></body>
</ibmiddoc>

The resulting marklist table will look like the example that follows.

Msg Reason Page Message text

IDW0012 Changed 1 Hi there!

IDW0013 Deleted 2 Farewell!

Revisions

114 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 11. Indexing

Creating an index using IBMIDDoc is somewhat like creating a table of contents
(TOC). The index is built for you from items in the text you have tagged as index
entries. Just as you use the TOC tag to indicate you want a table of contents, you
use the INDEX tag in the back matter of your document to show that you want
the index included.

Indexes are similar to a TOC in that a subject and page number are listed.
However, the index can provide much more detail than a TOC. It provides a term,
subterms, and sometimes synonyms (in the form of “see and see also” references)
with page numbers indicating where detailed information can be found on the
subject. Indexes are also sorted alphabetically for easy subject retrieval.

You can build an index by tagging the terms you think will be useful for the
reader. Place the index tags at the point that the topic occurs to ensure the page
references in the index will be correct whenever you format the document. The
formatter will automatically create an index in alphabetical order and place the
correct page number next to each entry in the index.

Table 16 illustrates the terminology we use in this chapter to describe the elements
of an index.

Table 16. Terminology used in discussion of indexing
entry: appetizers 102

...

subject: bechamel sauce 13
page references: cabbage 58, 115

...

primary entry: eggs 106
secondary entry: souffles 108
tertiary entry: chocolate 112

...

entry heading: meats
beef 60
...

poultry 75
“see also” reference: See also chicken, turkey

...

white sauce
“see” reference: See bechamel sauce

In this chapter we will discuss the levels of indexes, where to place index entries,
how to define index entries, refer to index entries, the use of see and see also
references, and how to control and generate an index. But first we will discuss the
basic index structure.

© Copyright IBM Corp. 1992, 2001 115

Structuring a basic index
A good index in an indispensable part of any document. This is especially true for
reference documents. Because you don’t usually read reference information from
cover to cover, you need a way to be able to find specific bits of information you
need.

To be a good, complete retrieval device, an index must do the following:
v Help readers find information within the document.
v Anticipate how readers will search for information.
v Serve the novice and the expert.
v Show how topics interrelate.
v Tell what the book contains.
v Cross-reference similar terms or concepts.

Before we talk about the actual tags, here are some good tips as you develop an
index:
v Familiarize yourself with the content, organization, and objectives of the

document before you start the indexing process.
v Analyze your audience. Who will be using the book? Are readers likely to be

familiar with the book and the product? What will the reader already know?
v Ask yourself, “Does this topic contain information the reader will want to find?”

If so, create at least one index entry for that topic.
v Develop an indexing worksheet for each section of your document. On it list

major concepts or ideas, major terms defined, acronyms and abbreviations,
restrictions and warnings, and cross-references to other information products.
Use the worksheet to determine which topics should be main entries and which
should be subentries. The worksheet also ensures that important information is
not left out of the index.

v Be sure to use both the acronym or abbreviation and its “spelled-out version” as
index entries if your document uses them.

v Ask yourself when looking at an index entry, “Are there any commonly used
synonyms for this word?” If so, include them in your index as well.

v Make sure that each index entry has no more than two or three references. Use
specific subentries to reduce the number of page references and give your reader
a more precise pointer to the topic.

The IBMIDDoc indexing elements include:
v I1, primary
v I2, secondary
v I3, tertiary
v IdxTerm, index term text
v IRef, index reference
v IdxDefs, index definitions
v Index, index placement

116 ID Workbench: IBMIDDoc User’s Guide and Reference

Basic index tagging
There are 3 levels of index entries: Primary (i1), Secondary (i2), and Tertiary (i3).
The simplest kind of index entry is a primary entry. A primary entry is the major
subject and should be a noun or noun phrase. A primary entry with a page
number, is entered with the I1 tag, which says, “This is an index subject at the first
level”. It would look like this:
<i1><idxterm>dessert sauces</idxterm></i1>

A primary index entry may or may not have page number listed. However, if the
primary index entry does not have a secondary entry associated with it, the
primary tag will automatically have a page number entered. There will be more on
index entries and page numbers later in this chapter.

Most indexes run to more elegant structures with primary, secondary, and
sometimes tertiary entries. The secondary entry narrows the primary entry into a
more specific subject. It may or may not have a page reference. Secondary entries
are arranged alphabetically in the index following the primary entry to which they
apply. A secondary entry with a page number is entered with the I2 tag.

When you have a large number of subtopics under your primary entry, a
secondary or tertiary tag improves index readability. If you’ve ever seen an index
where most of the entries are primary and have page numbers, you know how
difficult it can be to find the information you need. Using the I2 tag makes an
entry stand out and directs the reader’s attention to a topic instead of a mass of
numbers.

Tertiary entries are the third, even more specific level for the major topic. A tertiary
entry always has a page reference. Tertiary entries are arranged alphabetically
following the secondary entry to which they apply.

Placement of index tags
Indexing isn’t as easy as tossing an i1 tag here and an i2 tag there. Believe it or
not, there are “rules” for index tagging unless you want an index with only
primary index entries. As we discussed before, secondary and tertiary entries make
an index more readable. So, unless you have a small index, you’ll want to add a
few index levels.

There are two ways to associate secondaries with their primaries and tertiaries
with their secondaries. One way is by their position in the source file. The other
way is by creating cross references. We’ll tell you all about the position way first.

Position method
The position method has the secondary entries within the tags of the primary
entry. Likewise, the tertiary entries are embedded in the secondary entries. The
rule when using the position method is you cannot have the secondary entries
listed outside the primary entry and the tertiaries cannot be outside the secondary
entry. Here’s an example of the position method:
<i1><idxterm>dessert sauces</idxterm>
<i2><idxterm>butterscotch</idxterm></i2>
<i2><idxterm>hot fudge</idxterm>
<i3><idxterm>microwave method</idxterm></i3>

Chapter 11. Indexing 117

<i3><idxterm>stovetop method</idxterm></i3>
</i2>
<i2><idxterm>strawberry</idxterm></i2>
</i1>

Here is the formatted result:

dessert sauces
butterscotch 12
hot fudge

microwave method 12
stovetop method 12

strawberry 12

You’ll notice that the i3 entries, microwave and stovetop methods, are only listed
under hot fudge. This is because the i3 tags are listed inside the i2 hot fudge tag. If
you wanted the i3 tags to be under butterscotch, hot fudge, and strawberry, you
would have to place the i3 tags inside each one of the i2 tags. So you would have
microwave method and stovetop method listed three times each in this example.
You’ll also notice the page numbers are automatically placed in the formatted
example. You don’t need to print the document then add the page numbers. It’s all
done for you.

Cross referencing index entries
As you can see from the examples under “Position method” on page 117, repeating
the entire structure of primary and secondary entries before each tertiary entry can
be pretty tedious. For this reason, IBMIDDoc has the ID, I1ID, and I2ID attributes
on the indexing tags to allow you to get at the structure with just the name you
put on the ID.

The ID attribute identifies an index entry within an SGML document. IDs must be
unique within a single document. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-), or
periods (.).

When you put an ID attribute on an I1 or I2 tag, the formatter “remembers” that
entry and any higher level entries associated with it.

For example, if you had these entries:
<i1><idxterm>sauces</idxterm>
<i2 id="mayo"><idxterm>mayonnaise</idxterm>
<i3><idxterm>hard way</idxterm></i3></i2></i1>

This associates the ID “mayo” with both mayonnaise and sauces.

Then you can enter:
<i3 i2id="mayo"><idxterm>blender method</idxterm></i3>
...
<i3 i2id="mayo"><idxterm>food processor method</idxterm></i3>

and get exactly the same results as if you had coded this:
<i1><idxterm>sauces</idxterm>
<i2><idxterm>mayonnaise</idxterm>
<i3><idxterm>hard way</idxterm></i3></i2></i1>
...
<i1><idxterm>sauces</idxterm>
<i2><idxterm>mayonnaise</idxterm>

118 ID Workbench: IBMIDDoc User’s Guide and Reference

<i3><idxterm>blender method</idxterm></i3></i2></i1>
...
<i1><idxterm>sauces</idxterm>
<i2><idxterm>mayonnaise</idxterm>
<i3><idxterm>food processor method</idxterm></i3></i2></i1>

When you use the reference attribute on the I2 and I3 tags, they pick up the
specified level needed from the structure named with the reference name. (You
can’t use a reference on an I1 tag, because there are no “higher” levels.)

If you want to pick up all the levels (that is, you have an identical structure to the
one named with the ID attribute), you should use the IREF tag. Because you are
picking up all the levels, the IREF tag doesn’t need a level indicator of its own.
The IREF tag adds a page number to an existing structure.

So if we had many different ways of making mayonnaise with a blender, we could
enter:
<i1><idxterm>sauces</idxterm>
<i2 id="mayo"><idxterm>mayonnaise</idxterm></i2></i1>
...
<iref refids="mayo">
...
<iref refids="mayo">

and we would get this result:

sauces
mayonnaise 20, 23, 26

You can even use both an ID and a reference on an I2 or I3 tag, to both pick up the
higher level entries (the referenced entry) and then give this whole new structure a
name (the ID). (You want to be careful not to confuse yourself, though.)

Where to put index entries
Your index entries can be entered just about anywhere; they don’t cause any
variation in how the text around them is formatted. Here is a list of good places to
put index entries to ensure the proper page reference:
v Immediately following a heading, after the ending Dprolog tag.
v Following the first sentence of a paragraph.
v Following the first sentence of a list item or definition description.
v Immediately following an XMP tag or FIG tag (in particular, if you are indexing

a figure that is going to float, the index tag must be inside the figure).
v Immediately following the first ENTRY element of the first ROW of a TABLE,

for entries that point to an entire table (this is because the page on which the
table will begin isn’t determined until the first ENTRY element is processed).

For example, because the formatter keeps the first few lines of a paragraph on the
same page, using the index tags in these places ensures that the page reference
picked up for the entry is the same page on which the paragraph starts. If the
index entries were placed before the paragraph, they might be processed (and the
page number picked up) before the formatter discovers that it has to start a new
page for the paragraph.

It is a good idea to put index entries that don’t have page references associated
with them in one place in the front of your source document. If you scatter them

Chapter 11. Indexing 119

through your document, you will have trouble finding them when you want to
change them because the index itself won’t give you a page number to help you
find them.

And where NOT to put index entries: Do not put index entries in the following
places:
v Do not place index entries anywhere before the PREFACE tag or between the

BODY tag and the first division in the body. They can cause extraneous blank
pages in your BookMaster-formatted document if they occur at either of these
points.

v Don’t put index entries in a table between a ROW tag and an ENTRY tag. This
is also a Bookmaster-formatting problem. Put them in the Entry tag.

v Don’t put index entries in the middle of a sentence, this raises heck with
translation centers. Put them before the paragraph, or before the sentence.

Defining index entries (central indexing)
You can define index entries in the document’s prolog. This is often called
“central” or “central-file” indexing.

Use the index definitions (IdxDefs) element to put some or all the index entry
definitions in a central place, either the document prolog or a division prolog. This
makes it easier for you to maintain your index IDs, since you can maintain them in
a central place. Use I1 to define each primary index entry. In IdxDefs, any I2
(secondary) and I3 (tertiary) index entries must be contained in the I1 index
entries. The following example shows I1 index entries in IdxDefs for “document
structure” and “element”:
<idxdefs>
<i1 id="ixdocstruct"><idxterm>document structure</idxterm>
<i1 id="ixelement"><idxterm>element</idxterm></i1>
</idxdefs>

No page number is associated with index entries located in the IDXDEFS. Use the
IREF element or add lower level index entries to set reference points. For example:
<iref refids="ixdocstruct">
<i2 i1id="ixelement"><idxterm>context</idxterm></i2>

Creating index entries by cross-indexing
There are many times in indexing when you want to associate the same set of
subentries and page references with a group of primary index entries. This process
is called “cross-indexing”.

You can use the IdxTerm element multiple times to associate the same set of
subentries with several I1-level index terms. For example, to associate the same set
of I2 and I3 entries with both “cross indexing” and “indexing, cross”, you can
define an I1 index entry as follows:
<i1><idxterm>cross indexing</idxterm><idxterm>indexing, cross</idxterm>
<i2><idxterm>creating</idxterm>
<i3><idxterm>easy way</idxterm></i3></i2></i1>

You would get this result:

cross indexing
creating

easy way 12

120 ID Workbench: IBMIDDoc User’s Guide and Reference

...
indexing, cross

creating
easy way 12

In this example, “cross indexing” is the first index term specified and is considered
to be the main index term for this entry.

Cross-indexed primaries do not have to have identical subentries. For example,
suppose you want to index all custard pies under both “pies” and “custard pies”;
all fruit pies under both “pies” and “fruit pies”; and a general discussion of pies
under “pies” alone. To do that, use the following markup, the Index definitions are
also used and are in the document’s prolog.
<prolog>
...
<idxdefs>
<i1 id="pies"><idxterm>pies</idxterm></i1>
<i1 id="custpies"><idxterm>custard pies</idxterm><idxterm>pies</idxterm></i1>
<i1 id="fruitpies"><idxterm>fruit pies</idxterm><idxterm>pies</idxterm></i1>
</idxdefs>
</prolog>
...
<i2 i1id="pies"><idxterm>general discussion</idxterm></i2>
...
<i2 i1id="custpies"><idxterm>coconut</idxterm></i2>
...
<i2 i1id="custpies"><idxterm>chocolate</idxterm></i2>
...
<i2 i1id="fruitpies"><idxterm>peach</idxterm></i2>
...
<i2 i1id="fruitpies"><idxterm>blueberry</idxterm></i2>

which gives results similar to this:
custard pies

chocolate 2
coconut 1
...
fruit pies

blueberry 5
peach 3
...
pies

blueberry 5
chocolate 2
coconut 1
general discussion 1
peach 3

Defining See and See-also references
If you need see and see-also references in your index, use the SeeID and SeeText
attributes with I1 or I2 elements. SeeID points to an index entry specified by an ID
attribute.

SeeText points to text that you specify. Use SeeID whenever possible because it
ensures that you are referring your reader to a real entry in the index. (You see a
question mark in your cross-reference listing if a SeeID specifies an ID that does
not exist.) This markup shows the SeeID attribute:
<i1 id="bech"><idxterm>bechamel sauce</idxterm></i1>
<i1 seeid="bech"><idxterm>white sauce</idxterm></i1>

Chapter 11. Indexing 121

|

|
|
|

|
|
|
|

|
|

Processing Note: For a see reference to work correctly in XHTML or HTML
output, the I1 needs to be in the prolog. Any I1 in the body of
the document is treated as an index link, giving you a see-also
reference. Also, the ID needs to have an IREF in the body of the
document.

IBMIDDoc determines whether the reference should be a see or a see-also
reference. If “white sauce” has no page references of its own and no secondary
entries, the index reference is a see reference, as follows:
bechamel sauce

white sauce
See bechamel sauce

However, if “white sauce” has page references or other subentries, the index
reference is a see-also reference, as follows:
bechamel sauce 29

white sauce 32
See also bechamel sauce

SeeText works the same as SeeID, except that you supply the text you want for the
reference, as follows:
<I1 seetext="cakes, cookies, pies"><IDXTERM>desserts</IDXTERM></I1>

With SeeText, you must ensure that the referenced entries (in this case, cakes,
cookies, and pies) can all be found in your index.

If “desserts” has other references, the index entries appear as follows, with the
see-also reference listed first in the subentries:
desserts

See also cakes, cookies, pies

If both SeeID and SeeText are specified, only the SeeID is used.

If a SeeID points to the ID of a secondary or tertiary entry, as in the following
example, IBMIDDoc constructs the full cross reference for you:
<I1><IDXTERM>sauces</IDXTERM><I2 ID="vinaig"><IDXTERM>vinaigrette</IDXTER...
<I1 SEEID="vinaig"><IDXTERM>oil and vinegar dressing</IDXTERM>

The cross-reference looks similar to this:
oil and vinegar dressing

See sauces, vinaigrette...
sauces

vinaigrette 83

When you use SeeID in one index entry to refer to another index entry that has
several index terms defined, the “See” or “See also” text generated in the index
shows only the main (first) index term.

Note: If a SeeID attribute points to an I1 or I2 element that specifies cross indexing
(has multiple IdxTerm elements), the resulting see or see-also reference

122 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|
|

|

|
|

|
|

|
|

|

|
|

||||
|

|

|
||||
|
|

|
|
|

|
|

points only to the first (main) IdxTerm element. Because of that, you should
select the main entry carefully for any index elements that specify cross
indexing.

For Xyvision generated PDFs, there will not be a PDF link between the “see” entry
and the entry it refers to.

Controlling the Index Sorting
This currently does not work.

The automatic sorting of index entries may not always suit your needs, as in these
examples:
v When you want to index titles without regard to leading articles; for example,

indexing “The Wind in the Willows” under “wind”.
v When you want to index entries that start with a special character according to

the first alphabetic character rather than the special character; for example,
indexing “&date;” under the Ds instead of the &s.

v When you want numeric subjects to appear in the alphabetic section as if they
are spelled out; for example, indexing “8-layer cake” as if it is spelled
“eight-layer cake”.

To change the way an index entry is sorted, specify the SortKey attribute. This is
currently not supported for the Xyvision PostScript and PDF formatter.

For example, to sort “8-layer cake” as if the “8” is spelled out as “eight”, use the
following markup:
<i1 sortkey="eight">8-layer cake</i1>

This could results in an index like the following:
egg substitutes 58
8-layer cake 82
endive, Belgian 75

The sort key needs to be only long enough to guarantee that the entry is sorted as
you want. For this example, the following markup would be sufficient because ei
is enough to ensure the desired sorting.
<i1 sortkey="ei">8-layer cake</i1>

However, consider making the sort key somewhat longer to ensure the desired
sorting when information, such as “8-layer salad”, is added. So you really may
want this for your “8–layer cake” sortkey:
<i1 sortkey="eight-layer cake">8-layer cake</i1>

Generating the index
The INDEX tag shows that you want your index placed in the back matter. In the
BACKM (back matter) section, insert an INDEX tag. You should also insert a
GENDTITLE tag. It generates the level 1 heading “Index” for you and then
includes the sorted and formatted index.

It would look like this:

Chapter 11. Indexing 123

|
|
|

|
|

|

|

|
|

|
|

|
|
|

|
|
|

|
|

|
|

|

|

|
|
|

|
|
|

|

|
|
|

|

|

<backm>
<index>
<gendtitle>
</index>
</backm>

and that’s all there is to that.

You can override the index heading text like so:
<index>
<titleblk>
<title>My Cute, Highly Retrievable Index</title>
</titleblk>
</index>

To get an idea of what your final index will look like, just look at the index in this
book; it was done using these tags.

For XHTML and HTML processing, your index entries are added to the meta data
for your HTML file. This helps search engines to better find your articles.

Helping online reviewers see your index entries
The XHTML transform has an option to show your index entries in the places they
occur. This is currently only for IBMIDDoc to XHTML processing; to help with
online reviews. You specify this when you transform your IBMIDDoc to XHTML;
the XHTML-2 page has an option named Display index entries in document
body(/INDEXSHOW). Given this source:
<d id="challenge">
<dprolog><titleblk>
<title>Challenges of the current environment</title>
</titleblk></dprolog>
<i1><idxterm>challenges, current environment</idxterm></i1>
<i1><idxterm>current environment, challenges</idxterm></i1>
<i1><idxterm>environment, current, challenges</idxterm></i1>
<dbody>
<p>The challenges of Allview’s environment can be divided into these categories:
<dl>
<dlentry><term>Cost</term>
<defn>A dollar amount.</defn></dlentry>
<dlentry><term>Quality</term>
<defn>Maintenance of proper standards.</defn>
</dlentry>
</dl></p>
</dbody></d>

This is what you’ll see on the corresponding XHTML web page; the index entries
are colored and appear as follows:

124 ID Workbench: IBMIDDoc User’s Guide and Reference

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Creating a master index
A master index incorporates the index entries from other documents and combines
them into one central place for the user The master index provides the name of the
document and the page number where the information about the index entry can
be found.

To create a master index for a set of documents, do the following:
1. Each of the documents that contribute to a master index needs to have the

master index prefix specified in their prolog. In each contributing book, use a
MasterIndexInfo element containing a MasterIndexPrefix element to specify the
prefix code. For example, for a user guide, you might want to use the prefix
USERGD; for a reference, you might want to use the prefix REF. For example:
<masterindexinfo>
<masterindexprefix>USERGD</masterindexprefix>
</masterindexinfo>

The prefix should be something short, generally less than 10 characters. We also
recommend having no spaces. When an entry in the master index prints, they
will look something like the following. This sample master index has three
books: USERGD for a user’s guide, INTRO for an introduction, and PLAN for a
planning guide. The page number after the prefix is the page number in the
corresponding book.

configuring INTRO-2, USERGD-12
changing PLAN-34

deleting USERGD-39
2. To format a master index using Xyvision:

a. This step is optional. The master index support allows you to link directly
from a PDF of the master index to that page in the PDF of the contributing
document. To do this, you can specify an ExternalFileName element in each
contributing document to be contained in the master index. Specify only the
file name of the document. Do not specify a file extension. This only works
for Xyvision-formatted documents. For example, this specifies the name of
this document is myusergd. If you will be placing the PDF files on an AIX®

server, remember that the file names are case-sensitive.
<externalfilename>myusergd</externalfilename>

b. Each of the documents to be contained in the master index needs to be
formatted for PostScript using Xyvision. By specifying the master index

Chapter 11. Indexing 125

|

|
||

prefix elements, the Xyvision formatter generates a PostScript file and a
master index file (file extension MDX) for each document. The document
must also have an Index tag, and be processed so that an index is generated
(avoid the NOINDEX option).

c. Once all of the contributing documents have been formatted and the master
index files (MDX) have been created, you create a master index document
that imbeds each of the individual master index files. You indicate that this
is a master index document by coding a MasterIndex element containing a
MasterIndexObj element for each MDX file to be included. Each MDX file
needs to be declared; declare the MDX file as a ″graphic″ entity with a
notation of ″mindex″.

d. Format the master index file for PostScript using Xyvision to create the
master index document.

e. If you want, create Adobe Acrobat PDFs from the PostScript files for the
master index and the contributing documents.

3. To format a master index using BookMaster:
a. Each of the documents to be contained in the master index needs to be

formatted for PostScript using BookMaster. You will need to format the
documents without using the ID Workbench. The master index files from
BookMaster processing are not returned to the OS/2® IDWB client.

b. Transform each contributing document to BookMaster.
c. Transform the master index document to BookMaster.
d. Upload each converted document, with its artwork, to VM and process

them using IDPS. For each contributing book, specify the correct
BookMaster master index options for IDPS to create the master index;
either:
Master index ==> filename

or:
SYSVAR (M filename)

where filename is the name for the contributing document’s master index
file. This creates the file: filename DSMMINDX.

e. For each contributing document, you will need to add an imbed command
for the master index file in the following format. Add these lines just before
the INDEX tag in the master index document.
.* set the name of the DSMMINDX file
.namefile name=filename cms=’filename dsmmindx’
.* imbeds the index source
.im filename

This shows an example prolog for a contributing document. The ExternalFileName
specifies the file name of a document: idfgsmst, without the file extension. The
MasterIndexInfo and MasterIndexPrefix elements indicate the prefix is GSUG (the
prefix used for this book).
<ibmbibentry><doctitle>
<titleblk>
<title>Getting Started and User’s Guide</title>
</titleblk></doctitle>
<externalfilename>idfgsmst</externalfilename>
</ibmbibentry>
<masterindexinfo>
<masterindexprefix>GSUG</masterindexprefix>
</masterindexinfo>

126 ID Workbench: IBMIDDoc User’s Guide and Reference

In the master index document, the contributing MDX master index files must be
declared. This example shows two sets of declares. The ″mindex″ declares are for
the master index files; the ″sgmldoc″ declares are for cross-book links (using the
citations).
<!ENTITY instidx SYSTEM "idfinmst.mdx" ndata mindex>
<!ENTITY planidx SYSTEM "idfplmst.mdx" ndata mindex>
<!ENTITY gsugidx SYSTEM "idfgsmst.mdx" ndata mindex>
<!ENTITY inst SYSTEM "idfinmst.idd" ndata sgmldoc>
<!ENTITY plan SYSTEM "idfplmst.idd" ndata sgmldoc>
<!ENTITY gsug SYSTEM "idfgsmst.idd" ndata sgmldoc>

This shows a sample master index document:
<ibmiddoc>
<prolog><ibmbibentry><doctitle>
<titleblk>
<title>Master Index</title>
</titleblk></doctitle>
</ibmbibentry>
<bibentrydefs>
<ibmbibentry docname="gsug" id="gsug"><doctitle><titleblk><title>
Getting Started and User’s Guide</title></titleblk></doctitle>
</ibmbibentry>
<ibmbibentry docname="inst" id="inst"><doctitle><titleblk><title>
Workstation Installation Guide</title></titleblk></doctitle>
</ibmbibentry>
<ibmbibentry docname="plan" id="plan"><doctitle><titleblk><title>
Planning and Host Installation Guide</title></titleblk></doctitle>
</ibmbibentry></bibentrydefs>
</prolog>
<frontm style="display=’cover’">
<toc><gendtitle></toc>
</frontm>
<body>
<d>
<dprolog><titleblk>
<title>Master Index Prefix Codes</title>
</titleblk></dprolog>
<dbody>
<dl>
<dlentry><term>GSUG</term>
<defn><cit bibid="gsug"></defn>
</dlentry>
<dlentry><term>INST</term>
<defn><cit bibid="inst"></defn>
</dlentry>
<dlentry><term>PLAN</term>
<defn><cit bibid="plan"></defn>
</dlentry>
</dl>
</dbody></d>
</body>
<backm>
<masterindex>
<specdprolog><gendtitle></specdprolog>
<masterindexobj obj="gsugidx">
<masterindexobj obj="planidx">
<masterindexobj obj="instidx">
</masterindex></backm>
</ibmiddoc>

Chapter 11. Indexing 127

128 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 12. All about linking

Hypertext links (we’ll just call them links from now on) connect elements in one
part of an online document to elements in another part of the same document or a
separate online document.

Linking 101
Think of links as you would think of cross references in a printed document. For
example, while reading about Henry David Thoreau in the encyclopedia, a reader
comes across a reference to another topic: “See also Ralph Waldo Emerson”. What
does the reader do? Keeps a finger on the page that describes Thoreau and turns
back to the new reference. The reader has just created a link from one part of the
document to another.

In printed documents, a reader turns to related information. In online documents,
IBMIDDoc creates a link to related information, and the online reader can then
display that information. The way a reader selects a reference, that is, asks the
online browser to display it, is usually by double-clicking on some highlighed text.
Web browsers, Adobe Acrobat, and BookManager Read are the typical online
browsers for which we create books or articles.

The following terms are used for the different types of links:

Cross-reference links
These are explicit links that IBMIDDoc creates between cross references
that use the XREF tag and referenced information within one document.

Author-defined links
These are explicit links that you specify with the L (link) tag and others.
These can be within a document or from one document to another.

Associative links
These are links that BookManager creates automatically. You do not need
to specify them. They typically come from glossary terms

Implicit links
These links are derived from the structure of the markup. Tables of
contents and index entries are examples of implicit links derived from the
SGML markup structure.

It may be obvious, but please do not forget to test your links. There is also
maintenance between releases in checking links, as things you link to might move
to other locations on the web.

Creating links within a document
Generic links support the identification of a “hot spot” as one anchor of the link,
and the specification of a target as the other end of a link. Within the same
document, you can use the XREF tag or the L tag to create links. The XREF tag
uses the heading text or figure number, for example, as the “hot spot” text. If you
want to use your own text for the link, perhaps for readability or to have the link
fit better in a sentence, use the L (link) element. The content of the L element is the
“hot spot” text, and the linkend attribute specifies the ID of the other anchor.

© Copyright IBM Corp. 1992, 2001 129

|
|
|

This next example shows how to make both an XREF tag and an L tag link to a
heading. The L tag’s LinkEnd attribute references the division’s ID attribute.
<d id="xrefhyl">
<dprolog><titleblk>
<title>All about linking</title>
</titleblk></dprolog>
<dbody>
<p>Hypertext links (we’ll just call them links from
now on) connect elements in one part of an online
document to elements in another part of the same document
or a separate online document. </p>
...
<p>Sometimes you need to <l linkend="xrefhyl">link</l> to
other topics.</p>
...
<p>See <xref refid="xrefhyl"> for ways of creating links.</p>

The XREF appears as a cross reference with a page number in a hardcopy
document. In an online document, the heading text “All about linking” is
highlighted and selectable. The L type of link has no representation at all in a
hardcopy document. But, in an HTML, PDF, or BookManager online version, the
text “link” is highlighted and selectable. When you select the link, the browser
jumps to the division. Why the difference you ask? There are times when you want
to control the text in link; for this, you use the L tag.

Here’s how they appear:

Formatted Example

Sometimes you need to link to other topics.

See Chapter 12, “All about linking” on page 129 for ways of creating links.

End of Formatted Example

You can link to other elements in the same document using this same linking
mechanism. The target of an explicit link should be to an ID on the outer container
(for example, D, MSG, LE, FIG, TABLE) and not the title text or caption text.

If you want to link to something that does not have a title, caption, or other
generated text, you still have a choice.
v You can use an XREF tag to point to another element (like a P tag), and on that

target element, use the XREFTEXT attribute to specify the linking text. This
allows you to cross-reference, get your page number for hardcopy or PDF, and
still have a link.

v Use an L tag to point to the other element; the content of the L tag contains the
linking text.

Here’s a sample of a link and a cross-reference to a paragraph:
<p id="paraxref" xreftext="cute, little paragraph">
Here’s a cute, little paragraph that I want to link
to. It has no caption so I need to add the XREFTEXT
attribute.</p>
<p>See the <l linkend="xrefhyl">cute paragraph</l> for another way to link.</p>
<p>See <xref refid="paraxref"> for ways of creating links.</p>

130 ID Workbench: IBMIDDoc User’s Guide and Reference

Here’s how it comes out:

Formatted Example

Here’s a cute, little paragraph that I want to link to. It has no caption so I need to
add the XREFTEXT attribute.

See the cute paragraph for another way to link.

See “cute, little paragraph” for ways of creating links.

End of Formatted Example

Linking to another document
There are several classes of inter-document links to other documents:
v Linking to another IBMIDDoc document.

This type of link is interpreted based on the output being produced for the
linking (from) document. The link produced in the output of the linking
document assumes the same type of processing is done for the target document.
So Xyvision documents produced from IBMIDDoc will link to the Xyvision
output of the target document, HTML documents to other HTML documents,
IPF documents to other IPF documents, and so forth.

v Linking to a specific output type of document.
This type of link specifies the type of document to be linked (for example,
HTML or IPF). The type of output processing done to the linking document does
not affect the type of the target, which remains the same.

Note: If the ID Workbench output transform application finds an ID that conforms
to BookMaster’s ID rules (seven characters or less, no special characters,
starting with an alphabetic character), it will preserve the ID when it
transforms the SGML markup to BookMaster markup. This enables both
cross-document links using BookManager and cross-document references
between IBMIDDoc documents, and between IBMIDDoc documents and
native BookMaster documents.

Citation link to an IBMIDDoc document
You use the CIT element to reference another document as a whole. If the
bibliographic entry specifies an entity declaration for the bibliographic entry and
uses the DocName attribute, a link to that other document is created. For
BookManager to use this link properly, specification of IBMDocNum is also
necessary.

This markup generates the appropriate cross-document link markup in Xyvision
PDFs and BookManager.
<!ENTITY bk2ent SYSTEM "xdoclnk2.idd" NDATA sgmldoc>
...
<ibmbibentry docname="bk2ent" id="bk2">
<doctitle><titleblk><title>Target Document (XDOCLNK2)</title>
</titlblk></doctitle>
<ibmdocnum>SC41-0002</ibmdocnum>
</ibmbibentry>
...
<p>Title citation link: See the <cit bibid="bk2"> for this
information.<p>

Chapter 12. All about linking 131

To implement this, you need to do the following:
1. Declare the target book as a “graphic” entity. The name bk2ent is the name that

is used in the IBMBibEntry DOCNAME attribute. The system ID xdoclnk2.idd
needs to be the target name of the book you are linking to; typically this is a
PDF or HTML file. The file name needs to match the target PDF or HTML file
name. The notation data is an sgmldoc.

2. Create an IBMBibEntry for the book. The DOCNAME attribute points to the
declared book name. The ID you assign is used on Cit tags and
NameLoc/NMList tags.

Linking to an XHTML, HTML, or web document
A link to an XHTML or HTML document (or location within a web document) is
accomplished by referencing its URL. This is done by referencing, by ID, a notation
location or NOTLOC element with a specified notation of URL which contains the
URL.

Here is an example that will link to the main IBM web page.
<ldescs>
<notloc id="ibm" notation="url">http://www.ibm.com</notloc>
<ldescs>
</prolog>
...
<p>You should try linking to the
<l linkend="ibm">IBM home page</l>.</p>

Formatted Example

You should try linking to the IBM home page.

End of Formatted Example

When processing for HTML or Xyvision PDF output, the appropriate anchor
markup is generated. When processing for other outputs, the URL is ignored.

Here is another example that will links to a PDF version of a book:
<ldescs>
<notloc id="gsugpdf" notation="url">
http://w3.rchland.ibm.com/projects/IDWB/documents/idfgsmst.pdf</notloc>
<ldescs>
</prolog>
...
<p>You should try linking to the
<l linkend="gsugpdf">PDF version of the IDWB Getting Started book</l>.</p>

Formatted Example

You should try linking to the PDF version of the IDWB Getting Started book.

End of Formatted Example

132 ID Workbench: IBMIDDoc User’s Guide and Reference

http://www.ibm.com
http://w3.rchland.ibm.com/projects/IDWB/documents/idfgsmst.pdf

Linking to items in another IBMIDDoc document
We showed you in “Citation link to an IBMIDDoc document” on page 131 how to
link to a Xyvision PDF document as a whole. How would you like to link to a
specific heading, figure, or table within a Xyvision PDF book? Here’s how! This
also works for BookManager cross-book links (from one BookManager book to
another).

You can also link from one XHTML or HTML “book” to another (from one set of
XHTML or HTML files to another set of XHTML or HTML files). For this to work,
you need to format the XHTML or HTML files; and save the resulting IDX file
from the IBMIDDoc to XHTML or IBMIDDoc to HTML process.

You find the ID of that heading, figure, or table on the target book, and set up
your LDesc and NameLoc tags to point to those IDs. Then you make Links to
those NameLoc definitions, and Xyvision and Acrobat do the rest.

For example, you have the following things you want to reference in a book
named “fred.pdf”:
v Heading ID: barney
v Figure ID: betty
v Table ID: wilma

The declaration for the SGML document must have the name matching the PDF
name; the extension can be IDD. The NameLoc tags set up the links that are used
later:
<!ENTITY fred SYSTEM "fred.idd" NDATA sgmldoc>
...
<ldescs>
<nameloc id="barneyintro" objtype="head">
<nmlist docname="fred">barney</nmlist>
</nameloc>
<nameloc id="bettyphoto" objtype="fig">
<nmlist docname="fred">betty</nmlist>
</nameloc>
<nameloc id="wilmachart" objtype="table">
<nmlist docname="fred">wilma</nmlist>
</nameloc>
</ldescs>
...
<p>Barney’s hobbies are listed <l linkend="barneyintro">here</l>.
This is Barney’s wife, <l linkend="bettyphoto">Betty</l>.
Wilma divides her time <l linkend="wilmachart">this way</l>.</p>

Sometimes you need to use the softcopy book name or some other name for the
PDFs. If this is the case; you will need to ensure the declarations for the targeted
books have the system ID set as the final file name of that target book.

The ID Workbench Getting Started and User’s Guide has more information about the
processing needed for this type of linking; see:
v Linking in Xyvision-Formatted Books
v XHTML and HTML linking concepts

Chapter 12. All about linking 133

|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|

|

Making a graphic a link
To make a graphic a link, you use the MMObjLink tag within the MMObj tag.
Sometimes you want a picture to link to an article. For example, this graphic links

to the main topic in this section:

Here’s how you code that:
<mmobj placement="inline"><objref obj="tocdoc">
<mmobjlink linkend="xrefhyl"></mmobjlink>
<textalt>table of contents icon</textalt></mmobj>

The MMObjLink tag can contain an AreaDef tag; AreaDef is currently not
supported in the output transforms. The entire graphic becomes the link.

By using a 1x1 pixel graphic, you can make what is called a “skip link” that you
can use to have a screen reader bypass something. Only the screen reader will read
the alternative text; and the link will be easy for the reader to select. The sighted
user will not encounter the link. Here’s how you might use a skip link:

\\ COMMAND-NAME THIS=that-value \]

Here’s text that follows the diagram.

Here’s how that was coded:
<p><mmobj><objref obj="hidden">
<mmobjlink linkend="idafterdiag"></mmobjlink>
<textalt>Skip reading of syntax diagram.</textalt>
</mmobj><syntax>
<group>
<kwd>COMMAND-NAME</kwd>
</group>
<group choiceseq="composite"><kwd>THIS</kwd><delim>
=</delim><var>that-value</var></group>
</syntax></p>
<p id="idafterdiag">Here’s text that
follows the diagram.</p>

Linking to an IPF document
A direct link to an IPF book may be coded similar to this example:
<!ENTITY sctagent SYSTEM "SCTAGENT.INF" NDATA IPFINF>
...
<nameloc id="ID907" objtype=book>
<nmlist nametype=entity>sctagent</nmlist>
</nameloc>
...
<p>This paragraph links to an IPF online book.
See this <l linkend=ID907 style="IPF: (data=’sctagent.inf’
object=’view.exe’ reftype=launch)">IPF topic</l> for more info.</p>

In the example, the NAMELOC only defines the ID referenced by the link. The
entity declaration performs no function at all. This coding reflects the coding that
should be used in the future when the need for the passthrough attributes has
been eliminated.

134 ID Workbench: IBMIDDoc User’s Guide and Reference

|

|
|

|

|

|
|
|

|
|

|
|
|
|

||

|||||||||

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|

|

This coding will generate the appropriate IPF code but does not produce usable
Xyvisoin PDF, BookManager, or HTML code. Cross document (XREF) references
are not supported in IPF.

For IPF, the citation element alone does not generate a cross-document link. The
link must be coded with the appropriate IPF passthrough attribution to generate a
launch-type link, launching the IPF viewer against the desired IPF file.
<!ENTITY bk2ent SYSTEM "xdoclnk2.idd" NDATA sgmldoc>
...
<nameloc id="lkl" objtype="BOOK">
<nmlist nametype=entity>bk2ent</nmlist>
</nameloc>
...
<ibmbibentry docname="bk2ent" id="bk2">
<doctitle><titleblk><title>Target document (XDOCLNK2) </title>
</titleblk></doctitle>
<ibmdocnum>SC41-0002</ibmdocnum>
</ibmbibentry>
...
<p>Title citation link: See the <cit bibid="bk2" props="#not IPF">
<l linkend=lkl props="IPF" style="ipf:(data=’xdoclnk2.inf’
reftype=’launch’ object=’view.exe’)">
Target document (XDOCLNK2)
</l>
for this information.</p>

Chapter 12. All about linking 135

136 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 13. Glossaries

Glossaries are similar to definition lists, in that you pair terms with their
definitions, using the Term and Defn (definition) elements. You begin your glossary
with the Glossary element, which generates a head level 1 with the generic
heading “Glossary.” The Glossary element, can have an ID attribute for
cross-referencing. You can use your own title instead of “Glossary,” so you might
have ″Definition of terms″.

The glossary typically goes in the back matter, in the Backm element’s content.
Here are the typical tags for the glossary section:
<backm>
...
<glossary>
<specdprolog><gendtitle></specdprolog>
<dbody>
<gl>...</gl>
</dbody>
</glossary>
...
</backm>

If you like, you can enter ordinary text after the DBody before you actually begin
your glossary list with its entries. You start the glossary list with a GL tag and end
it with its matching end tag. Within the glossary list, you use the GlEntry, Term,
and Defn tags to mark up the terms and their descriptions. The description can be
many paragraphs. For example, the glossary in this book was entered in part like
this:

binding edge. The edge of a page to be bound, stapled, or drilled.

Here’s its markup:
<gl>
<glentry><term>binding edge</term>
<defn>The edge of a page to be bound, stapled, or drilled.
</defn>
</glentry>
</gl>

If your term has multiple definitions, just enter another set of Defn elements in the
Glentry. For example:

cat. (1) cute, furry mammal that purrs when rubbed the right way (2) owner of the house in which it dwells, any
people sharing the dwelling are the caretakers

Here’s its markup:
<gl>
<glentry><term>cat</term>
<defn>cute, furry mammal that purrs when rubbed the
right way</defn>
<defn>owner of the house in which it dwells, any people
sharing the dwelling are the caretakers</defn>
</glentry>
</gl>

© Copyright IBM Corp. 1992, 2001 137

Defining Terms
Use the GLEntry element to define a term used in your document. GLEntry
contains the glossary term and one or more Defn elements, each of which contains
a definition for the term. You can define terms in the document prolog or in a
glossary list.

Glossary entries for IPF output become divisions displayed in popup windows.

In your document, you can use a Termdef attribute on a Term element that points
to the ID of the glossary term. In HTML, IPF, and Window’s Help, this generates a
link from the Term element to the term in the glossary.

Separating letter groups in a glossary
The retrievability of items in your glossary will be improved if you use the GLBlk
(glossary block) elements for alphabetic groups of terms. For example:

A
aardvark. long-nosed doglike creature.

B
bat. flying mouse

Here’s its markup:
<gl>
<glblk><title>A</title>
<glentry><term>aardvark</term>
<defn>long-nosed doglike creature.</defn>
</glentry>
</glblk>
<glblk><title>B</title>
<glentry><term>bat</term>
<defn>flying mouse</defn>
</glentry>
</glblk>
</gl>

Defining Classes for Terms
You can also define classes of glossary terms, and assign properties to those
classes, as shown in the following example, where the terms are defined as being
in either class odwords or class duckwords:

...
<CLASSDEF ELETYPES="GLENTRY" CLASSNAME="odwords">
<TITLE>OTHER D-WORDS</TITLE>
<SEM>OTHER WORDS BEGINNING WITH A D</SEM>

</CLASSDEF>
<CLASSDEF ELETYPES="GLENTRY" CLASSNAME="duckwords">
<TITLE>OTHER D-WORDS</TITLE>
<SEM>WORDS ABOUT DUCKS</SEM>

</CLASSDEF>...
<GL>
<GLENTRY CLASS="odwords"><TERM>December</TERM>
<DEFN>A month that is often cold and dreary.</DEFN></GLENTRY>
<GLENTRY CLASS="odwords"><TERM>duty</TERM>

138 ID Workbench: IBMIDDoc User’s Guide and Reference

<DEFN>What one must do in life.</DEFN></GLENTRY>
<GLENTRY CLASS="duckwords"><TERM>ducks and drakes</TERM>
<DEFN>The game of skimming stones across water.</DEFN></GLENTRY>
<GLENTRY CLASS="duckwords"><TERM>ducky</TERM>
<DEFN>Very well, as in <q>Just ducky, thanks.</q></DEFN></GLENTRY>
<GLENTRY CLASS="odwords"><TERM>Durango</TERM>
<DEFN>City in Colorado.</DEFN>
<DEFN>City somewhere else.</DEFN></GLENTRY>

</GL>

For more information about defining classes, see Chapter 20, “Property and Class
Definitions” on page 201.

Chapter 13. Glossaries 139

140 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 14. Bibliographies and citations

This section introduces the IBMIDDoc bibliographic elements. These elements
identify books and documents, and allow you to create citation references (and
links) as well as traditional “back of the book” bibliographies.

IBMIDDoc has two sets of bibliographic elements.
v The BibEntry elements contain non-IBM bibliography information
v The IBMBibEntry elements contain IBM bibliographic information. IBMBibEntry

elements should be used to describe all IBM documents.

In most respects, IBM and non-IBM bibliographic elements are the same. Unless
otherwise noted, the information contained in this chapter which refers to a
non-IBM-specific bibliographic element (for example BibEntry) also applies to both
the IBM-specific bibliographic element (IBMBibEntry).

These elements use the bibliographic entries contained in the BibEntryDefs element
by referring to the individual BibEntry’s ID.
v Cit — title citation
v BibList — bibliography list
v LibEntry — library entry

Identifying books and documents
You identify books and documents as bibliographic items using BibEntryDefs
elements. The BibEntryDefs element can be used in a Prolog (for your whole
document to use) or in a DProlog (for that division to use). BibEntryDefs contain
one or more BibEntry elements, which contain individual bibliographic entries.

You can set up a file entity to contain a library of BibEntry elements, and then
imbed that file in the BibEntryDefs. This is useful when all the books in your
library use the same bibliographic information to create bibliographies.

Each BibEntry (or IBMBibEntry) element can contain extensive bibliographic
information about a publication. Each BibEntry must contain a DocTitle element. It
can also contain Author, Desc, Publisher, PrtLoc, DocNum, PartNum, ISBN, and
PubID. An IBMBibEntry element can contain the same elements, plus two other
elements, IBMDocNum and IBMPartNum, which contain IBM-specific publication
information.

Here is the markup for defining two books. The IDs can be used to generate
citations and bibliographies. The DOCNAME attributes point to an external entity
that declares a book to cross-reference to, using a CIT (citation) tag.
<bibentrydefs>
<ibmbibentry docname="fruitbats" id="fruitybat"><doctitle>
<titleblk><title>The Care and Feeding of Fruit Bats
</title></titleblk></doctitle>
<ibmdocnum>ZZ99-9876-00</ibmdocnum>
</ibmbibentry>
<ibmbibentry docname="vampbats" id="vampbat">
<doctitle><titleblk><title>The Vampire Bat, a much

© Copyright IBM Corp. 1992, 2001 141

maligned creature</title></titleblk></doctitle>
<ibmdocnum>ZZ99-1234-00</ibmdocnum>
</ibmbibentry>
</bibentrydefs>

Here are the declarations for the two books:
<!ENTITY vampbats SYSTEM "vampbats.idd" ndata sgmldoc>
<!ENTITY fruitbats SYSTEM "fruitbats.idd" ndata sgmldoc>

Using title citations
The Cit element represents a citation of another document. The Cit can either refer
to a BibEntry or LibEntry by ID, or include a BibEntry or LibEntry element. The
example that follows is a Cit that references the books defined in “Identifying
books and documents” on page 141:

See this book The Care and Feeding of Fruit Bats and that book The Vampire Bat,
a much maligned creature, ZZ99-1234-00 for serious bedtime reading.

Here’s its markup:
See this book <cit bibid="fruitybat"> and that book
<cit bibid="vampbat" form="full"> for serious bedtime reading.

Here’s an example citation that is self-contained:

See these books for a good read and then a weird read: Tom Sawyer and
System/36: Concepts and Programmer’s Guide

Here’s its markup:
See these books for a good read and then a weird read: <cit>
<bibentry><doctitle><titleblk><title>Tom Sawyer</title>
</titleblk></doctitle></bibentry></cit> and <cit>
<ibmbibentry><doctitle>
<library><titleblk><title>System/36</title></titleblk>
</library>
<titleblk><title>Concepts and Programmer’s Guide</title>
</titleblk></doctitle></ibmbibentry></cit>

The default document style determines the appearance, or form, of the citation.
You can specify the form of the Cit by using the FORM attribute. This allows you
to specify that only the title or document number will be displayed. You can also
use the FORM=FULL specification to cause the entire bibliographic entry to be
displayed.

When LibEntry is specified in a Cit element, the LibEntry is collected for use in
generated bibliography.

Citations
When the Cit element is used in IBMIDDoc, the link to the target is automatically
generated at processing time. Citations must use bibliographic entries to define the
target of the citation. If the bibliographic entry specifies an entity using the
DOCNAME attribute, the citation may also be treated as a link as well as a citation
by the document name of the target. All targets must be defined in a BibEntryDefs
element in a Prolog, DProlog, or SpecDProlog element. A central file containing a
master BibEntryDefs element with all of the IBMBibEntry and BibEntry elements
for a product library can be referenced using an entity reference in your document.

142 ID Workbench: IBMIDDoc User’s Guide and Reference

The Cit element uses the BIBID attribute to reference the ID value of the target
citation reference that is defined in the IBMBibEntry or BibEntry element contained
in a BibEntryDefs element. The example that follows illustrates how to use these
elements.
<!ENTITY fredbook SYSTEM "fred.idd" ndata sgmldoc>
...
<bibentrydefs><ibmbibentry docname="fredbook" id="fred">
<doctitle><titleblk><title>Phred’s Guide to Phishing
</title></titleblk></doctitle></ibmbibentry></bibentrydefs>
...
<p>See <cit bibid="fred"> for most excelent tips on
catching walleyes.</p>

Generating a bibliography
In most cases, bibliographic references are listed in individual BibEntry elements
that are contained in the BibEntryDefs element in the Prolog element. Each of these
bibliographic references usually has an ID attribute. This ID allows the BibEntry to
be referred to in Cit and LibEntry elements. The LibEntry element contains the IDs
of the BibEntry elements that make up that library.

To create the markup for a bibliography, you create a BIBLOG section in the
back-matter. Then, enter citation tags inside an unordered list. For example:
<bibliog><specdprolog><gendtitle></specdprolog><dbody>
 <cit bibid="fruitybat" form="full">, describes everything about fruit bats.
<cit bibid="vampbat" form="full">, describes everything about vampire bats.
 </dbody></bibliog>

Automatic Bibliographies
Wish this was true — but it is just not supported.

When bibliographic elements are arranged as described in the preceding
paragraph, a Bibliography will be generated when the SPEC attribute value is
AUTO.
<BIBLIOG>
<P>A list of the documents referred to in this book....
follows.
<BIBLIST SPEC="AUTO" FORM="full"><GENDTITLE>

Defining library entries
LibEntry and IBMLibEntry elements are used to structure and organize
information about libraries and collections of documents. You can use IBMLibEntry
elements within IBMBibEntryDefs (or BibEntryDefs) , BibList, and Cit elements.
The LibEntry element performs the same function as an IBMLibEntry element, but
applies only to non-IBM documents.

IBMLibEntry contains the Title of the library. IBMLibEntry can also contain
Publisher, PrtLoc, IBMBofNum, IBMPartNum, Prod, ISBN, PubID, ContainedDocs,
and Desc elements. IBMLibEntry indicates which books are in the library it
describes by referencing the IBMBibEntry elements that describe them. It can
contain a list of individual IBMBibEntry elements, or it can contain elements and
links that refer to IBMBibEntry elements contained in BibEntryDefs. These entries
are referenced using the CONTAINEDDOCS attribute.

Chapter 14. Bibliographies and citations 143

The IBMLibEntry in the example that follows shows the ContainedDocs element
that references two books:
<bibentrydefs>
<ibmlibentry>
<library><titleblk><title>BS/300</title></titleblk>
</library>
<ibmbofnum>SBOF-1234-0</ibmbofnum>
<containeddocs bibids="booka bookb"></ibmlibentry>
<ibmbibentry id="booka"><doctitle><titleblk><title>
BS/300 Guide</title></titleblk></doctitle></ibmbibentry>
<ibmbibentry id="bookb"><doctitle><titleblk><title>
BS/300 Reference</title></titleblk></doctitle></ibmbibentry>
<libentry>
<library><titleblk><title>Back’n’Recovery</title>
</titleblk></library>
</libentry>
</bibentrydefs>

Linking BibEntry elements and other documents
A BibEntry and all references to it are links to the document the BibEntry
describes. Using the DOCNAME attribute on the BibEntry element allows you to
refer to an SGML entity that represents the document being described in the
BibEntry. When this attribute is used, any element that refers to the BibEntry will
also become a link to the document represented by the SGML entity referred to by
this DOCNAME attribute.

An example of using BibEntry and BibEntryDefs
The example that follows illustrates a common usage of the BibEntryDefs and
BibEntry elements.

...
<PROLOG>...
<LDESCS>
<NAMELOC ID="UGNAME" OBJTYPE="BOOK">
<NMLIST DOCNAME="UGX">USERGIDE</NMLIST>
</NAMELOC>
</LDESCS>
<BIBENTRYDEFS>
<IBMBIBENTRY ID="BOOK1">
<DOCTITLE>
<TITLEBLK><TITLE>IBMIDDOC MIGRATION GUIDE</TITLE>
</TITLEBLK>
</DOCTITLE>
</IBMBIBENTRY>
<IBMBIBENTRY ID="BOOK2">
<DOCTITLE><TITLEBLK><TITLE>IBMIDDOC REFERENCE</TITLE></TITLEBLK>
</DOCTITLE>
</IBMBIBENTRY>
<IBMBIBENTRY DOCNAME="UGX" ID="BOOK3">
<DOCTITLE>
<LIBRARY><TITLEBLK><TITLE>IBMIDDOC</TITLE></TITLEBLK></LIBRARY>
<TITLEBLK><TITLE>IBMIDDOC USER’S GUIDE</TITLE></TITLEBLK>
</DOCTITLE>
<AUTHORS><AUTHOR><PERSON>
<NAME>Fred Mertz</NAME>
<ADDRESS>
<INTERNET>fredmd@usa.ibm.com</INTERNET>
<PHONE>212-555-4062</PHONE>
</ADDRESS>
</PERSON></AUTHOR>
</AUTHORS>

144 ID Workbench: IBMIDDoc User’s Guide and Reference

<PUBLISHER>
<CORPNAME>IBM CORPORATION</CORPNAME>
</PUBLISHER>
<IBMDOCNUM>SH21-0783-01</IBMDOCNUM>
</IBMBIBENTRY>
<IBMLIBENTRY>
<LIBRARY ID="IDDOCLIB">
<TITLEBLK><TITLE>IBMIDDOC LIBRARY</TITLE></TITLEBLK>
</LIBRARY>
<CONTAINEDDOCS BIBIDS="BOOK1 BOOK2 BOOK3"></IBMLIBENTRY>
</BIBENTRYDEFS>
</PROLOG>
<BODY>
<D>...
<P>FOR MORE INFORMATION, SEE <XREF REFID="UGNAME" OBJTYPE="BOOK"></P>
</DBODY>
</D>
</body>...

Chapter 14. Bibliographies and citations 145

146 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 15. Programming Syntax Diagrams

IBMIDDoc contains a number of elements that are used to define program syntax
diagrams. These elements include:
v Syntax; contains the diagram and the markup.
v Delim; delimiters, such as commas and parentheses.
v Fragment; a portion of the diagram.
v FragRef; a reference to a fragment.
v Group; gathers parts of the diagram together.
v Kwd; a keyword, such as something that must be entered or chosen.
v Oper; an operator, such as a plus sign.
v RepSep; a way of repeating and specifying a separator for the repeat.
v Sep; a separator.
v SynBlk; combines groups together.
v SynNote; a diagram footnote.
v SynPh; a syntax phrase.
v Var; a variable, such as a file name.

This chapter contains some general information about creating syntax definitions,
and examples of the IBMIDDoc markup are used to obtain the formatted output.

Migration Note
If you are familiar with Bookmaster syntax definitions, you will notice several
differences when using IBMIDDoc syntax definitions:
v RepSep definitions
v Descriptions (now within the group or fragment)
v Group and Syntax elements can have titles

For conversion purposes, the outermost group element, which contains all of
the other groups in a typical syntax definition, may need to be broken up into
several groups, in order to accommodate BookMaster conversion limitations.

Defining the syntax diagram
IBMIDDoc provides elements and attributes that let you create program syntax
diagrams. A sample syntax diagram is shown below:

SAA CPI Database Reference

\\ ERASE FORM
PROC
QUERY
TABLE

name
(CONFIRM= YES

NO

\]

The sample diagram includes the following syntax diagram elements:

© Copyright IBM Corp. 1992, 2001 147

Syntax
The diagram itself. In the sample diagram, the diagram is set off from the
text by a labeled box and contains the diagram title, “SAA CPI Database
Reference.” IBMIDDoc provides the Syntax element and its end element to
define a syntax diagram. The Syntax element has attributes that let you
specify the characteristics of the diagram.

Groups
A collection of items or of other groups. One group in the sample diagram
comprises the keywords FORM, PROC, QUERY, and TABLE. Another
group in the sample comprises the two keywords YES and NO.

Items Individual elements inside the diagram. In the sample diagram, the items
are keywords (the words shown in uppercase letters), a variable (the word
name), a delimiter (the left parenthesis), and an operator (the = character).
Items can also include fragment references and separators. These items
needs to be in groups.

IBMIDDoc provides elements and attributes to mark up the syntax diagram
elements. Here is the markup we used for the sample diagram:
<syntax><title>SAA CPI Database Reference</title>
<group>
<kwd>ERASE</kwd>
</group>
<group choiceseq="CHOICE">
<kwd>FORM</kwd>
<kwd>PROC</kwd>
<kwd>QUERY</kwd>
<kwd>TABLE</kwd>
</group>
<group>
<var>name</var>
</group>
<group optreq="OPT" choiceseq="composite"><delim>
(</delim><kwd>CONFIRM</kwd><oper>=</oper>
<group choiceseq="CHOICE">
<kwd>YES</kwd>
<kwd>NO</kwd>
</group>
</group>
</syntax>

IBMIDDoc also provides elements and attributes for elements not illustrated in the
sample diagram.

Fragments
A part of a syntax diagram, separated from the diagram to show greater
detail. Like a syntax diagram, a fragment can contain items and groups.
We do not mean to imply that the main syntax diagram is always
complete. Often a main syntax diagram shows only a part of the syntax of
the whole program. The word “fragment,” as used here, means a part of
your main diagram or of another fragment.

Syntax notes (SynNote)
Notes often placed at the bottom of the diagram. Syntax notes are similar
to footnotes placed in text.

RepSep
Defines a repeat separator in a syntax diagram.

148 ID Workbench: IBMIDDoc User’s Guide and Reference

SynBlk
Organizes syntax definitions into subdivisions and keeps them together on
a line.

SynPh Contains syntax elements, and is usually used to show a portion of a
syntax definition.

The Syntax element
The Syntax element contains the syntax diagram markup. The attributes of the
Syntax element define the characteristics of the diagram.

The text of the syntax diagram title can be contained in a Title element within the
Syntax element. For example, we included a title, “SAA CPI Database Reference,”
within the Title element on our previous sample syntax diagram.

The following diagram shows the format for the Syntax element itself:

SYNTAX

\\ <SYNTAX >
COMPLANG= Common Attributes

\

\

^

Title

RepSep

space
SynStyle= box

lblbox
rule

2
PgWide= 0

1

\

\
ScalePct= percent

^ Group
Fragment
FragRef
SynBlk
SynNote

</SYNTAX> \]

COMPLANG=

COMPLANG=language_name

For wide diagrams being output for BookManager BOOKs, specify a style override
that uses the BookMaster DWIDTH attribute (the default value is 74):
<syntax style="bkm:(dwidth=100)">

The PgWide attribute controls the width of your diagram. 0 is page-wide, 1 is
column-wide, and 2 (the default) is as wide as the current text line.

The ScalePct attribute allows you to scale a diagram up or down. For example,
scalepct=150 makes the diagram 150% of the normal size.

Chapter 15. Programming Syntax Diagrams 149

|
|

|
|

You can have a box around your diagram, rules above and below it, or a labeled
box around your diagram. Use the SynStyle attribute to add these style effects. The
default is a space (SynStyle=Space).

SynStyle=LblBox
Causes a box to be placed around the diagram. The top line of the box has
text label that is taken from the diagram’s Title tag.

SynStyle=Box
Causes a box to be placed around the diagram.

SynStyle=Rule
Causes a line to be placed above and below the diagram; to visually
separate it from the surrounding text.

The Group element
The Group element defines the syntax group and lets you give the group a name
in a Title element. Groups are needed to collect items like keywords, delimiters,
variables into logical gatherings. Groupings indicate sequential items that need to
be entered together or choices between mutialy exclusive items.

The Title element enables the Group to be automatically fragmented if it is too
large to fit the current area. All items in a sequential group are kept on the same
line. If you have several items that are too wide for one line, you’ll have to split
them into separate groups.

Each of the following examples shows a group with two keywords.
v In this example the group is required and sequential:

\\ FORM PROC \]

Here’s its markup:
<syntax>
<group>
<kwd>FORM</kwd>
<kwd>PROC</kwd>
</group>
</syntax>

v In this example the group is sequential and optional (optreq attribute):

\\
FORM PROC

\]

Here’s its markup:
<syntax>
<group optreq="opt">
<kwd>FORM</kwd>
<kwd>PROC</kwd>
</group>
</syntax>

v In the next example, the group is a choice of the two keywords (choiceseq
attribute); one is required:

150 ID Workbench: IBMIDDoc User’s Guide and Reference

\\ FORM
PROC

\]

Here’s its markup:
<syntax>
<group choiceseq="choice">
<kwd>FORM</kwd>
<kwd>PROC</kwd>
</group>
</syntax>

v In the next example, the group is a choice of the two keywords (choiceseq
attribute) but they are optional (optreq attribute):

\\
FORM
PROC

\]

Here’s its markup:
<syntax>
<group optreq="opt" choiceseq="choice">
<kwd>FORM</kwd>
<kwd>PROC</kwd>
</group>
</syntax>

v In the next example, the group is a sequential default, the values are assigned
even if you enter nothing:

\\
FORM PROC

\]

Here’s its markup:
<syntax>
<group optreq="def" choiceseq="seq">
<kwd>FORM</kwd>
<kwd>PROC</kwd>
</group>
</syntax>

v Sometimes you need to show a diagram and indicate there is no interveining
space between the items. The composite attribute means “sequential with no
spaces”:

\\ FORM=formvalue \]

Here’s its markup:
<syntax>
<group choiceseq="composite"><kwd>FORM</kwd><delim>=</delim>
<var>formvalue</var></group>
</syntax>

v This shows an example of several sequential groups; this is to allow the diagram
to break and flow properly:

\\ FORM
PROC

\

Chapter 15. Programming Syntax Diagrams 151

|
|
|

|||||||

|
|

|
|
|
|

\ printer LPT1 Portrait SOME LARGE KEYWORD TO GET THE DIAGRAM TO BREAK AND FLOW
Landscape

\]

Here’s its markup:
<syntax>
<group choiceseq="choice">
<kwd>FORM</kwd>
<kwd>PROC</kwd>
</group>
<group>
<var>printer</var>
</group>
<group>
<kwd>LPT1</kwd>
</group>
<group choiceseq="choice">
<kwd>Portrait</kwd>
<kwd>Landscape</kwd>
</group>
<group>
<kwd>SOME LARGE KEYWORD TO GET THE DIAGRAM TO BREAK AND FLOW</kwd>
</group>
</syntax>

The KWD (keyword) element
The KWD element describes a keyword, which is a command name or any other
literal information.

Examples:
v In this example, a group element contains two keywords, each contained in

KWD elements:

\\ FORM PROC \]

Here’s its markup:
<syntax>
<group>
<kwd>FORM</kwd>
<kwd>PROC</kwd>
</group>
</syntax>

v In this example, the PROC keyword is optional:

\\ FORM
PROC

\]

Here’s its markup:
<syntax>
<group>
<kwd>FORM</kwd>
<kwd optreq="opt">PROC</kwd>
</group>
</syntax>

v In this example, the PROC keyword is a default:

152 ID Workbench: IBMIDDoc User’s Guide and Reference

\\
PROC

FORM \]

Here’s its markup:
<syntax>
<group>
<kwd>FORM</kwd>
<kwd optreq="def">PROC</kwd>
</group>
</syntax>

The VAR (variable) element
The VAR element describes any variable information.

In this example, the VAR element contains the text language_name.

\\ LANGUAGE = language_name \]

Here’s its markup:
<syntax>
<group>
<kwd>LANGUAGE</kwd>
<oper>=</oper>
<var>language_name</var>
</group>
</syntax>

The OPER (operator) element
The OPER element describes an operator. Operators include add (+), subtract (-),
multiply (*), divide (/), equal (=), and other mathematical operators. The operator
can consist of more than one character.

In this example, the OPER element contains an equals (=) sign.

\\ LANGUAGE = language_name \]

Here’s its markup:
<syntax>
<group>
<kwd>LANGUAGE</kwd>
<oper>=</oper>
<var>language_name</var>
</group>
</syntax>

The SEP (separator) element
The SEP element describes a separator that is to separate keywords, variables,
operators, or groups. The separator can be more than one character.

\\ FRED , BARNEY \]

Here’s its markup:

Chapter 15. Programming Syntax Diagrams 153

<syntax>
<group>
<kwd>FRED</kwd>
<sep>,</sep>
<kwd>BARNEY</kwd>
</group>
</syntax>

The Delim (delimiter) element
The Delim element specifies a delimiter that is to indicate the start or end of
keywords, variables, operators, or groups. The delimiter can be one or more
characters.

Examples:
v In this example, the delimiter is a plus (+) sign:

\\ FRED + WILMA \]

Here’s its markup:
<syntax>
<group>
<kwd>FRED</kwd>
<delim>+</delim>
<kwd>WILMA</kwd>
</group>
</syntax>

v You can use the STARTEND attribute to ensure that delimiters are specified in
matched sets. If the syntax diagram requires a single delimiter, do not use
STARTEND.

\\ ID(identifier) \]

Here’s its markup:
<syntax>
<group choiceseq="composite"><kwd>ID</kwd><delim startend="start">
(</delim><kwd>identifier</kwd><delim startend="end">
)</delim></group>
</syntax>

The RepSep (repeat separator) element
The RepSep element specifies whether the group of items or groups can repeat,
and also the repeat separator character, if one is to be used. If the repeat separator
character is specified, it separates the repeated group of items or groups in the
syntax diagram.

The RepSep element must have an ID value. This ID is used when referencing the
RepSep element from within the syntax markup. Use the REPID attribute on the
repeating group; it references the ID on a RepSep element.

\\ <repsep id=identifier common attributes
req constant

optreq= opt convar= variable

\]

Examples:

154 ID Workbench: IBMIDDoc User’s Guide and Reference

v The following example shows a group containing a variable you can repeat;
there is no repeat separator character.

\\ ^ variable \]

Here’s its markup:
<syntax>
<repsep id="rsep0003a"></repsep>
<group repid="rsep0003a">
<var>variable</var>
</group>
</syntax>

v The following example shows a group containing a variable and a repeat
separator character. In this example, the repeat separator character is required:

\\ ^

,

variable \]

Here’s its markup:
<syntax>
<repsep id="rsep0003">,</repsep>
<group repid="rsep0003">
<var>variable</var>
</group>
</syntax>

v The following example shows a group containing a variable and a repeat
separator character. Here the repeat separator character is optional.

\\ ^

,

variable \]

Here’s its markup:
<syntax>
<repsep optreq="OPT" id="rsep0004">,</repsep>
<group repid="rsep0004">
<var>variable</var>
</group>
</syntax>

The FRAGMENT and FRAGREF (fragment reference) element
A syntax diagram can contain a section that has too many items or groups to fit in
the diagram, or it can contain a section that is used more than once. You can
present such a section as a separate fragment. You give the fragment a name that
corresponds to the name of the section in the main diagram represented by the
fragment.

The Fragment element specifies a fragment of your main syntax diagram or
another fragment. The Fragment element is similar to the Syntax element. You can
use Kwd, Var, Oper, Delim, Sep, FragRef, Group, and SynNote. These elements let
you specify a diagram fragment in the same way that you specify a main diagram.

Chapter 15. Programming Syntax Diagrams 155

You can specify as many fragments as you want for a main diagram. The Fragment
elements cannot be placed inside a Group element. Fragment is valid only within
Syntax and SynBlk elements.

The FRAGREF element describes a reference to a syntax diagram fragment. The
text of the FRAGREF element is placed in the syntax diagram and must match the
name of the fragment reference that it refers to.

This shows a simple fragment that is done as a FragRef and a Fragment:

\\ Common attributes \]

Common attributes:

ID=identifier STYLE=style stuff

Here’s its markup:
<syntax>
<fragref><title>Common attributes</title></fragref>
<fragment><title>Common attributes</title>
<group optreq="opt" choiceseq="composite"><kwd>ID
</kwd><oper>=</oper><var>identifier</var></group>
<group optreq="opt" choiceseq="composite"><kwd>STYLE
</kwd><oper>=</oper><var>style stuff</var></group>
</fragment>
</syntax>

Syntax Notes
IBMIDDoc provides the SynNote element for placing notes in your syntax
diagrams. Syntax notes are similar to footnotes in regular text. At processing time,
a number or other callout is placed next to an item, group, or fragment in the
diagram, indicating that a note is associated with that part of the diagram, and the
note appears at the bottom of the diagram, after any fragments.

Examples:
v This shows a simple note:

\\
(1)

FRED \]

Notes:

1 This is a rather common name.
Here’s its markup:
<syntax>
<group>
<kwd>FRED</kwd>
<synnote>This is a rather common name.</synnote>
</group>
</syntax>

v You can use the CALLOUT attribute in hardcopy to have a specific character
displayed for the note item. This diagram is brought to you by the letter ″N″:

156 ID Workbench: IBMIDDoc User’s Guide and Reference

\\
(N)

FRED \]

Notes:

N This is a rather common name.
Here’s its markup:
<syntax>
<group>
<kwd>FRED</kwd>
<synnote callout="N">This is a rather common name.
</synnote>
</group>
</syntax>

v You can also specify a note once, then refer to it more than once:

\\
(1) (1)

FRED BARNEY \]

Notes:

1 This is a rather common name.
Here’s its markup:
<syntax>
<synnote id="comname">This is a rather common name.
</synnote>
<group>
<kwd>FRED</kwd>
<synnote refid="comname">
</group>
<group>
<kwd>BARNEY</kwd>
<synnote refid="comname">
</group>
</syntax>

Syntax Phrases
Syntax phrases allow you to use a portion of a syntax statement; such as a term in
a parameter list. For example:

\\
Filename

input-file-name \]

Filename
Sample description for this syntax item.

This is the markup:
<syntax>
<group>
<kwd optreq="def">Filename</kwd>
<var>input-file-name</var>
</group>
</syntax><parml>

Chapter 15. Programming Syntax Diagrams 157

<parm><term><synph><kwd optreq="def">Filename</kwd></synph></term>
<defn>Sample description for this syntax item.</defn>
</parm>
</parml>

Examples of Syntax Definitions and Markup
The examples in the sections that follow represent typical syntax definitions.

Example 1: A simple syntax definition
This example illustrates one of the simplest styles of syntax definition, with only
one optional parameter value.
<SYNTAX>
<TITLE>XYZ Command</TITLE>
<GROUP>
<TITLE>CMD</TITLE>
<KWD>XYZ</KWD>
<GROUP OPTREQ="OPT">
<TITLE>OPTION 1</TITLE>
<SEP>&ssbl;</SEP>
<KWD>PARM</KWD>
<OPER>=</OPER>
<VAR>value</VAR>

</GROUP>
</GROUP>

</SYNTAX>

This SGML input will produce the following output.

XYZ Command

\\ CMD \]

CMD

XYZ
Optional Parm

Optional Parm

PARM=value

Example 2: A simple syntax definition that repeats
This example illustrates a syntax definition for a command with a parameter that
can be repeated.

158 ID Workbench: IBMIDDoc User’s Guide and Reference

Syntax Diagram With Repetition

\\ ^

,

command
parm=value

\]

Here’s its markup:
<syntax><title>Syntax Diagram With Repetition</title>
<repsep id="REP1">,</repsep>
<group>
<kwd>command</kwd>
</group>
<group repid="REP1" optreq="OPT" choiceseq="composite">
<kwd>parm</kwd><oper>=</oper><var>value</var></group>
</syntax>

Example 3: A more complex syntax definition
The following syntax definition contains a single group comprising three variable
expressions, two separators, and two delimiters. Each variable expression is
optional. The definition also includes a required keyword and a required variable
statement.

SAA CPI C Reference

\\ for (; ;) statement
exp1 exp2 exp3

\]

Here’s its markup:
<syntax><title>SAA CPI C Reference</title>
<group choiceseq="composite"><kwd>for</kwd>
<group choiceseq="composite"><delim optreq="req" startend="START">
(</delim><var optreq="OPT">exp1</var><sep optreq="req">
;</sep><var optreq="OPT">exp2</var><sep optreq="req">
;</sep><var optreq="OPT">exp3</var><delim optreq="req"
startend="END">)</delim></group>
<var>statement</var></group>
</syntax>

Example 4: A variation on Example 3
This is the same diagram as in “Example 3: A more complex syntax definition”,
with a syntax note added.

SAA CPI C Reference

\\ for (; ;) statement
(1) exp2 exp3

exp1

\]

Notes:

1 This indicates the beginning condition.

Here’s its markup:

Chapter 15. Programming Syntax Diagrams 159

<syntax><title>SAA CPI C Reference</title>
<group choiceseq="composite"><kwd>for</kwd>
<group choiceseq="composite"><delim optreq="req" startend="START">
(</delim><var optreq="OPT">exp1</var><sep optreq="req">
;</sep><var optreq="OPT">exp2</var><sep optreq="req">
;</sep><var optreq="OPT">exp3</var><delim optreq="req"
startend="END">)</delim></group>
<var>statement</var></group>
</syntax>

Example 5: A syntax definition showing a fragment and
significant blanks

The following syntax definition includes a fragment called “Data Type.” The
fragment is placed below the main syntax definition. This example also shows the
use of the syntax significant blank symbol (&ssbl.); use this to ensure a blank is left
in the diagram where the user should code a space.

Database Reference

\\ ^CREATE TABLE table_name (column_name Data Type)
NOT NULL

\]

Data Type:

INTEGER
DECIMAL (length + colwidth)
DEC
CHARACTER
CHAR (length)

GRAPHIC(length)

Here’s its markup:
<syntax><title>Database Reference</title>
<repsep id="rsep0006"></repsep>
<group>
<kwd>CREATE TABLE</kwd>
</group>
<group>
<var>table_name</var>
</group>
<group repid="rsep0006">
<group choiceseq="composite"><delim startend="START">
(</delim><var>column_name</var></group>
<fragref><title>Data Type</title></fragref>
<kwd optreq="OPT">NOT NULL</kwd>
<delim optreq="req" startend="END">)</delim>
</group>
<fragment><title>Data Type</title>
<group choiceseq="CHOICE">
<kwd>INTEGER</kwd>
<group>
<group choiceseq="CHOICE">
<kwd>DECIMAL</kwd>
<kwd>DEC</kwd>
</group>
<group choiceseq="composite"><delim startend="START">
(</delim><var>length</var><sep>&ssbl;+&ssbl;</sep>

160 ID Workbench: IBMIDDoc User’s Guide and Reference

<var>colwidth</var><delim startend="END">)</delim>
</group>
</group>
<group>
<group choiceseq="CHOICE">
<kwd>CHARACTER</kwd>
<kwd>CHAR</kwd>
</group>
<group optreq="OPT" choiceseq="composite"><delim startend="START">
(</delim><var>length</var><delim startend="END">)
</delim></group>
</group>
<group choiceseq="composite"><kwd>GRAPHIC</kwd><delim
startend="START">(</delim><var>length</var><delim
startend="END">)</delim></group>
</group>
</fragment>
</syntax>

Example 6: A syntax definition with automatic fragmenting
The following example is identical to “Example 5: A syntax definition showing a
fragment and significant blanks” on page 160 except that the fragment is marked
up as a group with a title. Because the group is very wide, it automatically
fragments.

Database Reference

\\ ^CREATE TABLE table_name (column_name Data Type)
NOT NULL

\]

Data Type

INTEGER
DECIMAL (length + colwidth)
DEC
CHARACTER
CHAR (length)

GRAPHIC(length)

Here’s its markup:
<syntax><title>Database Reference</title>
<repsep id="rsep0006"></repsep>
<group>
<kwd>CREATE TABLE</kwd>
</group>
<group>
<var>table_name</var>
</group>
<group repid="rsep0006">
<group choiceseq="composite"><delim startend="START">
(</delim><var>column_name</var></group>
<fragref><title>Data Type</title></fragref>
<kwd optreq="OPT">NOT NULL</kwd>
<delim optreq="req" startend="END">)</delim>
</group>
<fragment><title>Data Type</title>

Chapter 15. Programming Syntax Diagrams 161

<group choiceseq="CHOICE">
<kwd>INTEGER</kwd>
<group>
<group choiceseq="CHOICE">
<kwd>DECIMAL</kwd>
<kwd>DEC</kwd>
</group>
<group choiceseq="composite"><delim startend="START">
(</delim><var>length</var><sep>&ssbl;+&ssbl;</sep>
<var>colwidth</var><delim startend="END">)</delim>
</group>
</group>
<group>
<group choiceseq="CHOICE">
<kwd>CHARACTER</kwd>
<kwd>CHAR</kwd>
</group>
<group optreq="OPT" choiceseq="composite"><delim startend="START">
(</delim><var>length</var><delim startend="END">)
</delim></group>
</group>
<group choiceseq="composite"><kwd>GRAPHIC</kwd><delim
startend="START">(</delim><var>length</var><delim
startend="END">)</delim></group>
</group>
</fragment>
</syntax><syntax><title>Database Reference</title>
<repsep id="rsep00061"></repsep>
<group>
<kwd>CREATE TABLE</kwd>
</group>
<group>
<var>table_name</var>
</group>
<group repid="rsep00061">
<group choiceseq="composite"><delim startend="START">
(</delim><var>column_name</var></group>
<group choiceseq="CHOICE"><title>Data Type</title>
<kwd>INTEGER</kwd>
<group>
<group choiceseq="CHOICE">
<kwd>DECIMAL</kwd>
<kwd>DEC</kwd>
</group>
<group choiceseq="composite"><delim startend="START">
(</delim><var>length</var><sep>&ssbl;+&ssbl;</sep>
<var>colwidth</var><delim startend="END">)</delim>
</group>
</group>
<group>
<group choiceseq="CHOICE">
<kwd>CHARACTER</kwd>
<kwd>CHAR</kwd>
</group>
<group optreq="OPT" choiceseq="composite"><delim startend="START">
(</delim><var>length</var><delim startend="END">)
</delim></group>
</group>
<group choiceseq="composite"><kwd>GRAPHIC</kwd><delim
startend="START">(</delim><var>length</var><delim
startend="END">)</delim></group>
</group>
<group>
<kwd optreq="OPT">NOT NULL</kwd>

162 ID Workbench: IBMIDDoc User’s Guide and Reference

<delim optreq="req" startend="END">)</delim>
</group>
</group>
</syntax>

Chapter 15. Programming Syntax Diagrams 163

164 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 16. Developing Programming Language Reference
Materials

We are often called upon to produce reference information for the various elements
of programming languages, either as the major portion of a language reference
manual, or as part of a combined language guide and reference. In this context we
use the term “programming language” very broadly, including the higher-level
languages (such as Java), command and control languages (such as JCL, TSO, and
CMS commands), macro languages, such as Access Method Services macros, and
markup languages (such as our very own IBMIDDoc).

These reference materials typically have a couple of things in common:
v The same set of subtopics (format, parameters, usage, and so on) is repeated for

each language element (statement, macro, and so on). While each subtopic may
have its own heading, you don’t want these headings to appear in your table of
contents.

v Consistency of presentation and retrievability are critical, as readers want to find
the information as quickly as possible and not have to re-interpret the
presentation each time.

Another good reason to use IBMIDDoc elements for language element reference
materials is that once you’ve determined how you’re going to use the elements for
your particular language reference material, you’ll find they are a help in
developing consistent, well-structured materials that are easier to maintain.

The Structure of a Language Element Reference Section
Use LERS to contain reference information for computer languages and command
information. LERS contains one or more Language Elements (LEs) that contain the
description of a computer language element such as commands, and description
items, such as format, purpose, and examples. There are several elements used to
complete the LERS section.

A typical LERS section looks like:
language element reference section <LERS>

language element <LE>
language element name <LEN>
language element description <LEDesc>
language element description item <LEDI>

...
language element <LE>
language element name <LEN>
language element description <LEDesc>
language element description item <LEDI>

...
end language element reference section </LERS>

The language element reference section (LERS) contains many language elements
(described with the LE, LEN, and LEDESC tags), and for each of the language
elements you can have lots of description items (LEDI tags). By description items,

© Copyright IBM Corp. 1992, 2001 165

we mean such things as format (sometimes called “syntax”), purpose, examples —
those categories of information we typically provide when describing a language
element.

Describing Your Reference Section
Your first task in creating a language element reference section (after you figure
how you’re going to present the material, of course) is to describe it, which you do
with attributes on either the LERS (language element reference section) element or
the LERSDEF (LERS definition) element.

While a book typically might have only a few, or perhaps just one language
element reference section, these sections can be enormously long. It is impractical
and inefficient to handle these long sections in a single source file; you will want
to break up the material into multiple files, each with its own LERS element, so
that each file can be processed independently. This is why we have the LERSDEF
element. It allows you to specify all of the LERS attributes — you put the
LERSDEF in your Prolog, and it is referenced in your document.

What can you describe on the LERS or LERSDEF element about your reference
section?
v How to get at the description

The LERSDEF element has a DEFNAME attribute so you can refer to it using the
DEF attribute on the LERS element. However, if you are setting your document’s
default (all your LERS are the same), you can use LERSDEF in the Prolog
without the DEFNAME attribute.

v What text you want generated for the description items

Each language element description item element (LEDI) has an attribute that
defines the category of that description item. IBMIDDoc will generate a
subheading for each description item, as determined by the attribute.
For each category, IBMIDDoc has a corresponding attribute on the LERS and
LERSDEF elements that allows you to specify the subheading text you want in
place of the text generated by default. You can specify any text you want, or you
can specify that no heading be generated at all.

v Whether each language element starts a new page

Normally, each language element begins on a new page. To control the
separation between language elements, you use the SEP attribute on the LERS or
LERSDEF tag. You can pick from the following:

SEP= PAGE | NORMAL | LHPAGE | RHPAGE
allows you to specify how you want the language elements separated,
where:

PAGE Starts the language element on the next page.

NORMAL
Specifies normal heading separation — usually white space.

LHPAGE
Starts the language element on the next left-hand page (even page).

RHPAGE
Starts the language element on the next right-hand page (odd page).

v Whether the language elements are to be used as the retrieval subject for a
page

166 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|

|

|
|
|

|
|
|

||

|
|

|
|

|
|

|
|

It may be easier for a reader to look up a language element in a long list if the
language elements are used as retrieval subjects. In styles where the subject is
placed in the running heading, such as the default style, this results in
dictionary-like running headings. You can pick from the following:

RETKEY=None | First
Use the RetKey attribute to enable or disable automatic running headings for
this tag.

NONE
indicates that nothing is to be used.

FIRST
indicates that the first non-blank item on the page is to be used.

The values NODUP and FIRSTLAST are not supported at this time.

If you code any explicit RetKey elements, they are honored and will appear.
If you nest elements that can generate a running heading (for example, a
MsgList inside Lers), only the outer active generated heading is used. That
is, if you specified automated RetKey generation for LERS and MSGLIST, a
Msgno inside Lers will not be used in the RetKey area. But if you had an
explicit RetKey inside the Msg, then the RetKey is honored as an explicit
override.

Table 17 shows the attribute name for each of the language element description
item categories, the text that will be generated by default in styles that use
IBMIDDoc’s initial setting, and what the category means. Of course, you will only
use the categories that are appropriate for your material.

Table 17. Categories of language element description items

Attribute name Generated heading Description

AUTH Authorization the authorization level necessary to use
this language element

COMMENTS Comments just about anything you consider
comments

CONTEXT Context the context in which this language
element is valid

DEFAULTS Defaults the defaults

ERRCOND Error Conditions error conditions that can arise from
misuse

EXAMPLES Examples examples of input and output

FLAGS Flags the flags that could be set by the
language element

FORMAT Format the general format (or syntax)

INTREP Internal Representation the internal representation (for example,
binary) of the language element
(sometimes called “encoding”)

MESSAGES Messages messages that can be generated as a
result of use of this element

OTHER a build-your-own category

PARMS Parameters the parameters of the language element

PROCESS Processing the processing that will be done for the
language element (that is, the logic)

Chapter 16. Developing Programming Language Reference Materials 167

|
|
|
|

|
|
|

|
|

|
|

|

|
|
|
|
|
|
|

Table 17. Categories of language element description items (continued)

Attribute name Generated heading Description

PURPOSE Purpose the purpose of the language element

RESTRICT Restrictions restrictions on use of the language
element

RESULTS Return Codes explanations of the return codes possible
with the language element

SYSENV System Environment the system environment in which the
language element is valid

USAGE Usage how the language element is used

VERSION Version the version of the program in which the
language element is valid

The categories have been selected based on a review of what has been used in the
past. The OTHER category exists to allow you to create a category that has not
been anticipated in the list above; before you decide to use OTHER to create a new
category, review the ones available carefully to make sure that your category
doesn’t already exist.

Be assured that IBMIDDoc is not demanding that you structure your reference
information to match these categories. You might very well want to deal with the
defaults as part of the discussion of the parameters, rather than as a separate
“Defaults” category; similarly, you might want to deal with “Context” in the
discussion of usage. These decisions depend on the nature of the language you are
describing and the approach you take to its presentation.

So you might, for example, decide the following:
v Your reference section should have the categories PURPOSE, FORMAT, PARMS,

USAGE, and EXAMPLES
v You do want the FORMAT category headed “Syntax”
v You do want the PARMS category headed “Attributes and Contained Elements”

Your LERSDEF might look like this:
<LERSDEF
FORMAT="Syntax"
PARMS="Attributes and Contained Elements"
DEFNAME="UGREFLERS">
<DESC>Contains the LEDI IBMIDDoc User’s Guide
and Reference LERS name specifications.</DESC>

</LERSDEF>

You didn’t have to say anything about PURPOSE or EXAMPLES because you want
the default headings generated.

Describing the language element
You start each item in a LERS section with an LE (language element) tag. It is like
a division tag. The LEN (language element name) tag contains the title of the LE.
You can format where the line breaks occur in the title if you would like. For
example, the following will format the title over two lines:
<len>COPYFILE
Copy a file
</len>

168 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|
|
|

|
|
|
|

|
|
|

In the table of contents, the line split does not occur (except in Frame2000
currently).

Following the language element name, you have a series of language element
description items, marked up with the LEDI element. Each LEDI element CLASS
attribute needs to have an attribute that describes the category of the item:
AUTH EXAMPLES OTHER RESULTS
COMMENTS FLAGS PARMS RETCODES
CONTEXT FORMAT PROCESS SYSENV
DEFAULTS INTREP PURPOSE USAGE
ERRCOND MESSAGES RESTRICT VERSION

These are the same description item category attributes that occur on the LERS and
LERSDEF element (see Table 17 on page 167).

Example of a Simple Language Element Reference Section
Time for an example. In this example, we use these categories:

PURPOSE
Without a heading. Because it follows the LEN immediately, it doesn’t
need its own heading.

FORMAT
Uses the special heading text “Syntax”.

PARMS
Without a heading. It appears to the reader as simply part of the syntax
discussion.

USAGE
Uses the default heading text.

RESTRICT
Uses the special heading text “Do’s and Don’ts”.

EXAMPLES
Uses the default heading text.

MESSAGES
Uses the default heading text. We only have one command that yields
messages, so this is used only once.

Our language in the following example is a command language for a culinary
robot. Here’s its coding:
<lers format="Syntax" parms="" process="" restrict="Do’s and Don’ts">
<le>
<len>DISHDEF
defining a dish</len>
<ledi class="purpose">
<p>The DISHDEF command defines a dish — the
ingredients that it contains and the processing steps
to prepare it.</p>
</ledi>
<ledi class="format">
<syntax>
<repsep id="cul"></repsep>
<group>
<kwd>DISHDEF</kwd>
</group>
<group style="bkm:(composite)">
<kwd>NAME</kwd>
<delim>=</delim>

Chapter 16. Developing Programming Language Reference Materials 169

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<var>name-of-dish</var>
</group>
<group repid="cul" style="bkm:(composite)">
<kwd>INGREDIENT</kwd>
<delim>=</delim>
<var>ingredient-name</var>
<delim>/</delim>
<var>quantity</var>
</group>
<group repid="cul" style="bkm:(composite)">
<kwd>STEP</kwd>
<delim>=</delim>
<var>process-name</var>
<delim> (</delim>
<var>ingredient-list</var>
<delim>)</delim>
<group choiceseq="choice">
<group>
<kwd>UNTIL</kwd>
<var>condition-name</var>
</group>
<group>
<kwd>FOR</kwd>
<var>time</var>
</group>
</group>
</group>
</syntax>
</ledi>
<ledi class="parms">
<parml>
<parm><term><synph><kwd>NAME</kwd><delim>=</delim><var>
name-of-dish</var></synph></term>
<defn>identifies the dish name.</defn>
</parm>
<parm><term><synph><kwd>INGREDIENT</kwd><delim>=</delim><var>
ingredient-name</var><delim>/</delim><var>quantity
</var></synph></term>
<defn>identifies an ingredient and the quantity per
serving. The ingredient must be expressed in international
culinary ingredient units (ICIUs). The quantity must
be expressed in international culinary quantity units
(ICQUs). This parameter is repeated as often as necessary
to define each of the ingredients in the dish.</defn>
</parm>
<parm><term><synph><kwd>STEP</kwd><delim>=</delim><var>
process-name</var><delim>(</delim><var>ingredient-list
</var><delim>)</delim></synph></term>
<defn>identifies a preparation step and the ingredients
to use. Process names must be expressed in international
culinary step units (ICSUs). This clause is repeated
as often as necessary to define each of the preparation
steps for the dish.</defn>
</parm>
<parm><term><synph><kwd>UNTIL</kwd><var>condition-name
</var></synph></term><term><synph><kwd>FOR</kwd><var>
time</var></synph></term>
<defn>identifies a condition under which the step
is to conclude or an amount of time for processing.
Condition names must be expressed in international
culinary condition units (ICCUs). </defn>
</parm>
</parml>
</ledi>
<ledi class="usage">
<p>Use the DISHDEF command to specify to the culinary
robot how to prepare a dish. </p>

170 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

</ledi>
<ledi class="restrict">
<p>Make sure that the ingredients list is in the order
in which the ingredients are to be used. For example,
for a SAUTE step, make sure that BUTTER is specified
before VEAL or the robot will put the veal in the
pan before the butter.</p>
</ledi>
<ledi class="examples">
<xmp>dishdef name=vealalfred
ingredient=butter/1tsp
ingredient=vealscallop/6oz ingredient=salt/pinch
ingredient=tarragon/1tsp ingredient=sourcream/halfcup
step=saute (butter vealscallop) until golden brown
step=add (salt tarragon) for 1 min
step=deglaze (sourcream) for 6 min</xmp>
</ledi>
</le>
<le>
<len>EVALUATE
evaluate nutrition, cost, or preparation time</len>
<ledi class="purpose">
<p>Once you have a menu defined, use the EVALUATE
command to determine its nutritional characteristics
and the preparation time. If you have access to the
Daily Market Cost data base, you can also evaluate
the cost of a shopping list containing one or more
menus.</p>
</ledi>
<ledi class="format">
<syntax>
<group>
<kwd>EVALUATE</kwd>
</group>
<group choiceseq="choice">
<group>
<kwd>NUTRITION</kwd>
<group style="bkm:(composite)">
<kwd>MENU</kwd>
<delim>=</delim>
<var>menu-name</var>
</group>
</group>
<group>
<kwd>COST</kwd>
<group style="bkm:(composite)">
<kwd>SHOPLIST</kwd>
<delim>=</delim>
<var>shopping-list-name</var>
</group>
</group>
<group>
<kwd>PREPTIME</kwd>
<group style="bkm:(composite)">
<kwd>MENU</kwd>
<delim>=</delim>
<var>menu-name</var>
</group>
<group style="bkm:(composite)">
<kwd>SERVING</kwd>
<delim>=</delim>
<var>number</var>
</group>
</group>
</group>
</syntax>
</ledi>

Chapter 16. Developing Programming Language Reference Materials 171

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<ledi class="parms">
<parml>
<parm><term><synph><kwd>MENU</kwd><delim>=</delim><var>
menu-name</var></synph></term>
<defn>requests a nutritional evaluation of menu name.
</defn>
</parm>
<parm><term><synph><kwd>COST</kwd> <kwd>SHOPLIST</kwd><delim>
=</delim><var>shopping-list-name</var></synph></term>
<defn>as determined by your marketing profile and
the Daily Market Cost data base, this command generates
a cost for the named shopping list for each of the
markets in the profile, including the cost of the
gasoline for driving to those markets designated in
your profile as not providing delivery service.</defn>
</parm>
<parm><term><synph><kwd>PREPTIME</kwd> <kwd>MENU</kwd><delim>
=</delim><var>menu-name</var> <kwd>SERVING</kwd><delim>
=</delim><var>number</var></synph></term>
<defn>requests an evaluation of the preparation time
for the designated menu serving the designated number
of people.</defn>
</parm>
</parml>
</ledi>
<ledi class="usage">
<p>Use the EVALUATE command as required to maximize
the nutrition and minimize the cost of meals. Knowing
the preparation time is critical in requesting that
menus be prepared.</p>
</ledi>
<ledi class="examples">
<xmp>//evaluate nutrition menu=companydinner
//evaluate cost shoplist=monday
//evaluate preptime menu=companydinner serving=8</xmp>
</ledi>
</le>
</lers>

DISHDEF
defining a dish

Purpose
The DISHDEF command defines a dish — the ingredients that it contains and the
processing steps to prepare it.

Syntax

\\ DISHDEF NAME=name-of-dish ^ INGREDIENT=ingredient-name/quantity \

\ ^ STEP=process-name (ingredient-list) UNTIL condition-name
FOR time

\]

NAME=name-of-dish
identifies the dish name.

172 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|

|||||||||||||||
|

|
|||||||||||||||||||||||||

|

|
|

INGREDIENT=ingredient-name/quantity
identifies an ingredient and the quantity per serving. The ingredient must be
expressed in international culinary ingredient units (ICIUs). The quantity must
be expressed in international culinary quantity units (ICQUs). This parameter
is repeated as often as necessary to define each of the ingredients in the dish.

STEP=process-name(ingredient-list)
identifies a preparation step and the ingredients to use. Process names must be
expressed in international culinary step units (ICSUs). This clause is repeated
as often as necessary to define each of the preparation steps for the dish.

UNTILcondition-name
FORtime

identifies a condition under which the step is to conclude or an amount of
time for processing. Condition names must be expressed in international
culinary condition units (ICCUs).

Usage
Use the DISHDEF command to specify to the culinary robot how to prepare a dish.

Do’s and Don’ts
Make sure that the ingredients list is in the order in which the ingredients are to be
used. For example, for a SAUTE step, make sure that BUTTER is specified before
VEAL or the robot will put the veal in the pan before the butter.

Examples
dishdef name=vealalfred
ingredient=butter/1tsp
ingredient=vealscallop/6oz ingredient=salt/pinch
ingredient=tarragon/1tsp ingredient=sourcream/halfcup
step=saute (butter vealscallop) until golden brown
step=add (salt tarragon) for 1 min
step=deglaze (sourcream) for 6 min

EVALUATE
evaluate nutrition, cost, or preparation time

Purpose
Once you have a menu defined, use the EVALUATE command to determine its
nutritional characteristics and the preparation time. If you have access to the Daily
Market Cost data base, you can also evaluate the cost of a shopping list containing
one or more menus.

Syntax

\\ EVALUATE NUTRITION MENU=menu-name
COST SHOPLIST=shopping-list-name
PREPTIME MENU=menu-name SERVING=number

\]

MENU=menu-name
requests a nutritional evaluation of menu name.

COST SHOPLIST=shopping-list-name
as determined by your marketing profile and the Daily Market Cost data base,
this command generates a cost for the named shopping list for each of the
markets in the profile, including the cost of the gasoline for driving to those
markets designated in your profile as not providing delivery service.

Chapter 16. Developing Programming Language Reference Materials 173

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|

|

|

|
|
|
|
|

|

||||||||||||||||||||||||||

|

|
|

|
|
|
|
|

PREPTIME MENU=menu-name SERVING=number
requests an evaluation of the preparation time for the designated menu serving
the designated number of people.

Usage
Use the EVALUATE command as required to maximize the nutrition and minimize
the cost of meals. Knowing the preparation time is critical in requesting that menus
be prepared.

Examples
//evaluate nutrition menu=companydinner
//evaluate cost shoplist=monday
//evaluate preptime menu=companydinner serving=8

174 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|

|
|
|
|

|
|
|
|

Chapter 17. Defining Modular Information

Use modular information describe information that is often repetitive in structure
and content, and requires precise markup. To do this, you can define many
different modular information classes for each type of information you need to
describe. You can use modular information to create reference information for most
anything. This chapter introduces ways to create modular information using
IBMIDDoc.

You can create modular information classes that describe programming data
structures, commands and syntax, or command definitions, for example. This
information is often displayed in a tabular format. You can define this format using
the modular information elements described in this section.

Tables are a presentation-oriented structure. Modular information attempts to
capture the relationships that are often expressed in tables, using classes of
information, in a more meaningful way. Many tables have aspects with specific
meanings. There are times when, for presentation-specific purposes, a table must
be altered or resized—to fit on a page, for example. These changes can cause
confusion about the relationships the table is intended to illustrate.

Modular information elements capture these meanings using the class mechanism
that is part of modular item specifications. IBMIDDoc’s modular information
elements are a way to express many of the structures that are currently expressed
as tables. IBMIDDoc modular information can be expressed in many ways, without
obscuring the meaning of the relationships expressed in the information’s classes.

You can use several elements in combination to define modular information
classes, descriptions, and properties. These elements include:
v ModInfo
v ModInfoDef
v Mod
v ModItem
v ModItemDef

The following example illustrates how to use these elements to define modular
information. See the reference section entries for the elements used in the example
that follows for more information about these elements.

...
<PROLOG>...
<PROPDEFS>...
<MODINFODEF CLASSNAME="payobj">
<DESC>This class of modular information should be used to
describe payroll objects on a data entry screen.
</DESC>
<MODITEMDEF CLASSNAME="exempt">Exemptions
<DESC>Contains the number of exemptions the employee claims.
<MODITEMDEF CLASSNAME="rate">Hourly Rate
<DESC>Contains the amount, in dollars and cents, the employee is

paid per hour.
</MODINFODEF>

© Copyright IBM Corp. 1992, 2001 175

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|

|

|

|

|

|
|
|
||| |
||||
||||
|
|
|
|
|
|
|
|
|
|

...
</PROPDEFS>...
</PROLOG>...

After defining the payobject, exemptions, and rate classes, they can be used as
shown in the following example.
<MODINFO CLASS="payobj">
<MOD ID="empinf">
<MODNAME>Employee Pay Information</MODNAME>
<MODITEM CLASS="exempt">
<P>Enter the number of exemptions that the employee claims.</P></MODITEM>
<MODITEM CLASS="rate">
<P>Enter the employee’s hourly rate of pay.</P></MODITEM>
</MOD>...
</MODINFO>

Examples of Using Modular Information
Defining modular information allows the information to be displayed in a variety
of ways, including a table presentation style. The example that follows contains
modular information elements and a formatted example of one way to express the
meaning of the modular information in a table presentation.

Here are the modular information definitions:
<propdefs>
<modinfodef classname="CUST"><desc>Customer information
</desc>
<moditemdef classname="NAME"><title>Name</title><desc>
This is the first and last name of the customer</desc>
</moditemdef>
<moditemdef classname="CUSTID"><title>ID</title><desc>
This is their customer id number</desc></moditemdef>
<moditemdef classname="INC"><title>Income</title>
<desc>This is their annual estimated income</desc>
</moditemdef>
<moditemdef classname="LPD"><title>Last purchase date
</title><desc>This is their last purchase date</desc>
</moditemdef>
<moditemdef classname="NOTES"><title>Notes</title>
<desc>Personal notes</desc></moditemdef>
</modinfodef>
</propdefs>

Here is the mudular information section:
<modinfo class="cust" style="table">
<mod class="CUST">
<modname class="NAME">Fred Smith</modname>
<moditem class="CUSTID"><p><num base="10">1000</num></p></moditem>
<moditem class="INC"><num base="10">40000</num></moditem>
<moditem class="LPD"><p><date>12/25/93</date></p></moditem>
<moditem class="NOTES"><p>Big spender</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Suzanne Stanley</modname>
<moditem class="CUSTID"><p><num base="10">1001</num></p></moditem>
<moditem class="INC"><p><num base="10">50000</num></p></moditem>
<moditem class="LPD"><p><date>11/22/92</date></p></moditem>
<moditem class="NOTES"><p>Likes game software</p></moditem>
</mod>

176 ID Workbench: IBMIDDoc User’s Guide and Reference

||| |
||||
||||

|
|

|
|
|
|
|
|
|
||||
|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<mod class="CUST">
<modname class="NAME">Jeff George</modname>
<moditem class="CUSTID"><p><num base="10">1002</num></p></moditem>
<moditem class="INC"><p><num base="10">60000</num></p></moditem>
<moditem class="LPD"><p><date>12/02/93</date></p></moditem>
<moditem class="NOTES"><p>Likes DVD movies</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Mike Gidento</modname>
<moditem class="CUSTID"><p><num base="10">1003</num></p></moditem>
<moditem class="INC"><p><num base="10">35000</num></p></moditem>
<moditem class="LPD"><p><date>12/12/92</date></p></moditem>
<moditem class="NOTES"><p>Likes 8-track tapes</p></moditem>
</mod>
</modinfo>

The result looks like the following:

Name ID Income Last purchase
date

Notes

Fred Smith 1000 40000 12/25/93 Big spender

Suzanne Stanley 1001 50000 11/22/92 Likes game
software

Jeff George 1002 60000 12/02/93 Likes DVD
movies

Mike Gidento 1003 35000 12/12/92 Likes 8-track
tapes

Chapter 17. Defining Modular Information 177

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|||||
|
|

|||||

|||||
|

|||||
|

|||||
|

178 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 18. File, text, and character entities and reusing
information

Where multiple output documents contain common information, or a single
document repeats the same information, the only way to ensure that the common
information is the same is to take the information in each case from the same
source file. At its simplest level, where the common information is in a few, largish
blocks, the way to do this is to put each block of the common information in a file
of its own and imbed it in the multiple output documents that use it.

IBMIDDoc allows you to reuse elements and information defined in entities; see
“File and text entities”. You can also reuse information from within the document,
see “Reusing elements from an object library” on page 191.

File and text entities
Entities can be used to retrieve document fragments. An entity is any information
that is referred to as a unit from a document. All entities are declared at the
beginning of a document. Entities cannot be redefined within a document. Entity
names are also case sensitive. Thus, product, PRODUCT, and Product refer to
different entities.

There are two different types of entities for holding reusable information: file
entities and text entities.

File entities
These are sometimes referred to as external entities or imbeds. These are
files of markup and text to include in the document. They can be a large as
a chapter (or even larger), or as small as a word (though this will drive
translation centers nuts). The declaration points at the file. We
recommended that these entities contain complete elements.

When you save your file entity, give it a meaningful file name. The file
extension needs to be IDE (or ide), to ensure the ID Workbench processes
properly recognize the file. Use only letters and numbers in the file name;
we recommend starting the file name with a letter. Do not include special
characters in the file name (such as +, –, %, and so forth).

Text entities
These are sometimes referred to as symbols or internal entities. These
entity declarations include the replacement text. A text entity can specify
up to 2400 characters of information and markup.

The content should be a noun string. You should not mix verbs and nouns
in a text entity, because this will make that entity non-translatable. If you
do this, the translation centers need to split apart the verbs from the
nouns. If you need to do this, make an entire sentence an entity.

To include a text or file entity, use an entity reference. An entity reference requests
the entity data to be processed at the place where the reference occurs. Any entity
can be referenced in this way, but they must be valid in the context in which they
are referenced.

© Copyright IBM Corp. 1992, 2001 179

|
|
|
|
|

|
|
|
|

The following example shows how text and file entities are defined and used. The
entities product, PRODUCT, and Prod are all text entities; the preface is a file
entity.
<!ENTITY product "ABC Pgm.">
<!ENTITY PRODUCT "PQR Component.">
<!ENTITY Prod "XYZ Pgm">
<!ENTITY preface SYSTEM "xyzl0pre.ide">
...
This book teaches you how to use &product;.
...
&preface;
...
<D>Using the &PRODUCT; of the &product;
...
<D>Using &product; with &Prod;

Special characters
Sometimes you need to specify characters that can be printed on the printer but
cannot be typed at your keyboard. An example of that would be the bullet, which
looks like this: v

No matter how hard you look, you can’t find a key on your keyboard with one of
those on it (unless you have a special keyboard). All symbols are entered the same
way: an ampersand (&), followed by the symbol name, followed by a semicolon.
So our symbol for the bullet, which is named “bul”, would look like this:
&bul;

The IBMIDDoc DTD has several symbols for characters you cannot type. These are
called character entities. The only SGML-sensitive characters are less-than (<) and
ampersand (&) These, when typed in the editor, are automatically converted to
< and & Other characters can be typed if you have them on your keyboard;
others you cannot type directly and will need to be entered as character entities.

Table 18 shows the character entities defined in IBMIDDoc.

Table 18. IBMIDDoc Character Entities. All characters are supported in the hardcopy
processes. For the online XHTML, HTML, BookManager, and other processes, please
check your output for proper appearance and the process logs for messages.

Symbol Appearance Description

aa á a acute
Aa Á A acute
ac â a circumflex
Ac Â A circumflex
acute u accent acute
ae ä a umlaut
Ae Ä A umlaut
aelig æ ae ligature
AElig Æ AE ligature
ag à a grave
Ag À A grave
aleph ℵ aleph
all ∀ all
alpha α alpha
Alpha Α Alpha
amp & ampersand
and ∧ and symbol

180 ID Workbench: IBMIDDoc User’s Guide and Reference

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description

angle ∠ angle
angstrom Å angstrom
ao å a overcircle
Ao Å A overcircle
apos ’ apostrophe
app ≈ approximately
approx ≈ approximately
approxid � approximately identical
arc \ arc
asterisk * asterisk
at ã a tilde
At Ã A tilde
atsign @ at sign
aus ª underscored a
ballot h ballot box
because { because
beta β beta
Beta Β Beta
bin B' binary
blank � blank (b with slash)
box h ballot box
BOX " solid box
BOXBOT a solid box bottom half
BOXLEFT b solid box left half
BOXRIGHT c solid box right half
BOXTOP d solid box top half
box12 e shaded box 1/2 dots
box14 f shaded box 1/4 dots
box34 g shaded box 3/4 dots
bs backspace
bsl \ back slash
bslash \ back slash
bul v bullet
bullet v bullet
bxas ┴ box ascender
bxbj ┴ box ascender
bxcj ┼ box cross
bxcr ┼ box cross
bxde ┬ box descender
bxh ─ box horizontal
bxle ├ box left junction
bxlj ├ box left junction
bxll └ box lower-left
bxlr ┘ box lower-right
bxri ┤ box right junction
bxrj ┤ box right junction
bxtj ┬ box descender
bxul ┌ box upper-left
bxur ┐ box upper-right
bxv │ box vertical
bx0012 ╕ ASCII code 184

Chapter 18. File, text, and character entities and reusing information 181

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description

bx0021 ╖ ASCII code 183
bx0022 ╗ ASCII code 187
bx0120 ╓ ASCII code 214
bx0121 ╥ ASCII code 210
bx0202 ═ ASCII code 205
bx0210 ╒ ASCII code 213
bx0212 ╤ ASCII code 209
bx0220 ╔ ASCII code 201
bx0222 ╦ ASCII code 203
bx1002 ╛ ASCII code 190
bx1012 ╡ ASCII code 181
bx1200 ╘ ASCII code 212
bx1202 ╧ ASCII code 207
bx1210 ╞ ASCII code 198
bx1212 ╪ ASCII code 216
bx2001 ╜ ASCII code 189
bx2002 ╝ ASCII code 188
bx2020 ║ ASCII code 186
bx2021 ╢ ASCII code 182
bx2022 ╣ ASCII code 185
bx2100 ╙ ASCII code 211
bx2101 ╨ ASCII code 208
bx2120 ╟ ASCII code 199
bx2121 ╫ ASCII code 215
bx2200 ╚ ASCII code 200
bx2202 ╩ ASCII code 202
bx2220 ╠ ASCII code 204
bx2222 ╬ ASCII code 206
caret ^ caret
cc ç c cedilla
Cc Ç C cedilla
cdot (circled dot
cdq ” close double quote
cdqf » French close double quote
cdqg ” German close double quote
cedilla q cedilla
cent ¢ cent
cequal $ circled equals
char ' character
check U checkmark
chi χ chi
Chi Χ Chi
circ V circle
circle V circle
CLUB ♣ club solid
cminus @ circled minus
colon : colon
comma , comma
concat \ concatenate
congruent � congruent
cont continuation character

182 ID Workbench: IBMIDDoc User’s Guide and Reference

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description

contains ⊃ contains as a subset
copr © copyright
copyr © copyright
cplus ⊕ circled plus
csq ’ close single quote
csqg ’ German close single quote
ctimes ⊗ circled times
currency ¤ currency international
cursor � fat cursor
dagger † dagger
dahead ^ down arrowhead
darrow ↓ down arrow
date October 30, 2001 date
dbldag ‡ double dagger
dbls § double S
dblus ‗ underscore double
dblxclam ‼ double exclamation point
dblxclm ‼ double exclamation point
decrease & decrease
def ::= definition/defined as
deg ° degree
degree ° degree
del ∇ del
delta δ delta
Delta ∆ Delta
determines � determines
diam � diamond wide
diamond L diamond
DIAMOND ♦ diamond solid
div ÷ divide
divide ÷ divide
divslash ⁄ division slash
dollar $ dollar
dot · dot
dotdot .. double dot
doubleC � double C
doubleN � double N
doubleP � double P
doubleQ � double Q
doubleR � double R
doubleZ � double Z
Dstroke Ð Eth or D stroke
ea é e acute
Ea É E acute
ebin ' binary end
ec ê e circumflex
Ec Ê E circumflex
echar ' character end
ee ë e umlaut
Ee Ë E umlaut
eg è egrave

Chapter 18. File, text, and character entities and reusing information 183

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description

Eg È E grave
egml . gml end tag delimiter
ehex ' end quoted hex string
ellip ... ellipsis
ellipsis ... ellipsis
emdash — em dash
endash – en dash, dash
epsilon ε epsilon
Epsilon Ε Epsilon
eq = equals
eqsym = equals
equals = equals
eqv ∼ equivalent
eserver_logo Eserver e(logo)server
eserver_logo_TM ERserver e(logo)server, trademarked
eta η eta
Eta Η Eta
eth ð eth, Icelandic small
Eth Ð eth, Icelandic capital
euler � Eulers
euro € Either Euro glyph or EUR
eurochar € Either Euro glyph or E
eurotext EUR Always EUR
exists ∃ exists
FACE � face solid
face � face
factorial ! factorial
female ♀ female symbol
ff ff ff ligature
ffi ffi ffi ligature
ffl ffl ffl ligature
fi fi fi ligature
finespace finespace
fl fl fl ligature
florin ƒ florin
fnof , function of
frac12 ½ one half
frac14 ¼ one quarter
frac18 ⅛ one eighth
frac34 ¾ three fourths
frac38 ⅜ three eighths
frac58 ⅝ five eighths
frac78 ⅞ seven eighths
gamma γ gamma
Gamma Γ Gamma
ge ≥ greater than or equal to
gerank f greater than or equal rank
gesym ≥ greater than or equal to
gml : gml delimiter
grave ` accent grave
gt > greater than

184 ID Workbench: IBMIDDoc User’s Guide and Reference

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description

gtequiv * greater than or equivilent
gtgt @ much greater than
gtlt : greater than or less than
gtrank s greater than rank
gtsym > greater than
hamilton � hamiltonian
hat ^ hat
hbar \ h bar
HEART ♥ heart solid
hex X' hex
house § house
hyphen - hyphen
ia í i acute
Ia Í I acute
ic î i circumflex
Ic Î I circumflex
Icap I I capital character
identical ≡ identical
idotless ı i dotless
ie ï i umlaut
Ie Ï I umlaut
iff ⇔ if and only if
ig ì i grave
Ig Ì I grave
ij ĳ ij ligature
increase # increase
infinity ∞ infinity
intbot « integral bottom half
integral ∫ integral
intersect � intersection of sets
inttop ¬ integral top half
inve ¡ inverted exclamation
invellip

... indented vertical ellipsis

invq ¿ inverted question mark
iota ι iota
Iota Ι Iota
isubset ⊆ improper subset
isuperset ⊇ improper superset
join $ join
kappa κ kappa
Kappa Κ Kappa
lahead] left arrowhead
lambda λ lambda
Lambda Λ Lambda
larrow ← left arrow
lbarb] left barb
lbrace { left brace
lbracket [left bracket
lbrc { left brace
lbrk [left bracket

Chapter 18. File, text, and character entities and reusing information 185

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description

lbullet * large bullet
ldarrow ⇐ left double arrow
le ≤ less than or equal to
lerank d less than or equal rank
less ≤ less than or equivilent
lesym ≤ less than or equal to
liter ¯ liter
lmultdot • multiply dot large
lnot ¬ logical not
lnotrev ± backward logical not
lnotusd upside down not
lor | logical or
loz ² lozenge
lozenge ² lozenge
lpar (left parenthesis
lparen (left parenthesis
lrarrow ↔ left-right arrow
Lsterling £ pound sterling
lt < less than
ltequiv & ltequiv
ltlt ! much less than
ltrank a less than rank
ltsym < less than
male ♂ male symbol
mathast * mathematics asterisk
mdash — em dash
meet * meet
memberof ∈ member of
minus − minus operation
minusop − minus operation
mp) minus-plus
mu µ mu
Mu Μ Mu
mult × multiply
ndash – en dash, dash
ne ≠ not equal to
nearly ≈ nearly equal
nesym ≠ not equal to
nexists - not existant
nidentical . not identical
nisubset / not improper subset
nisuperset 0 not improper superset
nlerank 1 not less or equal rank
nltrank 2 not less than rank
nmemberof ∉ not a member of
nnearly 3 not nearly equal
note1616 ♫ pair of 16th notes
note18 ♪ eighth note
notsym ¬ not symbol
nsubset ⊆ not a subset
nsuperset ⊇ not a superset

186 ID Workbench: IBMIDDoc User’s Guide and Reference

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description

nt ñ n tilde
Nt Ñ N tilde
nu ν nu
Nu Ν Nu
numsign # number sign
oa ó o acute
Oa Ó O acute
oc ô o circumflex
Oc Ô O circumflex
odq “ open double quote
odqf « French open double quote
odqg „ German open double quote
oe ö o umlaut
Oe Ö O umlaut
oelig œ oe ligature
OElig Œ OE ligature
og ò o grave
Og Ò O grave
omega ω omega
Omega ¸ Omega
omicron ο omicron
Omicron Ο Omicron
or ∨ or symbol
os ø o slash
Os Ø O slash
osq ‘ open single quote
osqg ‚ German open single quote
ot õ o tilde
Ot Õ O tilde
ous º underscored o
overline ‾ overline
par ¶ paragraph
parallel { parallel
partial ∂ partial
per . period (starter set)
percent % percent
period . period
perpend ⊥ perpendicular
peseta º peseta
phi φ phi
Phi Φ Phi
pi π pi
Pi Π Pi
planck \ h bar
plus + plus
plusend + plus at end of line
plusmin ± plus-minus
plusop + plus operation
pm ± plus-minus
prime ′ prime
product ∏ product

Chapter 18. File, text, and character entities and reusing information 187

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description

proportion ∝ proportion
psi ψ psi
Psi Ψ Psi
quest ? question mark
rahead \ right arrowhead
rarrow → right arrow
ratio : ratio
rbarb ^ right barb
rbl required blank
rbrace } right brace
rbracket] right bracket
rbrc } right brace
rbrk] right bracket
rdarrow ⇒ right double arrow
regtm ® registered trademark
revbul ¿ reverse bullet
revcir À reverse circle
rho ρ rho
Rho Ρ Rho
riemann E riemann integral
rpar) right parenthesis
rparen) right parenthesis
rprime) right prime
Rx] physician Rx
scriptI F script I
scriptl ¯ liter
sdq " straight double quote
sect § double S
section § double S
semi ; semicolon
shiftin � double byte shift in
shiftout � double byte shift out
sigma σ sigma
Sigma Σ Sigma
similar ∼ similar
slash / slash right
slr / slash right
smultdot · muliply dot small
SPADE ♠ spade solid
splitvbar ¦ split veritical bar
sqbul u square bullet
sqbullet u square bullet
sqrt ' square root
ss ß German es-zet
ssbl syntax significant blank
ssq ' straight single quote
STAR . star solid
sublpar (subscript left parenthesis
subminus - subscript minus
subplus + subscript plus
subrpar) subscript right parenthesis

188 ID Workbench: IBMIDDoc User’s Guide and Reference

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description

subset ⊂ subset of, included in
sub0 ₀ subscript 0
sub1 ₁ subscript 1
sub2 ₂ subscript 2
sub3 ₃ subscript 3
sub4 ₄ subscript 4
sub5 ₅ subscript 5
sub6 ₆ subscript 6
sub7 ₇ subscript 7
sub8 ₈ subscript 8
sub9 ₉ subscript 9
suchthat ∋ such that
sum ∑ sum
sun Ã sun
superset ⊃ superset
suplpar ⁽ superscript left parenthesis
supminus Å superscript minus
supn n superscript n
supplus ⁺ superscript plus
suprpar ⁾ superscript right parenthesis
sup0 ⁰ superscript 0
sup1 ¹ superscript 1
sup2 ² superscript 2
sup3 ³ superscript 3
sup4 ⁴ superscript 4
sup5 ⁵ superscript 5
sup6 ⁶ superscript 6
sup7 ⁷ superscript 7
sup8 ⁸ superscript 8
sup9 ⁹ superscript 9
tab tab
tau τ tau
Tau Τ Tau
telephone K telephone
TELEPHONE L telephone solid
therefore ∴ therefore
theta θ theta
Theta Θ Theta
thorn þ thorn, Icelandic small
Thorn Þ Thorn, Icelandic capital
tilde ~ tilde
time 9:35 a.m. time
times × multiply
tm ™ trademark
TRIANGLE Ô triangle solid
triangle n triangle
ua ú u acute
Ua Ú U acute
uahead Ô up arrowhead
uarrow ↑ up arrow
uc û u circumflex

Chapter 18. File, text, and character entities and reusing information 189

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description

Uc Û U circumflex
udarrow Ö up-down arrow
udarrowus × up/down arrow/underscore
ue ü u umlaut
Ue Ü U umlaut
ug ù u grave
Ug Ù U grave
ulbarb O up lef barb
umlaut } umlaut
union P union of 2 sets
upsilon υ upsilon
Upsilon ϒ Upsilon
urbarb S up right barb
us _ underscore
usec µ micro second
vardelta £ delta (variation)
varphi ϕ phi (variation)
varsigma ς sigma (variation)
vartheta ϑ theta (variation)
vbar | vertical bar
vector ^ vector
vellip

... vertical ellipsis

weierstr ℘ weierstrass elliptic
won won (Korean currency)
xclam ! exclamation point
xclm ! exclamation point
xi ξ xi
Xi Ξ Xi
ya ý y acute
Ya Ý Y acute
ye ÿ y umlaut
Ye Ÿ Y umlaut
yen ¥ yen
zero 0 zero slashed
zeta ζ zeta
Zeta Ζ Zeta
The following entities define the character graphic symbols:
Ad Ø arrow down
Al] arrow left
Ar \ arrow right
Au Ù arrow up
Eb │ end of line, bottom
El ─ end of line, left
Er ─ end of line, right
Et │ end of line, top
Ju ┼ line junction
Lh ─ line horizontal
Ll └ lower left corner
Lr ┘ lower right corner
Lv │ line vertical

190 ID Workbench: IBMIDDoc User’s Guide and Reference

Table 18. IBMIDDoc Character Entities (continued). All characters are supported in the
hardcopy processes. For the online XHTML, HTML, BookManager, and other processes,
please check your output for proper appearance and the process logs for messages.

Symbol Appearance Description

Td ┬ T char, bar down
Tl ┤ T char, bar left
Tr ├ T char, bar right
Tu ┴ T char, bar up
Ul ┌ upper left corner
Ur ┐ upper right corner
The following entities make description of the SGML syntax easier to show:
stago < start tag open
etago </ end tag open
tagc > tag close
mdo <! markup declaration open
mdc > markup declaration close
pio <? processing instruc. open
pic > processing instruc; close
pero % parm entity ref; open
ero & entity reference open
erc ; entity reference close
dso [declaration subset open
dsc] declaration subset close
msc]]> marked section close
lit " literal delimiter
lita ' alternate literal delimiter
The following entities define typographic quote symbols which are used because the Q
element has implied citation semantics:
ctq ” close typographic quote
otq “ open typographic quote
The following entities can be used by translation centers for hyphenation:
shy soft hyphen

Reusing elements from an object library
Elements that are to be reused many times throughout a document can be defined
in an object library. Object libraries are an alternative to using file or text entities.
You create object libraries by using the OBJLIB element in the prolog. You place the
elements and the content you want to reuse in that object library. The elements in
the object library must have an ID.

To use an element from the object library, use the CONLOC attribute to refer to
that element. The element in the object library must be the same as the element
with the CONLOC attribute. That is, P tags refer to P tags; LI tags refer to LI tags;a
PBLK tag cannot refer to a P tag.

The following example shows a small object library and two references to elements
in the library. This object library contains an introductory paragraph for service
needs. It also contains an ordered list of things that must be done if service is
required.
<prolog>...
<objlib>
<objlibbody>
<p id="para1">If your system stops

Chapter 18. File, text, and character entities and reusing information 191

working, follow these instructions:</p>
<ol id="list2">
Note the system code displayed on the front of
the unit.
Unplug the unit.
Contact your service representative.

</objlibbody>
</objlib>...
</prolog>...
<d>
<dprolog><titleblk>
<title>If you need service</title>
</titleblk></dprolog>
<dbody>
<p conloc="para1">
<ol conloc="list2">
</dbody></d>

When the P element with the CONLOC attribute of “para1” is processed, the
content of the P element in the OBJLIB with the “para1” attribute is used. This
markup portion:
<p conloc="para1">

Is the same as specifying this markup:
<p>If your system stops
working, follow these instructions:</p>

The content of an element defined in an object library is used only if you refer to
that element in the document content.

An element defined in an object library can be referred to only from within the
document containing the object library. If you have information that will be
re-used by other documents, the object library can be declared as a file entity and
imbedded in each document. This level of reuse allows much more flexibility and
function for reuse across documents.

Migration Note
ObjLib can also be used as, in the Bookmaster paradigm, a DVCF side file
that uses the include macro.

The element with the ID must be a direct child of the ObjLibBody tag. You cannot
use a CONLOC to refer to an element nested inside something else in the
ObjLibBody tag. For example, referencing the LI element “unplug”in the next
example is not correct:
<objlib>
<objlibbody>
<ol id="list2">
Note the system code displayed on the front of
the unit.
<li id="unplug">Unplug the unit.
Contact your service representative.

</objlibbody>
</objlib>

192 ID Workbench: IBMIDDoc User’s Guide and Reference

To correct the example, you need move the LI outside the list, and include an LI
with a CONLOC. The items reused within an object library must be defined before
they are referenced, so the LI is before the list.
<objlib>
<objlibbody>
<li id="unplug">Unplug the unit.
<ol id="list2">
Note the system code displayed on the front of
the unit.
<li conloc="unplug">
Contact your service representative.

</objlibbody>
</objlib>

If you want to reuse content of a part of a list, containing the content you wish to
reuse within an LIBlk element makes it easy to reference the LIBLk using the
CONLOC attribute.

You can have several divisions that get reused by using the DBLK tag to contain
those divisions.

Reusing attributes in the CONLOC reference
Starting with IDWB release 3.4, patch IDWXF036: The attributes for an item in an
object library are now passed through to the reference. For example, you have a
list item with a revision ID:
<objlib>
<objlibbody>
<li id="renew" rev="rel34a">Renew your subscription
</objlibbody>
</objlib>

You can refer to the list item, and the REV attribute is carried along. For example:
<li conloc="renew">

is now the same as this:
<li rev="rel34a">Renew your subscription

Before patch IDWXF036, you would have only gotten the text, the REV attribute
would be ignored:
Renew your subscription

If the item in the object library and its reference have the same attributes, the value
on the CONLOC reference wins.

Cross-referencing items that use CONLOC
Now, for every solution, there is a problem.7 If you want to cross-reference an item
with a CONLOC, you need to add the ID to the tag with the CONLOC. For
example, you want to reuse a division, plus cross-reference to it. You cannot
cross-reference to “service”. You need to add unique IDs to each division. This
applies to items who’s parent is the ObjLibBody tag.
<objlib>
<objlibbody>
<d id="service">
<dprolog><titleblk>

7. Yes, I wrote that correctly.

Chapter 18. File, text, and character entities and reusing information 193

|

|
|
|
|
|

|
|
|
|

<title>If you need service</title>
</titleblk></dprolog>
<dbody>
<p>If you need service...
</dbody></d></objlibbody>
</objlib>
...
<d conloc="service" id="abc">
...
<d conloc="service" id="def">
...
<xref refid="abc">
...
<xref refid="def">

Any ID within an element who’s grandparent is the ObjLibBody tag will, when
re-used, have a reference to the first use of that item.

194 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Chapter 19. Conditionally including information

Where multiple output documents contain common information, or a single
document repeats the same information, the only way to ensure that the common
information is the same is to take the information in each case from the same
source file. At its simplest level, where the common information is in a few, largish
blocks, the way to do this is to put each block of the common information in a file
of its own and imbed it in the multiple output documents that use it.

However, this process becomes cumbersome and inefficient where the common
information is strewn throughout the document, or, alternatively, where the
differences for the multiple output documents are scattered through the common
information. This approach also has the drawback that reviewers of the documents
must do redundant reviewing of the common information. For these reasons, we
have property-based retrieval. See “Property-Based Retrieval”.

There are also times when you need alternative text under different conditions.
You can specify the modification text (the insertion or replacement) either in line in
the source file or out of line in an object library. See “Retrieval alternatives” on
page 198.

Property-Based Retrieval
Property-based retrieval allows you to structure documents such that different
versions can be produced based on a property value file (that is, a set of one or
more conditions). With property-based retrieval, you can:
v Insert, delete, or replace text based on conditions you specify.
v Specify conditions that are simple or complex.
v Pass the conditions at run time or inside the document itself.

In IBMIDDoc, conditional processing is done by evaluating certain attribute values
on elements to determine whether or not those elements should be processed. The
attributes are called property attributes because they define properties of elements.

Using the Props attribute to set text conditions
The Props attribute on a tag, when true, causes that content to be processed and
appear. The attribute can contain a simple condition that is either true or false, or a
complex condition of Boolean operators. The attribute’s value, the specification, can
be any valid SGML name, but should be a word or phrase that is clear and
meaningful to those who are writing or editing the information. The specification
may be a version, a software code name, or a hardware platform; for example,
v4r5, win32, or PC, respectively.

It is up to those working on a product or group of products to choose consistent
terminology for assigning occurrences of the Props attribute. The names and
meaning should be documented and available to all writers and editors involved
in the development effort to ensure consistency.

For example, each these items will format when the conditions v4r5, win32, and
PC are all true:

© Copyright IBM Corp. 1992, 2001 195

<li props="v4r5">The version 4, release 5 level has
special stuff.
<li props="win32">This software release has more special
stuff.
<li props="PC">Is the PC going to be replaced?

Translation Center Considerations: Conditional text can be a powerful feature, but
you need to use care because of translation considerations. If you have a condition
within a sentence, ensure it is a noun string. Do not combine a noun and a verb in
the same conditional phrase. Not every language has sentence construction like
English (or whatever language you are writing in). If you need to combine nouns
and verns in the same conditionap phrase, make an entire sentence conditional.

If you have a condition within a sentence, ensure your sentence makes sense with
all possible logic conditions. Here are some examples:
v Here’s a good example:

The <ph props="os2">OS/2</ph><ph props="#NOT os2">Windows</ph> operating
system runs on PCs.

This way you always get a complete sentence, as in this when “os2” is true:

The OS/2 operating system runs on PCs.

And this when “os2” is false:

The Windows operating system runs on PCs.
v In this next example — you get an incomplete sentence when both conditions

are false:
When <ph props="equine">horses gallop</ph><ph props="canine">dogs run</ph>
down the track, you will know the race has begun.

When both “equine” and “canine” are false, the sentence becomes:

When down the track, you will know the race has begun.

Referring to something that is conditional: Imagine you have two paragraphs (or
two somethings) that have an either condition. Now you want to refer to the
paragraph. You give each of them the same ID, and then the editor and the IDWB
processes complain because the IDs appear twice. As in this example:
<p id="cats" props="cats">Cats are nice.</p>
<p id="cats" props="#NOT cats">Cats are not nice.</p>
...
See <xref refid="cats" xreftext="cat feelings"> for how I feel about cats.

We have two paragraphs; they are mutually exclusive, but because they have the
same ID, SGML rules complain about the duplicate IDs.

So what to do? Put the two paragraphs in a paragraph block (Pblk), and put the
ID on the Pblk tag! For example:
<pblk id="cats">
<p props="cats">Cats are nice.</p>
<p props="#NOT cats">Cats are not nice.</p>
</pblk>
...
See <xref refid="cats" xreftext="cat feelings"> for how I feel about cats.

196 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|

We now have one ID — no more duplicate ID problem. (But now you might have
a problem with cat owners).

Setting the properties to true or false
The properties are initially assumed to be false. When you process your document,
messages indicate that when a condition is found, false is assumed.

To set a property value, you can do the following:
v Use a VAL file to set the properties to true or false. This is described in the ID

Workbench Getting Started and User’s Guide and in the online help for ID
Workbench. See the Transform tab in the processing option displays.

v Use a PropDesc tag in the document’s prolog; within the PropDefs section.

Here is an example showing how to set the properties “v4r5” and “PC” to true
and false, respoctively.
<prolog>
...
<propdefs>
...
<propdesc propname="v4r5" default="true">
<desc>Version 4, release 5</desc>
</propdesc>
<propdesc propname="pc" default="false">
<desc>PC platform information.</desc>
</propdesc>
...
</propdefs>
...
</prolog>

Specifying boolean properties
Sometimes you need to specify fancier conditions, called complex conditions.
Suppose we have two conditions, A and B. To have an action (insert or delete)
occur:
v When (and only when) both conditions are true, enter:

a #AND b

v When either one or both of the conditions is true, enter:
a #OR b

v When a condition is not true, enter:
#NOT a

You might have a situation where you want one sentence for one condition, and
different sentence for the opposite condition. Instead of having two properties and
setting one to true and the other to false; you can just have one property and use
the #NOT operator. For example:

Always use this item
<li props="PC">This is a PC-only item
<li props="#NOT PC">This item is for everything EXCEPT PCs

The order of precedence in evaluation is:
1. specifications inside parentheses are evaluated first
2. #NOT specifications are evaluated next
3. Finally, #AND and #OR operators are evaluated from left to right

Chapter 19. Conditionally including information 197

|
|

These three functions, #AND, #OR, and #NOT, can be strung out to the point
where only a computer could figure out what to do. See Table 19 for a set of
sample conditions and the results with different logic groupings.

Table 19. Property Truth Table. T means true; blank indicates false.

These conditions Yield these complex conditions:

A B C A #and B A #or B
A #and
#not B

A #and B
#or C

A #or B
#and C

A #and
#not B
#or C

A #or
#not B

T T T T T T T T T

T T F T T T T T

T F T T T T T T T

T F F T T T T T

F T T T T T T

F T F T

F F T T T T

F F F T

This example shows that the second paragraph applies to MVS in both versions of
the product, and to VM in only the first version of the product.
<p PROPS="(VM #or MVS) #and (V1 #or V2)">
This paragraph applies to both versions and operating systems.
</p>
<p PROPS="MVS #or (VM #and V1)">
This paragraph applies to MVS or version 1 on VM.
</p>
<p PROPS="VM #and V2">
This paragraph applies only to version 2 on on VM.
</p>

Retrieval alternatives
Sometimes you need alternative text for a condition. The RETALTS attribute can
point to one or more retrieval alternatives for the text in your document.

You need to create your alternative text in an object library in the prolog of your
document. The main element will need an ID. See “Reusing elements from an
object library” on page 191 for information about creating object libraries.

To have the alternative text be used:
v The main element must have a false Props attribute, and a Retalts attribute with

one or more IDs.
v The Retalts attribute points at the ID of a replacement element found in the

object library. The elements must be the same type. The first true element is used
for the alternative text.

The following example illustrates this type of conditional processing.
<prolog>
...
<objlib>
<objlibbody>
<p id="v1intro" props="v1">This is an introduction for version 1...</p>
<p id="v2intro" props="v2">This is an introduction for version 2...</p>
<p id="v3intro">This is an introduction for version 3...</p>

198 ID Workbench: IBMIDDoc User’s Guide and Reference

</objlibbody>
</objlib>
...
</prolog>
...
<p props="x" retalts="v1intro v2intro v3intro">This
is an introduction...</p>

The paragraphs will print under these conditions:
v When “x” is true, this prints:

This is an introduction...
v When “x” is false and “v1” is true, this prints:

This is an introduction for version 1...
v When “x” and “v1” are false and “v2” is true, this prints:

This is an introduction for version 2...
v When “x”, “v1”, and “v2” are false, this prints:

This is an introduction for version 3...

Using Marked Sections
Marked sections provide two key functions:
1. they allow conditional inclusion or exclusion of material and
2. they control SGML delimiter recognition for documenting SGML and markup

as well as documenting other subjects that use SGML markup characters for
other purposes.

Marked sections should not be used to provide conditional processing capability.
Use the property-based retrieval function instead.

Marked sections have the following format:
<![keyword status area [marked section data]]>

keyword status area
This is specifications that control the function of the marked section. See below
for possible values.

marked section data
data to be treated based on the content of the keyword status area.

Marked sections support two keywords for conditional inclusion and exclusion:
IGNORE and INCLUDE. One or both are specified in the keyword status area
described above. If both are specified, IGNORE has higher precedence. Here is an
example:
<![IGNORE [
This information will be ignored.
]]>

<![INCLUDE [
This information will be included.
]]>

Why would anyone would specify both INCLUDE and IGNORE? The keyword
status area may include parameter entity references that allow the author to
parameterize these inclusions from the document prolog without changing the
document (and marked section keyword status area) content. Examples of this
follow the parser recognition control description.

Chapter 19. Conditionally including information 199

Parameter entities may be used to parameterize the keywords found in a marked
section keyword status area. This is particularly useful in conditional processing
cases. For example, assuming you have material that is intended for two uses, say
reference cards and full language reference, you can encode both in the same
document and then change the parameters to include just the material for the
output currently desired. Here is an example:
<!DOCTYPE IBMIDDOC PUBLIC "-//..." [
<!ENTITY % langrefonly "include" >
<!ENTITY % refcardonly "ignore" >...
<P>Material that belongs in both output docs doesn’t have any marked
section markup
<![%langrefonly; [
This is material that goes only in the language reference.
]]>
<![%refcardonly; [
This is material that goes only in the reference card.
]]>
More material that goes in both.

Controlling SGML Delimiter Recognition
There are two keywords to control SGML delimiter recognition:

CDATA
inhibits the recognition of all markup except the marked section close
delimiters ’]]>’

RCDATA
supports recognition of entity references and the marked section close
delimiter.

You use this for including SGML markup examples and for including other
material that uses SGML markup delimiter characters in other ways:
<![CDATA [
<P>This is an example paragraph with an example entity reference:
&entref;.
]]>

<![RCDATA [
<p>This is an example paragraph of IBMIDoc coding with an example symbol
reference: &bkmsym;]]></p>

In the second case, the & SGML entity resolves to an & that gives the correct
result in documenting IBMIDoc encoding.

200 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 20. Property and Class Definitions

This chapter describes how to define element properties, element classes, and
properties for element classes. Some of these definitions can also be done with DEF
tags; see Chapter 9, “Using definition tags” on page 105.

If the referenced element also has a PROPSRC specification, this reference is
followed until the end of the chain of property specification is reached. Property
specifications on the referencing element override any properties from referenced
or inherited property specifications. The hierarchy of property use is:
1. properties specified on the element,
2. properties specified on an element which is referenced using the CONLOC

attribute or properties specified on an element which is referenced using the
RETALTS attribute and whose properties were satisfied for this processing run
(the CONLOC and RETALTS referenced elements are treated as independent
elements and their properties do not interact),

3. properties from a PROPSRC referenced element, however long the reference
chain may be,

4. properties from ClassDef elements referenced by class.
5. properties specified on a PropDef element without an ID (with or without an

ELETYPES attribute)
6. properties from ancestors in the document tree

Defining Element Properties
In IBMIDDoc, you can define properties for an element, such as language, status,
and classification. You can define properties directly, by linking to another element,
through inheritance, or, for security classification, by implying it from an element’s
children. You can also define reusable sets of properties.

Defining Element Properties Directly
Properties can be defined for an element by using the property attributes.

The Propdef tag sets default properties for tags that point at them with propsrc
attributes. This allows you to set defaults once, and reference them. When
something changes, you only have to change the propdef). The only attribute
currently able to be passed from PROPDEF to an element is STYLE. For example;
this propdef sets a style of bold for the propname fred:
<propdef propname="fred" style="bold">

Now, when a tag that supports a bold style uses the fred property, the content will
be bold:
<ph propsrc="fred">hi there</ph>

Values of the same attributes on the tags override the values on the propdef tag.
The following tag, because the style attribute is used on the tag itself, overrides the
style attribute on the propdef. It will be italic:
<ph propsrc="fred" style="italic">hi there</ph>

© Copyright IBM Corp. 1992, 2001 201

|
|
|

The following shows a propdef that sets a style of bold and a conditional property
of aix:
<propdef propname="fredaix" style="bold" props="aix">

Consider this tag:
<ph propsrc="fredaix" props="win">hi there</ph>

Because the attributes on the tags override the same attributes on the propdef, the
ph tag effectively becomes the following:
<ph style="bold" props="win">hi there</ph>

This is because the props attribute on the tag overrides the props attribute on the
propdef. The style attribute on the propdef is carried through to the tag.

You can leave off the propname and propsrc to get a property default for all the
tags. For example, this propdef sets a style of bold for any tag that supports a style
of bold:
<propdef style="bold">

These will print in bold:
<ph>hi there</ph>
<term>hello again</term>

Additionally, because you can define style overrides on both propdef and classdef,
then use them together, the ID Workbench uses a rule determines which will win.
The special override rule for style and class when used together is: 1) Style on the
tag, then 2) Class on the tag, then 3) Style on Propdef.

The following example shows a paragraph with defined properties of OS/2 V2.1
only.
<P props="os2 #AND v21">This paragraph
is used for OS/2 V2.1 only.

Properties defined directly take precedence over properties defined by linking or
through inheritance. The only exception is the security classification property,
which can be implied from an element’s children.

Defining Element Properties Using Inheritance
All elements inherit their parent’s properties. For example, a paragraph within a
division that has a language property value of Spanish will inherit that property
and will thus be identified as Spanish as well.

Defining Element Classes
You can use the ClassDef element to define classes of IBMIDDoc elements.

Typically, element classes are used to define specific phrase classes that reflect the
product being described. You can enable the various processing functions by using
the Phrase elements with the classes you define.

Usually, element classes are defined for an entire collection of documents by
someone responsible for designing the information in the collection, such as an
information designer or planner. If you are working on information for which
element classes have been defined, you do not need to understand how classes are
defined. However, you do need to know the class names and the affected elements.

202 ID Workbench: IBMIDDoc User’s Guide and Reference

The default IBMIDDoc templates have the following phrase classes defined. They
are enabled in the editors and appear properly when used.

Class Description

IBMGUIControl Use this for graphical user interface items; such as
menu items, pushbuttons, icons, and so forth. Press
the OK button.
Press the <ph class="IBMGUIControl">OK</ph> button.

IBMCommand Use this for command names, APIS names,
functions names, and so forth. Run the Copy
command.
Run the <ph class="IBMCommand">Copy</ph> command.

IBMEmphasis Use this for things you want to emphasize. Look
here please.
Look <ph class="IBMEmphasis">here</ph> please.

Use this for file and path names. The file name is
system.ini.
The file name is <ph class="IBMfilepath">system.ini
</ph>.

In defining element classes, first determine what classes are needed and decide the
class names. Analyze your product to identify what kinds of things you need to
write about. Classes should be meaningful and should describe real things or
aspects of real things. Classes should not relate purely to processing or
presentation effects. Thus, a class of bold is probably not meaningful. Usually, class
names should be nouns.

Next, define exactly what the classes are so that you understand when and why to
use them.

Then, define the element classes using ClassDef elements. ClassDef elements are
valid within PropDefs, which is in either the document prolog or a division prolog.
If a class applies to an entire document, put the ClassDef element in the document
prolog. Use the Sem element within each ClassDef element to describe the class.

Finally, after you define the classes, use the class names with the elements to
which they apply to assign element classes in your document.

Use ClassDef to define element classes that are specific to your information. The
most common use of ClassDef is to define new phrase classes. For example, in the
documentation of a graphical user interface, you may want to define phrase classes
for all the different types of user interface elements in order to make your markup
more precise and to enable the automatic generation of indexes for print
presentation.

You can associate presentation styles and other processing with specific element
classes. Do not define classes that are purely presentational, such as Bold or Italic.

Suppose, for example, that you are documenting software that uses two important
types of objects, Whatsits and Thingies, that are not accounted for in the base
IBMIDDoc language. Whatsits are hardware components, and Thingies are
software components. The class names for Whatsit and Thingy objects are
“Whatsit” and “Thingy”, respectively. Because the Whatsit and Thingy classes
apply to an entire document, they are defined in the prolog.

Chapter 20. Property and Class Definitions 203

|
|

||

||
|
|

|

||
|
|

|

||
|

|

||
|

|
|

|

The following example shows the ClassDef elements that define the Whatsit and
Thingy classes and the use of the classes with the Ph element:
<PROLOG>...
<PROPDEFS>
<CLASSDEF CLASSNAME="whatsit">
<SEM>Identifies whatsit objects. Whatsits are hardware

components.
</CLASSDEF>
<CLASSDEF CLASSNAME="thingy">
<SEM>Identifies thingy objects. Thingies are software

components.
</CLASSDEF>
</PROPDEFS>...
</PROLOG>...
<D>Hardware Problems
<P>Hardware problems are usually caused when

the <PH CLASS="whatsit">famtoozler</PH>
gets out of adjustment.
Readjust it using the <PH CLASS="thingy">famtoozlometer</PH>
component of the &prodname; analyzer.

204 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 21. Making some things bigger or smaller

Need to change the type size of something? Have we got a deal for you. These
topics describe the following:
v “Scaling text up or down”
v “Automatically scaling text for examples and such”
v “Making things page-wide”

You can also scale the number or bullets in lists; see “Scaling list dingbats” on
page 36.

Scaling text up or down
You can make some things bigger or smaller. The SCALEPCT attribute on the
Table, Fig, Syntax, and MsgList tags allow you to scale the text larger or smaller.
Here’s a sample of a table with larger type:

Large Type Table 150% normal size.

<table scalepct="150"> Easy on the Eyes

Here’s a table with smaller type:

Small Type Table 70% normal size.

<table scalepct="70"> 10 pounds of stuff in a 5 pound sack

The scale value needs to be a positive, whole number that is 1 or greater. There is
a limit to the sizes of fonts that are available. Your scale value will be rounded to
the closest available font. This currently works for hardcopy formatted hardcopy.

Automatically scaling text for examples and such
For automatic scaling down of wide examples, screens, and character graphics, you
can use the LINELENGTH attribute. You specify the width of the widest line, and
the formatter automatically scales down the text, if needed, to fit within the
current column or page width. Here’s an example with a width of 96 characters;
the formatter automaticaly scaled the text down to fit across the page:
<xmp linelength="96">
This has a width of 95 characters, and the formatter automatically scales the text down for us.
</xmp>

This currently works for hardcopy formatted hardcopy.

Making things page-wide
You can also use the PGWIDE attribute on tables, figures, syntax diagrams, and
examples to force them to be page wide. PGWIDE=1 causes the item to be
page-wide. For example:

© Copyright IBM Corp. 1992, 2001 205

|

|

|
|

|

|

|

|
|

|
|

|
|
|

|
||

||

|

|

|||

||
|

|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|

<xmp pgwide="1">
Here’s a really wide example. This could be for a listing of sample programming code.
</xmp>

This currently works for hardcopy formatted hardcopy.

206 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|

|

Chapter 22. Creating maintenance analysis procedures

IBMIDDoc provides a handy format for writing step-by-step procedures to help
isolate the cause of a symptom. These procedures are called Maintenance Analysis
Procedures (MAPs). If you are familiar with flowcharts, you know how they lead
you through a sometimes complex series of steps by having you make one simple
yes-or-no decision at a time. However, flowcharts can be difficult to work with
because the flowcharting symbols contain so little space for writing questions,
directions, or other text. We solve this space problem while keeping the technique
of using simple yes-and-no answers to lead people through their procedures.

Procedures consist of several parts:
v procedure entry (see “Using ProcEntry for Entry Requirements” on page 209)
v procedure steps and commands (see “Using ProcStep and ProcCmnd to Describe

Each Step” on page 209)
v decision points (see “Using DecisionPnt for Outcome-Dependent Action

Descriptions” on page 210)
v reference keys (see “Using RefKeys to Refer to Labels in a Graphic” on page 210)
v procedure exit (see “Using ProcExit to Complete a Procedure or Sub-Procedure”

on page 211)

The following shows a sample map some father made for caring for his little one.
Xyvision and Frame2000 currently do not draw vertical rules from steps to link
points; BookMaster does draw these rules.

© Copyright IBM Corp. 1992, 2001 207

|
|
|

MAP 0010: Baby Johnny is crying
Six-month-old Baby Johnny was sleeping peacefully; suddenly he began to cry.

001

– Check Johnny’s diaper.

Is the diaper wet?
Yes No

Continue at Step 003.

002

– Change the diaper.

Johnny was uncomfortable.

003

(From step 001)

Is Johnny hungry?
Yes No

004

– Rock Johnny to sleep.

Johnny was sleepy.

005

Does Johnny have teeth?
Yes No

006

– Warm a bottle.
– Feed Johnny.

Johnny needed a bottle.

007

Johnny can eat solid food.
Continue at “MAP 0020: The Steak is Frozen” on page 209.

208 ID Workbench: IBMIDDoc User’s Guide and Reference

MAP 0020: The Steak is Frozen

001

Do you have a microwave oven?
Yes No

002

– Johnny can’t wait for it to thaw.

Continue at Step 006 on page 208.

003

– Thaw the steak.

Using ProcEntry for Entry Requirements
The ProcEntry element contains a description of the entry point to the procedure. It
contains the description, and references to any prerequisite or related procedures.
Related and prerequisite procedures are referenced by ID using the RELPROCS
and PREREQPROCS attributes.
<PROCENTRY PREREQPROCS="proca" RELPROCS="proc1 proc2 proc3">
SIX-MONTH-OLD BABY JOHNNY WAS SLEEPING PEACEFULLY;
SUDDENLY HE BEGAN TO CRY.
</PROCENTRY>

Using ProcStep and ProcCmnd to Describe Each Step
The ProcStep element contains the actions to take and the expected results of
taking the actions. The title for each ProcStep is contained in the required TitleBlk
elements. The Desc element contains the description of the action that must be
performed.

The ProcCmnd element contains specific instructions that the user must follow in
order to complete the step.
<proc id="babymap" style="BKM:(STYLE=BASE SEP=INLINE COMPACT)">
<titleblk><title>Baby Johnny is Crying</title></titleblk>
<procentry>Six-month old baby Johnny was sleeping
peacefully. Suddenly he began to cry.</procentry>
<procstep>
<proccmnd>
<desc>Check Johnny’s diaper.</desc>
</proccmnd>
<decisionpnt>
<cond>Is the diaper wet?</cond>
<then><procstep><proccmnd>
<desc>Change the diaper.</desc>
</proccmnd><procexit>Johnny was uncomfortable.</procexit>
</procstep>
</then>
<else>
<desc>Continue at <xref refid="hungry">.</desc>
</else>
</decisionpnt>
</procstep><procstep id="hungry">
<decisionpnt>
<cond>Is Johnny hungry?</cond>

Chapter 22. Creating maintenance analysis procedures 209

<then><procstep><decisionpnt>
<cond>Does Johnny have teeth?</cond>
<then><procstep><stepnotes>Johnny can eat solid
food.
Continue at <xref refid="frozstk">
</stepnotes></procstep>
</then>
<else><procstep id="bottle"><proccmnd>
<desc>Warm a bottle.</desc>
</proccmnd><proccmnd>
<desc>Feed Johnny.</desc>
</proccmnd><procexit>Johnny needed a bottle.</procexit>
</procstep>
</else>
</decisionpnt></procstep>
</then>
<else><procstep><proccmnd>
<desc>Rock Johnny to sleep.</desc>
</proccmnd><procexit>Johnny was sleepy.</procexit>
</procstep>
</else>
</decisionpnt>
</procstep><procstep id="frozstk">
<proccmnd>
<desc>Thaw and broil a steak for Johnny. Include a
baked potato with butter and sour cream.</desc>
</proccmnd>
<procexit>Johnny was really hungry.</procexit>
</procstep></proc>

Using DecisionPnt for Outcome-Dependent Action Descriptions
The DecisionPnt element defines one or more condition/action (Then/Else) pairs
that describe actions that must be completed under certain conditions.

<DECISIONPNT>
<COND>IS THE DIAPER WET?</COND>
<THEN>
<PROCSTEP>
<PROCCMND>
<DESC>CHANGE THE DIAPER.</DESC>
</PROCCMND>
<PROCEXIT>JOHNNY WAS UNCOMFORTABLE.</PROCEXIT>
</PROCSTEP>
</THEN>
<ELSE>
<DESC>CONTINUE AT <XREF REFID="HUNGRY">.</DESC>
</ELSE>
</DECISIONPNT>

Using RefKeys to Refer to Labels in a Graphic
The RefKey element contains a reference to a label in a graphic. When processed,
this label provides a visual link to a spot in, for example, a graphic containing a
chart or table.

...
<P>The current 1995 Sales chart column
<REFKEY>4</REFKEY>
shows that sales
are up 10%, but operating expenses grew by 13.2%.</P>

210 ID Workbench: IBMIDDoc User’s Guide and Reference

Using ProcExit to Complete a Procedure or Sub-Procedure
The ProcExit element contains the expected result of performing the task, and
describes what to do after completing the procedure tasks.

<PROCSTEP>
<PROCCMND>
<DESC>ROCK JOHNNY TO SLEEP.</DESC>
</PROCCMND>
<PROCEXIT>JOHNNY WAS SLEEPY.</PROCEXIT>
</PROCSTEP>

Procedure Markup Examples
The examples that follow illustrates the use of procedure elements in IBMIDDoc.

Starting the Procedure
All Proc elements must contain a TitleBlk element, and a Desc element that
contains a description of the procedure’s purpose. The STYLE attribute on the Proc
element in the example that follows specifies a value of STEPLIST
<PROC STYLE="steplist" id="proc1">
<TITLEBLK><TITLE>Installing the ISDN Whantoozler</TITLE></TITLEBLK>
<DESC>This procedure describes the steps one must perform or follow

in order to successfully install the ISDN Whantoozler.
</DESC>...

Describing the Entry Point for the Procedure
The ProcEntry element contains the description of the entry point for the
procedure. In the next portion of the example, the ProcEntry element contains
RelProcs and PreReqProcs attributes, which reference related and prerequisite
procedures. It also includes a prose description of the entry point for the
procedure.

Note that the format in which related and prerequisite procedures are presented is
style and processing dependent.

...
<PROCENTRY PREREQPROCS="proc1a" RELPROCS="proc3 proc2">
This procedure assumes that you already have your
ISDN line installed, and that there is no
thunderstorm activity in the area.
</PROCENTRY>

...

Entering the Procedure Steps
Each procedure step is contained in a ProcStep element, which contains the title of
the step and the step instructions. ProcStep may also contain:
v StepNotes, which allow you to make general notes about the step
v DescisionPnt which contain decision-making information for the step.
<PROCSTEP>
<TITLEBLK><TITLE>Pre-Configuring ISDN Whantoozler</TITLE></TITLEBLK>
<PROCCMND><DESC>Set the 4 DIP switches on the ISDN Whantoozler
to correspond to the hemispheric location of your ISDN server.</DESC>
</PROCCMND>
<STEPNOTES>
NA-ISDN Server: SW1234 ON ON ON ON
SA-ISDN Server: SW1234 ON ON ON OFF

Chapter 22. Creating maintenance analysis procedures 211

EU-ISDN Server: SW1234 ON ON OFF OFF
AU-ISDN Server: SW1234 ON ON OFF ON
</STEPNOTES>
<DECISIONPNT>
<COND>Do you know your hemispheric location?</COND>
<THEN>
<PROCSTEP>
<PROCCMND><DESC>Continue to step <XREF REFID="nextstep">.</DESC>

</THEN>
<ELSE>

<PROCSTEP>
<PROCCMND><DESC>Find out the information and retry this step.</DESC>
</PROCSTEP>
</ELSE>

</DECISIONPNT>
</PROCSTEP>

Exiting the Procedure
The end of the procedure is described in the ProcExit element. You must include a
description. You can also include the RECOVERYPROC attribute.

<PROCEXIT ID="pxita" RECOVERYPROC="rc1">
<P>The ISDN Whantoozler should have installed without problems.
The machine should have powered up
successfully. If so, you may continue to <XREF REFID="ok1">.
<P>If the machine smoked when you applied power,
see <XREF REFID="rc1"> for troubleshooting information.

</PROCEXIT>

Controlling Procedure Output Styles

Future Enhancement
Control of procedure output styles may be implemented in future release.
These are presented for proposals only; they are not presently working. They
are not slated for inclusion in any furture release. If you need these sorts of
output, please submit a requirement.

The default style for procedures is a MAP style. A typical MAP style output is
illustrated in the formatted example that follows.

There is limited HTML and IPF support for Maintenance Analysis Procedures.
When outputting to RTF, IPF, or Windows Help, MAPS/PROC become nested
divisions. For hardcopy, the output is placed in a “flowchart” type mode.

The three proposed styles are :

Plaintext
results in a procedure with headings as the step numbers, and the step
descriptions contained in paragraphs

Steplist
looks like an ordered list with Step 1, Step 2, Step 3, and so forth, as the
numbering scheme.
1. This is the first step description.
2. This is the second step description.
3. This is the third step description.

Procedure exit description.

212 ID Workbench: IBMIDDoc User’s Guide and Reference

Table presents the procedure information in a table format, as shown in the
following example.

Table 20. Test of Prereq and Coreq

Step Description Reference Keys

1 This is the first step description. It contains several
paragraphs of information.

This is the procedure entry.

This is some more information about the
procedure.

And here is even more information.

2 This is the second step description. This step
contains both a decision point and a step notes
section.

To continue:

IF: The step worked.

THEN: Continue to step 3.

IF: The step did not work.

THEN: Ensure that all cables are connected, and
repeat the step again.

Notes:

1. This is the first note

2. The second note.

3 This is the third step description. This step
includes explicit reference key elements.

�A	 �b	 �c	

Proc Exit:

Procedure exit description.

Chapter 22. Creating maintenance analysis procedures 213

214 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 23. Creating parts catalog lists

A list of parts in a catalog is presented in conjunction with an illustration that
shows where the parts fit in an assembly (a collection of parts that make up a unit
of a machine or other product). The parts (also called component items) in the
component list are keyed to numbered callouts on the artwork. IBMIDDoc
provides an effective way to present both the component list in a parts catalog and
the artwork associated with it. Component lists are usually presented in one of two
ways: with the artwork on the top of a page followed by the list with the artwork
showing the assembly on the left, (even-numbered page), and the list on the right,
(odd-numbered page).

© Copyright IBM Corp. 1992, 2001 215

Assembly 1: Bicycle

3

1

2

Asm–
Index

Part
Number Units Description

1–1 4563423 1 Bike
–1 1230987 1 v Frame
–2 1238475 1 v Wheel assembly, front

For detailed breakdown, see “Assembly 2: Wheel, front” on page 219.
–3 1234939 1 v Wheel assembly, rear

Markup source
<partasm id="bike" style="bkm:(layout=same)"><title>
Bicycle</title><mmobj><objref obj="bike">
<textalt>Bicycle</textalt>
</mmobj><compl>
<ci idxnum="1" partnum="4563423" upa="1">Bike</ci>
<compl>
<ci idxnum="1" partnum="1230987" upa="1">Frame</ci>
<ci idxnum="2" partnum="1238475" upa="1">Wheel assembly, front</ci>
<compcmt>For detailed breakdown, see <xref refid="wheelxmp">.</compcmt>
<ci idxnum="3" partnum="1234939" upa="1">Wheel assembly, rear</ci>
</compl>
</compl>
</partasm>

Creating the heading for a component list
Use the PartAsm (part assembly) tag to begin a component list. You need to enter
a title for the assembly. You can get the heading of the bicycle example by entering
these lines of markup:
<partasm id="bike" style="bkm:(layout=same)">
<title>Bicycle</title>

216 ID Workbench: IBMIDDoc User’s Guide and Reference

The formatter provides the following parts of the heading: the prefix, “Assembly”
the number of the assembly, beginning with 1 and continuing with increments of 1
in succeeding assembly numbers the colon following the assembly number.
“Bicycle” is the name we chose for our assembly. There are other things you can
do with the PartAsm tag to make your component list easier to use; we used the
BookMaster LAYOUT of SAME to tell BookMaster to place the artwork and as
much of the component list as will fit on the same page.

A word about the artwork: Use the MMObj tag to include the drawing of your
assembly. We use it after the Title tag. Here’s what it looked like in our bicycle
assembly markup:
<mmobj><objref obj="bike">
<textalt>Bicycle</textalt>
</mmobj>

For more information about artwork, see “Including artwork in documents” on
page 55.

Developing the component list
Now that we’ve discussed the beginning of a parts list, let’s take a look at the
markup we used to create the component list for Assembly 1.
<compl>
<ci idxnum="1" partnum="4563423" upa="1">Bike</ci>
<compl>
<ci idxnum="1" partnum="1230987" upa="1">Frame</ci>
<ci idxnum="2" partnum="1238475" upa="1">Wheel assembly, front</ci>
<ci idxnum="3" partnum="1234939" upa="1">Wheel assembly, rear</ci>
</compl>
</compl>

Use the Compl (component list) tag to begin each component list. It has no
attributes and no text, so it looks quite simple. When the formatter encounters the
first Compl tag after a PartAsm tag, it supplies the column headings and the lines
that make up the framework that encloses the catalog list and separates the
columns.

Often an item in a component list is made up of other items. In order to show this
hierarchy, you must nest them in your markup. That is, you must put component
lists within other component lists. Component lists may be nested up to three
deep. Remember, each component list must begin with its own Compl tag.

Use one CI (component item) tag for each item you want in your list. Whenever
we use parts catalogs, we expect to find certain standard information, like a
catalog number for ordering parts, a callout number so we can locate the part on
the assembly drawing, and a number telling us how many of these items are in the
assembly. We use attributes on the CI tag to add that information to our
com-ponent lists, so the CI tag with all its attributes looks a lot more complicated
than it really is. Here’s what one of the CI tags from our example looks like:
<ci idxnum="1" partnum="4563423" upa="1">Bike</ci>

Now let’s look at each of the attributes and how to use them:

ID Use the ID attribute when you need to identify a component item so that cross
references can be made to it.

IDXNUM
Use the IDXNUM attribute to assign to the item a number that matches an

Chapter 23. Creating parts catalog lists 217

artwork index (callout) number. The number you assign with the IDXNUM
attribute shows up in the “Asm-Index” column and is prefixed with a dash
character. The number to the left of the dash is the same assembly number that
the formatterused in the heading prefix.

PARTNUM
Use the PARTNUM attribute to assign the item’s part number. The number
you assign with the PARTNUM attribute shows up in the “Part Number”
column. Part numbers are limited to seven alphanumeric characters (A–Z, a–z,
0–9), with no intervening blanks.

UPA
Use the UPA (units per assembly) attribute to tell how many of this particular
item there are in the assembly. The number you assign with the UPA attribute
shows up in the “Units” column.

Including comments in the component list
You can use the CompCmt (component comment tag) to include helpful
information that is not part of a component description. Just enter the text of your
comment inside CompCmt tag. The comment text you enter appears indented in
the “Description” column. Here’s what the CompCmt tag line from our front
wheel example on page 216 looks like.
<compcmt>For detailed breakdown, see <xref refid="wheelxmp">.
</compcmt>

Cross-referencing part assemblies and component lists
Often we need to tell the readers of our component list where to find other related
component lists or component items. Usually we want to point them to another
assembly that shows a more detailed breakdown of a particular item. Sometimes
we want to point them to another component that shows where a particular item
fits in a larger assembly. In both cases, we must first use the ID attribute to
identify.the target (what we’re referring to), then use either the CIREF or the XREF
tag to point to the target. Because we need another component list to show you
how to refer from one component list to another, here’s the markup for a second
assembly and component list.
<partasm id="wheelxmp" style="bkm:(layout=same)">
<title>Wheel, front</title><compl>
<ci partnum="56-2345">Wheel assembly, front</ci>
<compcmt>For next higher assembly see <xref refid="bike">.</compcmt>
<ci idxnum="1" partnum="33-5234" upa="1">Tire, clincher 27 x 1.125</ci>
<ci idxnum="2" partnum="56-4352" upa="1">Tube, 27 x 1.125</ci>
<ci idxnum="3" partnum="56-3489" upa="1">Rim liner</ci>
<ci idxnum="4" partnum="56-6534" upa="1" id="wheel2a">Wheel assembly</ci>
<compl>
<ci idxnum="5" partnum="56-3476" upa="1">Rim, aluminum alloy 27 x 1.125</ci>
<ci idxnum="6" partnum="56-8393" upa="36">Spoke, 298mm</ci>
<ci idxnum="7" partnum="56-9845" upa="36">Spoke bolt</ci>
</compl>
<ci idxnum="8" partnum="56-9874" upa="1">Hub assembly, front</ci>
</compl></partasm>

218 ID Workbench: IBMIDDoc User’s Guide and Reference

Assembly 2: Wheel, front
Asm–
Index

Part
Number Units Description

2– 56-2345 Wheel assembly, front
For next higher assembly see “Assembly 1: Bicycle” on page 216.

–1 33-5234 1 Tire, clincher 27 x 1.125
–2 56-4352 1 Tube, 27 x 1.125
–3 56-3489 1 Rim liner
–4 56-6534 1 Wheel assembly
–5 56-3476 1 v Rim, aluminum alloy 27 x 1.125
–6 56-8393 36 v Spoke, 298mm
–7 56-9845 36 v Spoke bolt
–8 56-9874 1 Hub assembly, front

Keeping track of assemblies and parts
The AsmList (assembly list) tag and the PNIndex (part number index) tag help you
find each assembly and part.

Getting an assembly list
The AsmList tag works much like a partial table of contents; it gives you an
alphabetical listing of the headings from your PartAsm tags, along with the page
numbers on which their headings appear.

If you want to put your assembly list in the front matter of your document, here is
how you might enter your markup:
<frontm style="display=’tipage cover’">
<toc><gendtitle></toc>
<d>
<dprolog><titleblk>
<title>List of assemblies</title>
</titleblk></dprolog>
<dbody>
<asmlist>
</dbody></d>
</frontm>

You can put your assembly list at the beginning of a chapter instead of in the front
matter, like so:
<d>
<dprolog><titleblk>
<title>Parts catalog</title>
</titleblk></dprolog>
<dbody>
<p>This portion contains the parts and assembly instructions
for your Mark-21 Super Bi-Pedal Tricycle.</p>
<d>
<dprolog><titleblk>
<title>List of assemblies</title>
</titleblk></dprolog>
<dbody>
<asmlist>
</dbody></d>
<partasm>

...
</partasm></dbody></d>

Chapter 23. Creating parts catalog lists 219

But wherever you put it, remember, only one AsmList tag is allowed per
document.

Note: ASMLIST is not supported in the HTML output transform.

Getting a part number index
An index of part numbers can help in retrieving individual parts in your
document. If you enter the PNIndex tag in the back matter of a document, the
formatter sorts the part numbers you entered with the CI tag’s PartNum attribute
and prints them and their page numbers.

Part numbers from sample parts assemblies are excluded from the part number
index. The part number sort sequence is different than that of the regular index; all
one-digit part numbers are listed, followed by all two-digit part numbers, and so
on. Here’s the markup used to get the part number index in this book.
<pnindex id="partnumindex">
<gendtitle>
</pnindex>

220 ID Workbench: IBMIDDoc User’s Guide and Reference

Part 3. IBMIDDoc Markup Reference

Chapter 24. Reference Explanation 225
Element and Attribute Descriptions 225
How to Read the Syntax Diagrams 225
Common Element Attributes (large set). 227
Common Element Attributes (small set) 228

Chapter 25. IBMIDDoc Elements 231
Abbrev (abbreviations) 231
Abstract (abstract) 232
Address (address) 233
Annot (annotation) 233
AnnotBody (annotation body) 234
APL (APL data) 235
Appendix 235
Approvers (document approvers). 236
AreaDef (defines graphic hot spot area) 236
AsmList (list of parts assemblies) 237
Attention (safety notice) 238
Author 238
Authors 239
BackCover (back cover) 239
BackM (back matter) 240
BibEntry (bibliographic entry) 241
BibEntryDefs (contains bibliographic entries) . . . 241
Bibliog (bibliography) 242
BibList (bibliography entry list) 243
Bin (binary data) 244
Body (document body) 244
BOFNum (bill of forms number) 245
Bridge (bridge between concepts). 245
Cap (caption) 246
Caution (caution notice) 247
CGraphic (character graphic) 247
Char (character data) 248
CI (component item) 248
Cit (document citation) 249
ClassDef (element class definition) 250
CLE (content list entry) 251
Code (message code number) 253
ColSpec (column specification) 253
CompCmt (component comment) 254
CompL (component list) 255
Cond (procedure result) 255
ContainedDocs (documents in IBMLibEntry and
LibEntry) 257
CopyR (copyrights) 257
CopyRDefs (copyright definitions) 258
Corp (enterprise name and address) 259
CorpName (corporation name) 259
CoverDef (cover definition). 260
CritDate (critical date for a document) 260
CritDates (set of critical dates) 261
D (hierarchical division) 261
Danger (danger notice) 263
Date 264
DBlk (Division block). 265

DBody (division body) 266
Dec (decimal number) 266
DecisionPnt (decision point) 267
Defn (definition of a term) 268
DefnHd (definition description heading) 269
Delim (syntax delimiter). 269
Desc (element description) 270
DIntro (division introduction) 271
DL (definition list). 272
DLBlk (definition list block) 273
DLDef (Definition list definition) 274
DLEntry (definition list entry) 275
DocTitle (document title) 276
DProlog (division prolog) 276
DSum (division summary) 277
DVCFObj (DVCF Migration Element) 277
EdNotices (edition notices) 278
Else (other procedure path to follow) 278
Entry (table entry) 279
ExternalFileName 280
Fig (figure) 281
FigDef (Figure definition) 282
FigList (list of figures) 283
FigSeg (figure segment) 284
FileNum (file number) 284
Fn (footnote) 285
FNList (footnote list) 285
Formula (math formula) 286
Fragment (syntax fragment) 287
FragRef (syntax fragment reference) 288
FrontCover 289
FrontM (front matter). 289
GendTitle (default title specification) 290
GL (glossary list) 290
GLBlk (glossary list block) 292
GLDef (Glossary list definition) 293
GlDefs (glossary definitions) 294
GlEntry (glossary list entry) 294
Glossary 295
Group 296
Hex (hexadecimal). 296
IBMBibEntry (IBM bibliographic entry) 297
IBMBOFNum (bill of forms number) 298
IBMDocNum (IBM document number) 298
IBMFeatNum (IBM feature number) 299
IBMIDDoc (IBM-specific product documentation) 299
IBMLibEntry (IBM document library definition) 306
IBMMail (IBMMail e-mail address) 307
IBMPartNum (IBM part number) 308
IBMPgmNum (IBM program number) 308
IBMProdInfo (IBM product information) 309
IBMSafety (IBM safety notices) 309
IdxDefs (central index entries) 310
IdxTerm (index term) 311
Index 311
Internet (internet e-mail address) 312

© Copyright IBM Corp. 1992, 2001 221

||
||

||

||

||

IRef (index entry reference). 313
ISBN (document ISBN number) 313
I1 (primary index entry) 314
I2 (secondary index entry) 315
I3 (tertiary index entry) 316
Kwd (syntax keyword) 317
L (explicit link) 318
LDescs (link descriptions) 319
LE (language element) 320
LeDesc (language element description) 321
LEDI (language element description item) 322
Legend 324
LEN (language element name). 325
LERS (language element reference section) . . . 325
LERSDef (LERS property definition) 328
LI (list item) 330
LibEntry (document library definition) 331
LIBlk (list item block) 332
Library 333
Lines (text with line boundaries) 333
Litdata (literal data) 334
LQ (excerpt quotation) 335
Maintainer (reader comment) 336
Mark (marked note definition). 337
MarkList (marked note list). 338
MasterIndex (master index). 339
MasterIndexInfo (master index information) . . . 340
MasterIndexObj (master index object) 341
MasterIndexPrefix (master index prefix) 342
MD (marked deletion) 342
MetaData (information architecture) 343
MkAction (marked note action definition) 344
MkClass (marked note class definition) 345
MkDesc (mark description) 347
MkNote (marked note) 348
MMObj (multi-media object; artwork) 350
MMObjLink (multi-media object link) 352
Mod (information module) 352
ModDesc (modular content description) 353
ModInfo (modular information) 354
ModInfoDef (modular information property
definition) 356
ModItemDef (item class definitions) 357
ModItem (module description item) 358
ModLvl (modification level) 359
ModName (modular information element name) 359
Msg (message or code description) 361
MsgItem (message description item). 362
MsgItemDef (definition of message description
items) 363
MsgLDef (Message list definition) 364
MsgList (list of message or code descriptions) . . 366
MsgNum (message identifier) 368
MsgText (message text) 368
MV (message variable) 369
Name (person’s name) 370
NameLoc (named location) 371
NItem (notice item) 372
NMList (named list of IDs or entities) 373
Note 375
NoteBody (note body) 375

NoteList (ordered note list) 376
Notices (contains notices) 376
Notloc (notation-specific location) 377
Num (number) 378
ObjLib (object library) 378
ObjLibBody (object library body) 379
ObjRef (object reference). 380
Oct (octal number) 381
OL (ordered list) 382
OLDef (Ordered list definition) 383
Oper (syntax operator) 384
OrderNum (order number) 385
OrigIBMDocNum (original IBM document number) 385
Owners 386
P (paragraph) 386
Parm (parameter list entry) 387
ParmBlk (parameter list block) 388
ParmL (parameter list) 388
Part (major document part). 390
PartAsm (part assembly) 391
PartAsmSeg (part assembly segment) 392
PBlk (paragraph block) 392
Person (person’s name and address) 393
Ph (Phrase) 393
Phone (telephone number) 395
PK (programming keyword) 395
PNIndex (part number index) 396
PostalCode (postal or zip code) 397
Preface 397
Proc (procedure) 398
ProcCmnd (procedure command). 400
ProcEntry (procedure entry point) 400
ProcExit (procedure exit point) 401
ProcIntro (procedure introduction) 402
ProcStep (procedure step) 402
ProcSumm (procedure summary) 403
ProcSummItem (procedure summary item) . . . 403
ProdInfo (product information) 403
ProdName (product name) 404
Prolog (document metainformation) 404
PropDef (property set definition) 405
PropDefs (property definitions) 406
PropDesc (property description) 406
PropGroup (property group) 407
PrtLoc (country where printed) 408
PublicID (public identifier) 408
Publisher (document publisher) 409
PV (parameter variable) 409
Q (quotation phrase) 410
Qualif (qualification) 411
QualifDefs (qualification definitions) 412
RCF (reader comment form) 412
RefKey (reference key) 413
Release (product release identifier) 414
RepSep (syntax repeat separator) 414
RetKey (retrieval key) 415
Rev (revision) 415
RevDefs (revision tracking information) 416
Row (table row) 417
Safety (safety notices) 418
Screen (display screen) 419

222 ID Workbench: IBMIDDoc User’s Guide and Reference

||

||

||

||

ScreenDef (Screen definition) 420
Sem (semantic meaning). 421
Sep (syntactic separator). 421
SOA (summary of amendments) 422
SpanSpec (span specification) 423
SpecDProlog (special section division prolog). . . 424
StepNotes (step notes) 425
StepRef (procedure step reference) 425
STitle (shortened title) 425
SubTitle (descriptive subtitle) 426
SynBlk (syntax block). 426
SynNote (syntax note) 427
SynPh (syntax phrase) 428
Syntax (syntax diagram). 428
SyntaxDef (Syntax definition) 430
Table 431
TBody (table body) 434
Term 434
TermHd (term heading) 435
TextAlt (text alternative) 436
TFoot (table footer) 436
TGroup (table group). 437
THead (table heading) 438
Then (procedure action to take) 439
Title 440
TitleBlk (title information) 440
TList (list of tables) 441
TM (Trademark) 442
TOC (table of contents) 443
UL (unordered list) 444
ULDef (Unordered list definition) 445
Var (syntax variable) 446
Version (product version number) 447
VNet (IBM VNet mail address) 447
Volid (volume identifier) 448
Warning (warning notice) 448
WebPage 449
Xmp (example) 449
XmpDef (Example definition) 450
XPh (example phrase) 451
XRef (cross reference). 451

Part 3. IBMIDDoc Markup Reference 223

||

||

||

||

224 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 24. Reference Explanation

This chapter lists the type of information that is provided for each element or
attribute in Chapter 25, “IBMIDDoc Elements” on page 231 and describes how to
read the syntax diagrams.

Element and Attribute Descriptions
The elements and attributes are listed in alphabetical order. For each element or
attribute, the following information is provided:

Name The name and a short description of the element or attribute.

Purpose
The purpose of the element or attribute.

Examples
One or more examples showing how the element or attribute is used.

Attributes and contained elements
Descriptions of attributes, contained elements, and attribute values.

Usage Description of how to use the element or attribute.

Contexts
A list of the elements that can directly contain the element or have the
attribute, or a description of where the element or attribute can be used.

How to Read the Syntax Diagrams
This section describes how to read and use the syntax diagrams, which define the
rules for typing element markup in a text-editing environment such as XEDIT or
EPM. For more information about markup, see “Markup Rules” on page 11.
v Read the diagrams from left-to-right, top-to-bottom, following the main path

line. Each diagram begins on the left with double arrowheads (>>) and ends on
the right with two arrowheads facing each other (><).

v If a diagram is longer than one line, each line to be continued ends with a single
arrowhead (>) and the next line begins with a single arrowhead.

v A word that is not in italics is an operand or value you must spell exactly as
shown. However, you can enter it using any case.

\\ OPERAND \]

If an operand or value can be abbreviated, the abbreviation is discussed in the
text associated with the syntax diagram.

v A word in italics is a variable. Where you see a variable in the syntax, you must
replace it with one of its allowable names or values, as defined in the text.

\\ variable \]

v Single-word attribute values are not shown with quotation marks (but any
attribute value can be entered with quotation marks around it). Multiple-word

© Copyright IBM Corp. 1992, 2001 225

attribute values and any attribute value that contains special characters must be
enclosed in quotation marks. Quotation marks are always shown as double
quotation marks ("), but single quotation marks (') can be used unless the value
contains single quotation marks or an apostrophe. For more information about
markup with quotation marks, see “Markup Rules” on page 11.

v Required operands and values appear on the main path line. You must code
required operands and values.

\\ REQUIRED_OPERAND \]

If several mutually exclusive required operands or values exist, they are stacked
vertically in alphanumeric order.

\\ REQUIRED_OPERAND_OR_VALUE_1
REQUIRED_OPERAND_OR_VALUE_2

\]

v Optional operands and values appear below the main path line. You can choose
not to code optional operands and values.

\\
OPERAND

\]

If several mutually exclusive optional operands or values exist, they are stacked
vertically in alphanumeric order below the main path line.

\\
OPERAND_OR_VALUE_1
OPERAND_OR_VALUE_2

\]

v Default operands and values appear above the main path line. If you omit the
operand entirely, the default is used.

\\
DEFAULT

OPERAND
\]

v An arrow returning to the left above an operand or value on the main path line
means that the operand or value can be repeated. The comma means that each
operand or value must be separated from the next by a comma. If a space is
shown, each operand or value must be separated from the next by a space.

\\ ^

,

REPEATABLE_OPERAND \]

v An arrow returning to the left above a group of operands or values means that
more than one can be selected or that a single one can be repeated.

226 ID Workbench: IBMIDDoc User’s Guide and Reference

\\

^

,

REPEATABLE_OPERAND_OR_VALUE_1
REPEATABLE_OPERAND_OR_VALUE_2

\]

v References to syntax notes appear as numbers enclosed in parentheses above the
line. Do not code the parentheses or the number.

\\ OPERAND \]

Notes:

1 An example of a syntax note.
v Some diagrams contain syntax fragments, which serve to break up diagrams that

are too long, too complex, or too repetitious. Syntax fragment names are in
mixed case and are shown in the diagram. The fragment is placed either below
the main diagram or in a separate description.

\\ Syntax Fragment \]

Syntax Fragment:

1ST_OPERAND,2ND_OPERAND,3RD_OPERAND

Common Element Attributes (large set)
Several elements are defined to use this set of attributes:

Class
The Class attribute associates an element class with an element. This attribute
must contain an SGML name that has been defined as a class name in a
ClassDef element. This attribute only applies to elements specified on the
ClassDef’s ELETYPE attribute. Element classes are defined with ClassDef
elements within PropDefs. See Chapter 20, “Property and Class Definitions” on
page 201 for more information.

Conloc
The CONLOC attribute specifies that the content of another element of the
same type is to be used as the content of the referencing element. This enables
reuse of information. When the CONLOC attribute is specified, you cannot
specify the element’s end tag. The result of using CONLOC is exactly the same
as if the element being referred to had occurred at that point in the document.
See “Reusing elements from an object library” on page 191.

Attributes on the element are now passed to the element with the CONLOC;
this is a feature that began with IDWB release 3.4, patch IDWXF036.

HyTime
ignored by processes

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be

Chapter 24. Reference Explanation 227

unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

InfoMast
A fixed attribute used to classify the element.

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See “Property-Based
Retrieval” on page 195.

PropSrc
Points to an element whose properties are to be used as the properties of the
referencing element. See Chapter 20, “Property and Class Definitions” on
page 201.

Qualif
The QUALIF attribute refers to the ID of a qualification element. See
“Qualifying information” on page 49.

Reftype
ignored by processes

RetAlts
The RETALTS attribute points to one or more elements whose content may be
used in place of, or in addition to, the referencing element’s content. This
attribute must reference one or more elements of the same element type. This
attribute usually references elements in an object library. See “Retrieval
alternatives” on page 198.

Rev
The REV attribute references the Rev element which describes the last revision
level of the information. See “Using Revisions” on page 109.

Status
ignored by processes

Style
The Style attribute contains either a reference to a separate style specification
for an element or a set of element-specific presentation style definitions when
the processing system does not support separate styles for elements. Assigning
a value to the STYLE attribute modifies how an element is presented when it is
output.

XrefText
The XRefText attribute defines the text to be used when an element is the
target of a link that generates a reference. See Chapter 6, “Cross-referencing” on
page 61.

Common Element Attributes (small set)
Several elements are defined to use this set of attributes:

Class
The Class attribute associates an element class with an element. This attribute
must contain an SGML name that has been defined as a class name in a
ClassDef element. This attribute only applies to elements specified on the

228 ID Workbench: IBMIDDoc User’s Guide and Reference

ClassDef’s ELETYPE attribute. Element classes are defined with ClassDef
elements within PropDefs. See Chapter 20, “Property and Class Definitions” on
page 201 for more information.

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be
unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See “Property-Based
Retrieval” on page 195.

PropSrc
Points to an element whose properties are to be used as the properties of the
referencing element. See Chapter 20, “Property and Class Definitions” on
page 201.

Rev
The REV attribute references the Rev element which describes the last revision
level of the information. See “Using Revisions” on page 109.

Status
ignored by processes

Style
The Style attribute contains either a reference to a separate style specification
for an element or a set of element-specific presentation style definitions when
the processing system does not support separate styles for elements. Assigning
a value to the STYLE attribute modifies how an element is presented when it is
output.

HyTime
ignored by processes

InfoMast
A fixed attribute used to classify the element.

Reftype
ignored by processes

Chapter 24. Reference Explanation 229

230 ID Workbench: IBMIDDoc User’s Guide and Reference

Chapter 25. IBMIDDoc Elements

This section describes the elements and attributes in the IBMIDDoc language.

Abbrev (abbreviations)

Purpose
The Abbrev element is a special division, and contains an explanation of
abbreviations used in the document. The best way to create a list of abbreviations
is to use the DL element.

Examples
<abbrev>
<specdprolog><gendtitle></specdprolog>
<dbody>
<dl>
<dlentry><term>IBMIDDoc</term>
<defn>IBMIDDoc is the name of IBM’s implementation
of the SGML standard for software documentation.</defn>
</dlentry>
</dl>
</dbody></abbrev>

Attributes
Toc=toc | notoc

Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

LAYOUT=Default-Layout | OneCol | OffsetCol | TwoCol
Specifies the column-style for the book.

Default-Layout
The section uses the default layout for the document style.

OneCol
The headings and text format across the entire page.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

TwoCol
The text formats in two columns. Headings format across the page or
with the two-column text.

See “Common Element Attributes (large set)” on page 227.

© Copyright IBM Corp. 1992, 2001 231

|
|

|
|

|
|

|
|
|
|

|
|
|

Usage
See “Special sections” on page 100.

Contexts
Children: DBody, DIntro, DSum, SpecDProlog.

Parents: BackM, FrontM.

Abstract (abstract)

Purpose
The Abstract special division element contains a short description of the content of
the document. Use Abstract to contain a brief description of the document.

Examples
<abstract>
<specdprolog><gendtitle></specdprolog>
<dbody>
<p>This describes how to...</p>
</dbody></abstract>

Attributes
LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol

Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Special sections” on page 100.

Abbrev (abbreviations)

232 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|

|
|
|
|

|
|

|
|

Contexts
Children: DBody, DIntro, DSum, SpecDProlog.

Parents: D, FrontM, Part.

Address (address)

Purpose
The Address element contains the address of a person or corporation. Address is
normally used within the context of an Author element but may be used
elsewhere. Enter the address text in the form you want it to be displayed. The text
will not be reflowed when the markup is processed. Contained elements will be
processed according to the styles used by the processing application.

Examples
<authors>
<author><person>
<name>Fred Mertz</name>
<address>
125 West Hollywood Blvd
Tinseltown, CA <postalcode>90210</postalcode></address>
</person></author>
</authors>

Attributes
OBJ=file-entity-name

The OBJ attribute names a file entity that contains the text for the address.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Author and Address” on page 89.

Contexts
Children: text (#pcdata), IBMMail, Internet, L, Ph, Phone, PostalCode, Term, TM,
VNET, WebPage.

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Corp, Danger, Defn,
Desc, entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, NoteBody, P,
Person, Ph, Publisher, Q, SynNote, Warning.

Annot (annotation)

Purpose
Use Annot to annotate the content of its containing element, such as notes to
reviewers or editors. Annotations can be presented or suppressed, depending on
the options given to the processing system.

Abstract (abstract)

Chapter 25. IBMIDDoc Elements 233

Migration Notes

v Annot cannot be used to comment out information.
v Unlike the BookMaster Annot element, Annot cannot span document

structures. It is an element in the document hierarchy, like any other
element.

Examples
<P>This text is a paragraph before the annotation.</p>
<ANNOT>
<ANNOTBODY>
<P>This is an annotation, the first paragraph.
<P>This is the second paragraph of the annotation
</ANNOTBODY>
</ANNOT>
<P>This is a paragraph after the annotation.</p>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Annotations” on page 49.

Contexts
Children: AnnotBody, Title.

Parents: Attention, Bridge, Caution, Danger, DBody, Defn, DIntro, DSum, entry, Fig,
FigSeg, Fn, LEDI, LI, LQ, MkNote, ModDesc, ModItem, MsgItem, NoteBody, P,
PBlk, ProcIntro, SynNote, Warning.

AnnotBody (annotation body)

Purpose
Use AnnotBody to contain the body of the annotation; see “Annot (annotation)” on
page 233.

Examples
<P>This text is a paragraph before the annotation.</p>
<ANNOT>
<ANNOTBODY>
<P>This is an annotation, the first paragraph.
<P>This is the second paragraph of the annotation
</ANNOTBODY>
</ANNOT>
<P>This is a paragraph after the annotation.</p>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Annotations” on page 49.

Annot (annotation)

234 ID Workbench: IBMIDDoc User’s Guide and Reference

Contexts
Children: text (#pcdata), Address, APL, Attention, Bin, Bridge, Caution, CGraphic,
Char, Cit, Danger, Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines, LitData, LQ,
MD, MkNote, MMObj, ModInfo, MV, Note, NoteList, Num, Oct, OL, P, ParmL,
PBlk, Ph, PK, PV, Q, RefKey, Screen, SynPh, Syntax, Table, Term, TM, UL, Xmp,
XPh, XRef.

Parents: Annot.

APL (APL data)

Purpose
Use the APL element to identify data that is part of an APL program. The content
of the element may be APL data or other elements that make sense in the APL
context. This data is encoded in the document source using the character encoding
used for APL data and programs, not necessarily the character encoding used for
the data everywhere else in the document. The content of this element is typically
presented using the same font as is conventionally used for APL, which will also
probably differ from that used to present the other data found in the document.
An external entity containing the APL data may be referred to using the OBJ
attribute, which must contain the name of a data entity. Character entities can also
be used to represent APL characters.

Examples
<p>A matrix is defined with the string:
<APL>2 3ρ1 2 3 4 5 6</APL></p>

Attributes
OBJ=file-entity-name

The name of the file entity that contains the APL data.

Notation=apl
Specifies that the notation of the content is in APL format.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Highlighting” on page 43.

Contexts
Children: text (#pcdata).

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, MsgText, NoteBody,
P, Ph, Q, SynNote, Term, Warning.

Appendix

Purpose
The Appendix element contains division-like elements that are to be considered
appendixes. Appendixes are not considered part of the content of the main body of

AnnotBody (annotation body)

Chapter 25. IBMIDDoc Elements 235

the SGML markup. They usually contain reference information. In the default
presentation style, appendixes are numbered with letters rather than digits.

Examples
<backm>
<appendix>
<d>
<dprolog><titleblk>
<title>Special stuff</title>
</titleblk></dprolog>
<dbody></dbody></d>
</appendix></backm>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Using appendix” on page 101.

Contexts
Children: D, DBlk, LERS, ModInfo, MsgList, PartAsm, Proc, RetKey.

Parents: BackM.

Approvers (document approvers)

Purpose
Approvers contains the elements that identify the person or organization who must
approve a document or division for publication.

Examples
<approvers>
<person><name>Ethel Mertz</name></person>
</approvers>

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: Corp, Person.

Parents: DProlog, Prolog, SpecDProlog.

AreaDef (defines graphic hot spot area)

Purpose
This is currently not working in the ID Workbench transforms.

The AreaDef element contains the specifications of a graphic hot spot. The
geometry of graphic hot spots is specified according to to the shape of the hot
spot. The numbers specified represent pels in the bitmap for bitmaps, and
represent quanta in the underlying grid used in specifying points in a vector

Appendix

236 ID Workbench: IBMIDDoc User’s Guide and Reference

graphic. Multiple AreaDef elements can be used in a single MMObjLink element to
indicate that more than one area in the graphic can be used to invoke the link.

Examples
<mmobj><objref obj="bear"><mmobjlink linkend="a">
<areadef shape="circle" coords="10 15 20"></areadef>
</mmobjlink>
<textalt>One teddy bear.</textalt>
</mmobj>

Attributes
SHAPE = rectangle|circle|polygon

describes the shape of the graphic hot spot.

COORDS = numbers
contains the coordinates for the graphic hot spot. Values are blank delimited.

rectangle
left x axis, top y axis, right x axis, bottom y axis.

circle
center x, center y, radius, with center specified relative to the origin of the
graphic.

polygon
1st x, 1st y, 2nd x, 2nd y, Nth x, Nth y with automatic closure if the first
and last point are not identical. It must be an error if a line drawn between
any two adjacent points intersects with any other line drawn between any
other two adjacent points in the specification.

See “Common Element Attributes (large set)” on page 227.

Contexts
Children: TextAlt.

Parents: LDescs, MMObjLink.

AsmList (list of parts assemblies)

Purpose
The AsmList element is a specialized list element that contains a list of all parts
assembly lists in the document.

Examples
<ASMLIST>

Attributes
SPEC=AUTO|MAN

This attribute has a fixed value of AUTO, generate the list from the assemblies
in the document.

See “Common Element Attributes (large set)” on page 227.

AreaDef (defines graphic hot spot area)

Chapter 25. IBMIDDoc Elements 237

Usage
See “Getting an assembly list” on page 219.

Contexts
Children: empty.

Parents: DBody, DIntro, DSum, LEDI, MsgItem, PBlk, ProcIntro.

Attention (safety notice)

Purpose
Use an Attention notice to indicate the possibility of damage to a program, device,
system, or data.

Examples
<attention>Here’s a way to get someone’s attention.
</attention>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “The perils of processing: Attention, caution, and danger” on page 48.

Contexts
Children: text (#pcdata), Address, Annot, APL, Bin, Bridge, CGraphic, Char, Cit,
Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines, LitData, LQ, MD, MkNote,
MMObj, ModInfo, MV, Num, Oct, OL, P, ParmL, PBlk, Ph, PK, PV, Q, RefKey,
Screen, SynPh, Syntax, Table, Term, TM, UL, Xmp, XPh, XRef.

Parents: AnnotBody, Bridge, DBody, Defn, DIntro, DSum, entry, LEDI, LI, LQ,
ModDesc, ModItem, MsgItem, PBlk, ProcEntry, ProcIntro, Safety.

Author

Purpose
Use Author to contain information about an author, such as name, title, and so
forth.

Examples
<authors>
<author><person>
<name>Fred Mertz</name>
<address>125 West Hollywood Blvd
Tinseltown, CA <postalcode>90210</postalcode></address>
</person></author>
</authors>

Attributes
See “Common Element Attributes (large set)” on page 227.

AsmList (list of parts assemblies)

238 ID Workbench: IBMIDDoc User’s Guide and Reference

Usage
See “Author and Address” on page 89.

Contexts
Children: Corp, Person, Title.

Parents: Authors, Rev.

Authors

Purpose
The Authors element contains information about one or more authors of the
document.

Examples
<authors>
<author><person>
<name>Fred Mertz</name>
<address>125 West Hollywood Blvd
Tinseltown, CA <postalcode>90210</postalcode></address>
</person></author>
</authors>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Author and Address” on page 89.

Contexts
Children: Author, Desc.

Parents: BibEntry, DProlog, IBMBibEntry, SpecDProlog.

BackCover (back cover)

Purpose
The BackCover element contains a reference to the art used for the document’s
back cover.

Examples
<ibmbibentry><doctitle><titleblk>
<title>My Document</title>
</titleblk></doctitle>
<ibmdocnum></ibmdocnum>
<coverdef><frontcover><mmobj><objref obj="front1">
<textalt></textalt></mmobj></frontcover>
<backcover><mmobj><objref obj="back1">
<textalt></textalt></mmobj></backcover>
</coverdef></ibmbibentry>

Author

Chapter 25. IBMIDDoc Elements 239

Usage
See “Adding to the front or back cover (CoverDef)” on page 91.

Contexts
Children: BibList, CGraphic, DL, Lines, LitData, MMObj, OL, P, Table, UL, Xmp.

Parents: CoverDef.

BackM (back matter)

Purpose
The BackM element contains the material that follows the body of a document. It
may include appendixes, a glossary, and an index. The output transforms
automatically provide a part separator for the back matter when the body of the
document contained a Part tag. If you want to suppress this part separator, use the
following coding on the Backm tag:
<backm style="xpp:(nopart)">

Examples
<BACKM>
<APPENDIX>
<D>
<DPROLOG>
<TITLEBLK>
<TITLE>WHANTOOZLER TECHNICAL SPECIFICATIONS
</TITLE>
</TITLEBLK>
</DPROLOG>
<DBODY>
<P>THIS SECTION DESCRIBES THE ELECTRICAL CONFIGURATION

OF THE.....
</P>
</DBODY>
</D>
</APPENDIX>
</BACKM>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “About back matter (BackM)” on page 101.

Contexts
Children: Abbrev, Appendix, Bibliog, D, DBlk, Glossary, Index, MasterIndex,
PNIndex, RCF, SOA.

Parents: IBMIDDoc.

BackCover (back cover)

240 ID Workbench: IBMIDDoc User’s Guide and Reference

BibEntry (bibliographic entry)

Purpose
The BibEntry element contains information about a document. The IBMBibEntry
element is used to define bibliographic entries for IBM documents. You can use
this to create bibliographic information for non-IBM bibliographies and title
citations.

Examples
To create a bibliography definition:
<bibentrydefs><bibentry docname="dislike"><doctitle>
<titleblk><title>Things I Dislike</title></titleblk>
</doctitle></bibentry></bibentrydefs>

Attributes
DOCLINK=ID

The DocLink attribute specifies the ID of the URL defined on a Notloc element.

DOCNAME=entity_name
Contains a reference to the ID or name of an entity that is defined in the
document that must also be referenced by a NameLoc element. This indicates a
cross-document target with the specified ID value.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 14, “Bibliographies and citations” on page 141.

Contexts
Children: Authors, Desc, DocTitle, ExternalFileName, ISBN, OrderNum, PrtLoc,
PublicId, Publisher.

Parents: BibEntryDefs, BibList, Cit.

BibEntryDefs (contains bibliographic entries)

Purpose
Use the BibEntryDefs element to contain BibEntry and LibEntry elements. When
used in a DProlog element, BibEntryDefs contains elements used within that
division. When used in the Prolog element, BibEntryDefs contains elements used in
the document.

Examples
To create a bibliography definition:
<bibentrydefs><bibentry docname="dislike"><doctitle>
<titleblk><title>Things I Dislike</title></titleblk>
</doctitle></bibentry></bibentrydefs>

Attributes
See “Common Element Attributes (large set)” on page 227.

BackM (back matter)

Chapter 25. IBMIDDoc Elements 241

Usage
See Chapter 14, “Bibliographies and citations” on page 141.

Contexts
Children: BibEntry, IBMBibEntry, IBMLibEntry, LibEntry.

Parents: DProlog, Prolog, SpecDProlog.

Bibliog (bibliography)

Purpose
The Bibliog special division contains lists of documents and other materials
relevant or related to a document. You can use BibList elements within Bibliog to
contain or generate bibliography lists.

Examples
<bibliog>
<specdprolog><gendtitle></specdprolog>
<dbody>
<biblist><bibentry><doctitle><titleblk><title>My Nice
Book</title></titleblk></doctitle></bibentry>
<bibentry><doctitle><titleblk><title>Your Nice Book
</title></titleblk></doctitle></bibentry>
</biblist>
</dbody></bibliog>

Attributes
LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol

Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

See “Common Element Attributes (large set)” on page 227.

BibEntryDefs (contains bibliographic entries)

242 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|

|
|
|
|

|
|

|
|

Usage
See “Using bibiography (Bibliog)” on page 102.

Contexts
Children: DBody, DIntro, DSum, SpecDProlog.

Parents: BackM, FrontM.

BibList (bibliography entry list)

Purpose
The BibList element either generates or contains a list of bibliography entries.

You can create an explicit bibliography list by building it out of any combination of
bibliography entries, library entries, or Cit elements.

Examples
<bibliog>
<specdprolog><gendtitle></specdprolog>
<dbody>
<biblist><bibentry><doctitle><titleblk><title>My Nice
Book</title></titleblk></doctitle></bibentry>
<bibentry><doctitle><titleblk><title>Your Nice Book
</title></titleblk></doctitle></bibentry>
</biblist>
</dbody></bibliog>

Attributes
SPEC= AUTO

Specifies that the content of the element is generated from bibliographic
references from the body of the document.

ENTRYTYPE=DOC | LIB | DOCORLIB
Indicates whether or not the generated list is to contain BibEntry entries or
LibEntry entries. If DOCORLIB is used, a list that includes both can be
generated. DOC is the default value.

FORM= NORMAL | FULL | TITLE | DOCNUM
Defines the form of the generated bibliography entries. The specific meaning of
FULL and NORMAL is defined by the active style. NORMAL is the default
value.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 14, “Bibliographies and citations” on page 141.

Contexts
Children: BibEntry, Cit, IBMBibEntry, IBMLibEntry, LibEntry.

Parents: BackCover, DBody, DIntro, DSum, FrontCover, LEDI, MsgItem, PBlk,
ProcIntro.

Bibliog (bibliography)

Chapter 25. IBMIDDoc Elements 243

Bin (binary data)

Purpose
The Bin element contains text representing binary data.

Examples
<BIN>11000001</BIN>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Highlighting” on page 43.

Contexts
Children: text (#pcdata).

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, MsgText, NoteBody,
P, Ph, Q, SynNote, Term, Warning.

Body (document body)

Purpose
Use Body to contain the main body of your document.

Examples
<body>
<d>
<dprolog><titleblk>
<title>Introduction</title>
</titleblk></dprolog>
<dbody>
<p>Please type your text here. Thank-you.</p>
</dbody></d>
<d>
<dprolog><titleblk>
<title>Caring for your fruit bat</title>
</titleblk></dprolog>
<dbody>
<p>This contains all sorts of information</p>
</dbody></d>
</body>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Creating the body of your document” on page 20.

BibList (bibliography entry list)

244 ID Workbench: IBMIDDoc User’s Guide and Reference

Contexts
Children: D, DBlk, LERS, ModInfo, MsgList, Part, PartAsm, Proc.

Parents: IBMIDDoc.

BOFNum (bill of forms number)

Purpose
The BOFNum element contains the bill of forms number assigned to the library
described by the LibEntry element.

Examples
<libentry>
<library><titleblk><title>My Title</title></titleblk>
</library>
<bofnum>SBOF-1234</bofnum>
</libentry>

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: text (#pcdata), Ph.

Parents: LibEntry.

Bridge (bridge between concepts)

Purpose
Use the Bridge element to link two locations in a document together and to explain
the linkage. The simplest use of Bridge is to create a bridging title between items
in a list. A good example of bridges are the titles used throughout magazine
articles to bridge a reader from one topic to the next. Such titles do not define
hierarchical divisions, but serve merely as a transition from one part to the next.

Examples
This example shows bridging of two sets of list items:

Saute the shallots and chopped mushrooms until
the shallots are tender and the liquid from the mushrooms
has cooked away.
Brown the sausage and add to the mushroom mixture.

<bridge><p>The above may be prepared several hours in
advance and refrigerated. Then, 30 minutes before
serving time, finish the dish</p></bridge>
Mix one can of tomato sauce with the mushroom
and sausage mixture and bring to a slow simmer.

Add the heavy cream and immediately pour into
a casserole.
Pop into 350-degree oven for 15 minutes.

Body (document body)

Chapter 25. IBMIDDoc Elements 245

Attributes
LINKENDS=element_id1 element_id2

The element_ids are optional identifiers of the element locations that are to be
linked or bridged. If the IDs are not specified, the element to be linked is
defaulted. For element_id1, the default is the element preceding the Bridge
element. For element_id2, the default is the element following the Bridge
element. If you specify only one of the link ends explicitly, you must specify
the keyword #IMPLIED for the other element.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Separating or bridging list items” on page 38.

Contexts
Children: text (#pcdata), Address, Annot, APL, Attention, Bin, Caution, CGraphic,
Char, Cit, Danger, Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines, LitData, LQ,
MD, MkNote, MMObj, ModInfo, MV, Note, NoteList, Num, Oct, OL, P, ParmL,
PBlk, Ph, PK, PV, Q, RefKey, Screen, SynPh, Syntax, Table, Term, Title, TM, UL,
Xmp, XPh, XRef.

Parents: AnnotBody, Attention, Caution, Danger, DBody, Defn, DIntro, DL, DLBlk,
DSum, entry, Fig, FigSeg, Fn, GL, GLBlk, LEDI, LI, LIBlk, LQ, MkNote, ModDesc,
ModItem, MsgItem, NoteBody, NoteList, OL, P, ParmBlk, ParmL, PBlk, ProcIntro,
StepNotes, SynNote, UL, Warning.

Cap (caption)

Purpose
The Cap element contains a caption for Figure or Table element. The caption text
can appear in figure and table lists. It should be a relatively short description of
the figure or table.

Examples
<fig id="pubhist">
<cap>History of Publishing within IBM</cap>
<mmobj><objref obj="pubhist">
<textalt>First, there was the pencil, which begat
the pen and the typewriter. Then came ATMS, Script/DCF,
ISIL, BookMaster, and IBMIDDoc.</textalt>
</mmobj></fig>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Figure captions and descriptions” on page 57 and “Table captions and
descriptions” on page 69.

Bridge (bridge between concepts)

246 ID Workbench: IBMIDDoc User’s Guide and Reference

Contexts
Children: text (#pcdata), L, Ph, Term, TM.

Parents: Fig, Table.

Caution (caution notice)

Purpose
Use Caution to create a caution notice, consisting of one or more paragraphs or
other paragraph-level elements. Cautions are normally used to warn about actions
that may cause damage to equipment.

Examples
<CAUTION>Running your engine without oil may cause irreparable damage.
</CAUTION>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “The perils of processing: Attention, caution, and danger” on page 48.

Contexts
Children: text (#pcdata), Address, Annot, APL, Bin, Bridge, CGraphic, Char, Cit,
Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines, LitData, LQ, MD, MkNote,
MMObj, ModInfo, MV, Num, Oct, OL, P, ParmL, PBlk, Ph, PK, PV, Q, RefKey,
Screen, SynPh, Syntax, Table, Term, TM, UL, Xmp, XPh, XRef.

Parents: AnnotBody, Bridge, DBody, Defn, DIntro, DSum, entry, LEDI, LI, LQ,
ModDesc, ModItem, MsgItem, PBlk, ProcEntry, ProcIntro, Safety.

CGraphic (character graphic)

Purpose
The CGraphic element contains a graphic created with box and line characters. See
“Entities” on page 5 for information about declaring external data entities.

Migration Note
BookMaster CGraphics can contain characters that are not part of the
IBMIDDoc document character set and thus must be made into external
entities.

Examples
<!entity mygraphic SYSTEM "mygraph.cgr" ndata linespec>
...
<FIG>
<CAP>Simple box and line graphic</CAP>
<CGRAPHIC OBJ="mygraphic">
</FIG>

Cap (caption)

Chapter 25. IBMIDDoc Elements 247

Attributes
OBJ=data-entity-name

Specifies the SGML file that contains the character graphic. When you specify
OBJ, do not include the CGraphic end tag. You must use a notation of
LINESPEC for a CGraphic.

LINELENGTH=characters
This specifies the number of characters in widest line. If the number of
characters does not fit in the column or page width, the text size is reduced.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Character graphics” on page 59.

Contexts
Children: text (#pcdata), L, LitData, Ph, RefKey, Term.

Parents: AnnotBody, Attention, BackCover, Bridge, Caution, Danger, DBody, Defn,
DIntro, DSum, entry, Fig, FigSeg, Fn, FrontCover, LEDI, LI, LQ, MkNote, ModDesc,
ModItem, MsgItem, NoteBody, P, PBlk, ProcIntro, SynNote, Warning.

Char (character data)

Purpose
Use the Char element to identify literal character data.

Examples
<P>Enter this character string to indicate
cartoon cussing: <CHAR>%#$@!@#</CHAR>.

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Highlighting” on page 43.

Contexts
Children: text (#pcdata).

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, MsgText, NoteBody,
P, Ph, Q, SynNote, Term, Warning.

CI (component item)

Purpose
The CI element contains a component item in an assembly list.

CGraphic (character graphic)

248 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|

Examples
<compl>
<ci idxnum="1" partnum="4563423" upa="1">Bike</ci>
<compl>
<ci idxnum="1" partnum="1230987" upa="1">Frame</ci>
<ci idxnum="2" partnum="1238475" upa="1">Wheel assembly, front</ci>
<ci idxnum="3" partnum="1234939" upa="1">Wheel assembly, rear</ci>
</compl>
</compl>

Attributes
See “Common Element Attributes (large set)” on page 227.

IDXNUM
Use the IDXNUM attribute to assign to the item a number that matches an
artwork index (callout) number. The number you assign with the IDXNUM
attribute shows up in the Asm-Index column and is prefixed with a dash
character. The number to the left of the dash is the same assembly number
used in the heading prefix.

PARTNUM
Use the PARTNUM attribute to assign the item’s part number. The number
you assign with the PARTNUM attribute shows up in the Part Number
column. Part numbers are limited to seven alphanumeric characters (A-Z, a-z,
0-9), with no intervening blanks.

UPA
Use the UPA (units per assembly) attribute to tell how many of this particular
item there are in the assembly. The number you assign with the UPA attribute
shows up in the Units column.

Usage
See Chapter 23, “Creating parts catalog lists” on page 215.

Contexts
Children: text (#pcdata), L, Ph, Term, TM.

Parents: CompL.

Cit (document citation)

Purpose
The Cit element contains a citation to another document.

Examples
Simple citation:
<cit><bibentry><doctitle><titleblk><title>Huckleberry
Finn</title></titleblk></doctitle></bibentry></cit>,
by Mark Twain, is a most excellent book.

Complex citation:
See this book <cit bibid="fruitybat"> and that book
<cit bibid="vampbat" form="full"> for serious bedtime reading.

CI (component item)

Chapter 25. IBMIDDoc Elements 249

Attributes
BibId=entry_id

Specifies the ID of a bibliographic or library entry defined elsewhere. When
BIBID is specified, it is an error to specify any content or the Cit end tag.

FORM=NORMAL | FULL | TITLE | DOCNUM
Specifies the form of the citation, as follows:

NORMAL
Specifies that the record is to be presented as defined by the active
presentation style.

FULL
Specifies that the full range of information in the BibEntry is to be
presented.

TITLE
Specifies that only the title is to be presented.

DOCNUM
Specifies that the document number is to be presented.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Simple title citations” on page 45 and “Using title citations” on page 142.

Contexts
Children: BibEntry, IBMBibEntry, IBMLibEntry, LibEntry.

Parents: AnnotBody, Attention, BibList, Bridge, Caution, CompCmt, Danger, Defn,
Desc, entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, NoteBody, P,
Ph, Q, SynNote, Warning.

ClassDef (element class definition)

Purpose
The ClassDef element defines an element class. ClassNames are defined for the
document in which the ClassDef element occurs.

Examples
This example shows te common IBM class definitions
<classdef classname="ibmcommand" eletypes="ph" style="bold">
<sem>Command names. For example: COPY command</sem>
</classdef>
<classdef classname="ibmemphasis" eletypes="ph" style="italic">
<sem>Text the writer wants to emphasize.</sem>
</classdef>
<classdef classname="ibmfilepath" eletypes="ph">
<sem>File path names. For example: c:\config.sys</sem>
</classdef>
<classdef classname="ibmguicontrol" eletypes="ph" style="bold">
<sem>GUI control names: menu names, menu choices, entry fields,
icons, folders. list boxes, push buttons,
radio buttons, spin buttons, or check boxes; NOT:
windows or notebooks.</sem>
</classdef>

Cit (document citation)

250 ID Workbench: IBMIDDoc User’s Guide and Reference

Here’s a sample use of IBMGuiControl:
Press <ph class="IBMGuiControl">OK</ph> to continue."

Attributes
See “Common Element Attributes (large set)” on page 227.

CLASSNAME=classname
The name of the class being defined.

ELETYPES=element names
Defines those element types (generic identifiers) to which this ClassDef applies.
Use ELETYPES when a ClassDef is only meaningful for a specific set of
element types.

STYLE=styles
Specifies the style of the element to assign to the class name.

OutputClass=css-style-class
The outputclass specifies the class style name in the CSS file; see “Using
document classes with XHTML style sheets” on page 51.

SEM
Defines the semantic meaning of a given class. Sem is intended to document
what a given element class means to the author that defined it.

Usage
See “Defining Element Classes” on page 202.

Contexts
Children: IdxTerm, Sem, Title.

Parents: PropDefs, PropGroup.

CLE (content list entry)

Purpose
CURRENTLY NOT SUPPORED BY ANY OUTPUT TRANSFORMS.

The CLE tag contains an explicit table of contents, figure list, or table list entry to
be used in a content list. The CLE element can also refer to an item to be used in a
content list. CLE is used to create entries in content lists manually, when you need
a different order or hierarchy than the document. You can use these methods:
v The CLE element can generate a table of contents entry completely by reference.

Use this when all of the material is present and the titles are correct; but you
want to re-order the entries. This method also allows specific entries to be
created or included that are not created during automatic processing.
<TOC SPEC="man">...
<CLE REFID="div3">...
</TOC>...
<D ID="div3">Division Three Title
<DProlog>

ClassDef (element class definition)

Chapter 25. IBMIDDoc Elements 251

|

|
|
|
|

|
|
|
|

||||
||||
||||
|
|

<TitleBlk>
<Title>Division Three Title</Title>
</TitleBlk>
</DProlog>

v You can provide the text for the CLE, but refer to the material that it represents.
Use this to specify a different title in the table of contents than division being
referenced. In this case, page number is generated from the object reference. The
division’s STitle could also have been used with a pure reference (the preceeding
example).
<TOC SPEC="man">...
<CLE REFID="div3">Division Three...
</TOC>...
<D ID="div3">
<DProlog>
<TitleBlk>
<Title>Division Title Number 3</Title>
</TitleBlk>
</DProlog>

v The CLE may contain the entire entry information, directly in its content. This
text may include the leader dots and page numbers. If the CLE is a table of
contents entry, the LVL attribute may be used to set the level in the table of
contents that the entry should take. If the page number is not included in the
CLE content, it may be specified in the STYLE attribute using the Bookmaster
page attribute.
<TOC SPEC="man">...
<CLE LVL="2" STYLE="BKM:(page=134)">entry text shown at level 2...
</TOC>

Each of the three methods illustrated here may be used in any combination when
creating a manual table of contents.

Attributes
See “Common Element Attributes (large set)” on page 227.

REFID=element_name
Contains the ID of the element to which the CLE is referring.

%Title
Contains the entry text, or one of the %Title elements.

The LVL attribute is used only when the CLE element is used in a TOC, and
when the REFID attribute is not used. The LVL attribute contains a number,
and is used to specify the level of the TOC entries presented.

Usage

Contexts
Children: text (#pcdata), L, Ph, Term, TM.

Parents: FigList, TList, TOC.

CLE (content list entry)

252 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|

|
|
|
|
|

||||
||||
||||
|
|
|
|
|
|

|
|
|
|
|
|

||||
||||
|

Code (message code number)

Purpose
The Code element contains the number of the code being described by the Msg
element.

Examples
<MSG><CODE>OOC4</CODE>
<MSGITEM CLASS="xpl">
Occurs when the auto-framatizing circuit blows out.</MSGITEM>
</MSG>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Message and code lists” on page 38.

Contexts
Children: text (#pcdata), Ph.

Parents: Msg.

ColSpec (column specification)

Purpose
The ColSpec element contains the specification for a column.

Examples
<TABLE FRAME="ALL">
<TGROUP COLS="4" COLSEP="1" ROWSEP="1" ORIENT="PORT" PGWIDE="0">
<COLSPEC COLWIDTH="68*">
<COLSPEC COLWIDTH="127*">
<COLSPEC COLWIDTH="195*">
<COLSPEC COLWIDTH="66*">

...

Attributes
See “Common Element Attributes (large set)” on page 227.

COLNUM=col_number
This value indicates the number of the column.

COLNAME=col_name
Specifies the column name. This name can be referenced by other table
elements.

ALIGN=LEFT | RIGHT | CENTER | JUSTIFY | CHAR
This attribute specifies the horizontal positioning of the text contained in the
column:

LEFT
Specifies left alignment (the default).

CLE (content list entry)

Chapter 25. IBMIDDoc Elements 253

RIGHT
Specifies right alignment.

CENTER
Specifies center alignment.

JUSTIFY
Specifies that the contained column text is justified,

CHAR
Specifies the character that is used for alignment.

CHAR
specifies the character that is used for alignment.

CHAROFF=number
Specifies the character offset for Entry elements in the column.

COLWIDTH=measure
Specifies a fixed, proportional, or mixed measure for the column width.

Migration Note
At this time, mixed measures are not supported. You should use
proportional measures.

COLSEP=0 | 1
This attribute’s value specifies that the internal column rules should be:
v drawn to the right of each cell’s content (1)
v not displayed at all (0)

ROWSEP=0 | 1
This attribute’s value specifies that the internal row rules should be:
v drawn below each Entry element that ends a row (1)
v not displayed at all (0)

Usage
Chapter 7, “Creating IBMIDDoc Tables” on page 67

Contexts
Children: empty.

Parents: tgroup.

CompCmt (component comment)

Purpose
The CompCmt element contains a comment about a component item in an
assembly.

Examples
<ci idxnum="2" partnum="1238475" upa="1">Wheel assembly, front</ci>
<compcmt>For detailed breakdown, see <xref refid="wheelxmp">.</compcmt>

ColSpec (column specification)

254 ID Workbench: IBMIDDoc User’s Guide and Reference

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 23, “Creating parts catalog lists” on page 215.

Contexts
Children: text (#pcdata), Address, APL, Bin, Char, Cit, Date, Dec, Formula, Hex, L,
MD, MV, Num, Oct, Ph, PK, PV, Q, RefKey, SynPh, Term, TM, XPh, XRef.

Parents: CompL.

CompL (component list)

Purpose
The CompL element contains a component list for an assembly.

Examples
<partasm id="bike" style="bkm:(layout=same)"><title>
Bicycle</title><mmobj><objref obj="bike">
<textalt>Bicycle</textalt>
</mmobj><compl>
<ci idxnum="1" partnum="4563423" upa="1">Bike</ci>
<compl>
<ci idxnum="1" partnum="1230987" upa="1">Frame</ci>
<ci idxnum="2" partnum="1238475" upa="1">Wheel assembly, front</ci>
<compcmt>For detailed breakdown, see <xref refid="wheelxmp">.</compcmt>
<ci idxnum="3" partnum="1234939" upa="1">Wheel assembly, rear</ci>
</compl>
</compl>
</partasm>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 23, “Creating parts catalog lists” on page 215.

Contexts
Children: CI, CompCmt, CompL.

Parents: CompL, PartAsm, PartAsmSeg.

Cond (procedure result)

Purpose
The Cond element is half of the Condition/Action pair of elements that is used in
the DecisionPnt element. The Cond element contains a description of a condition
that requires that some action be taken by the person following the procedure.

CompCmt (component comment)

Chapter 25. IBMIDDoc Elements 255

Examples
<PROC ID="BABYMAP" STYLE="BKM:(STYLE=BASE SEP=INLINE COMPACT)">
<TITLEBLK><TITLE>BABY JOHNNY IS CRYING</TITLE></TITLEBLK>
<PROCENTRY>SIX-MONTH OLD BABY JOHNNY WAS SLEEPING
PEACEFULLY; SUDDENLY HE BEGAN TO CRY.</PROCENTRY>
<PROCSTEP>
<PROCCMND>
<DESC>CHECK JOHNNY’S DIAPER</DESC>
</PROCCMND>
<DECISIONPNT>
<COND>IS THE DIAPER WET?</COND>
<THEN><PROCSTEP><PROCCMND>
<DESC>CHANGE THE DIAPER.</DESC>
</PROCCMND><PROCEXIT>JOHNNY WAS UNCOMFORTABLE.</PROCEXIT>
</PROCSTEP>
</THEN>
<ELSE>
<DESC>CONTINUE AT <XREF REFID="HUNGRY">.</DESC>
</ELSE>
</DECISIONPNT>
</PROCSTEP><PROCSTEP ID="HUNGRY">
<DECISIONPNT>
<COND>IS JOHNNY HUNGRY?</COND>
<THEN><PROCSTEP><DECISIONPNT>
<COND>DOES JOHNNY HAVE TEETH?</COND>
<THEN><PROCSTEP><STEPNOTES>JOHNNY CAN EAT SOLID
FOOD.
CONTINUE AT <XREF REFID="FROZSTK">.
</STEPNOTES></PROCSTEP>
</THEN>
<ELSE><PROCSTEP ID="BOTTLE"><PROCCMND>
<DESC>WARM A BOTTLE.</DESC>
</PROCCMND><PROCCMND>
<DESC>FEED JOHNNY.</DESC>
</PROCCMND><PROCEXIT>JOHNNY NEEDED A BOTTLE.</PROCEXIT>
</PROCSTEP>
</ELSE>
</DECISIONPNT></PROCSTEP>
</THEN>
<ELSE><PROCSTEP><PROCCMND>
<DESC>ROCK JOHNNY TO SLEEP.</DESC>
</PROCCMND><PROCEXIT>JOHNNY WAS SLEEPY.</PROCEXIT>
</PROCSTEP>
</ELSE>
</DECISIONPNT>
</PROCSTEP></PROC>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 22, “Creating maintenance analysis procedures” on page 207.

Contexts
Children: text (#pcdata), DL, Fig, L, MMObj, Note, NoteList, OL, P, PBlk, Ph, Table,
Term, TM, UL.

Parents: DecisionPnt.

Cond (procedure result)

256 ID Workbench: IBMIDDoc User’s Guide and Reference

ContainedDocs (documents in IBMLibEntry and LibEntry)

Purpose
The ContainedDocs element is used within IBMLibEntry and LibEntry elements to
contain IDs of IBMLibEntry and LibEntry elements.

Examples
<CONTAINEDDOCS BIBIDS="bk1 bk2 bk3 bk4 bk5">

Attributes
See “Common Element Attributes (large set)” on page 227.

ID=element_id
Contains the ID of a BibEntry or LibEntry element.

Usage
For more information about the ContainedDocs element, see “Defining library
entries” on page 143.

Contexts
Children: empty.

Parents: IBMLibEntry, LibEntry.

CopyR (copyrights)

Purpose
The CopyR element defines the copyright information that must be referenced. Use
the COPYR attribute to reference the CopyR element.

Specify one CopyR for every copyright holder for the document or division. You
must specify at least the copyright holder and the first date. The presentation of
the copyright statement in the final document is a function of the output style.

Examples
<IBMIDDOC COPYR="ibmprimary">...
<PROLOG>
<COPYRDEFS>
<COPYR ID="YR1994">©r; COPYRIGHT INTERNATIONAL BUSINESS

MACHINES CORPORATION 1994. ALL RIGHTS RESERVED.
<P>This text is added to the end of the generated notice.</P>
<P>Note to U.S. Government Users -- Documentation related to
restricted rights -- Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with
IBM Corp.
</P>

</COPYR>
</COPYRDEFS>

Attributes
See “Common Element Attributes (large set)” on page 227.

Cond (procedure result)

Chapter 25. IBMIDDoc Elements 257

ID=copyright_id
The ID of the CopyR element. Contains the ID for CopyR element.

Usage
See “Using CopyRDefs” on page 91.

Contexts
Children: text (#pcdata), DL, Fig, L, MMObj, Note, NoteList, OL, P, PBlk, Ph, Table,
Term, TM, UL.

Parents: CopyrDefs.

CopyRDefs (copyright definitions)

Purpose
The CopyRDefs element defines copyright attributions for a document or division.
Copyright attributions define the intellectual property rights held in the
information contained by the document.

Use CopyRDefs to contain the copyright ownership information for the document
or division. Put copyrights at the highest level to which they apply. For example,
the primary author of the document should always have a copyright attribution at
the document level, but a portion of a document may be copyrighted by someone
else.

In order for the copyright to apply, it must be referenced within the document.

Examples
<PROLOG>
<COPYRDEFS>
<COPYR ID="ibmprimary">
© COPYRIGHT INTERNATIONAL BUSINESS
MACHINES CORPORATION 1994. ALL RIGHTS RESERVED.
<P>This text is added to the end of the generated notice.</P>
<P>Note to U.S. Government Users -- Documentation related to
restricted rights -- Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with
IBM Corp.</P>
</COPYR>
</COPYR>
</COPYRDEFS>

Attributes
See “Common Element Attributes (large set)” on page 227.

CopyR
Contains copyright attributions for the document or division.

Usage
See “Using CopyRDefs” on page 91.

CopyR (copyrights)

258 ID Workbench: IBMIDDoc User’s Guide and Reference

Contexts
Children: Copyr.

Parents: DProlog, Prolog, SpecDProlog.

Corp (enterprise name and address)

Purpose
Corp contains CorpName and address pairs for use in contexts like Author,
Approvers, and Owners where either a person or an enterprise could be
meaningful.

Examples
<authors>
<author><corp>
<corpname>International Business Machines</corpname>
</corp></author>
</authors>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Using reader’s comment form (RCF)” on page 103.

Contexts
Children: Address, CorpName.

Parents: Approvers, Author, Maintainer, Owners.

CorpName (corporation name)

Purpose
The CorpName simply contains the otherwise unstructured name of an enterprise,
such as a company, government agency, or non-profit organization.

Examples
<authors>
<author><corp>
<corpname>International Business Machines</corpname>
</corp></author>
</authors>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Using reader’s comment form (RCF)” on page 103.

CopyRDefs (copyright definitions)

Chapter 25. IBMIDDoc Elements 259

Contexts
Children: text (#pcdata).

Parents: Corp, Publisher.

CoverDef (cover definition)

Purpose
The CoverDef element contains elements that reference to the art used for the
document’s covers.

Examples
This example shows how to define the artwork for the front and back covers.
<!entity front1 system "front1.eps" ndata graphics>
<!entity back1 system "back1.eps" ndata graphics>
...
<prolog><ibmbibentry><doctitle><titleblk>
<title>Sample Cover</title>
</titleblk></doctitle>
<coverdef>
<frontcover><mmobj><objref obj="front1">
<textalt>System/X cover artwork</textalt>
</mmobj></frontcover>
<backcover><mmobj><objref obj="back1">
<textalt>System/X back cover artwork</textalt>
</mmobj></backcover>
</coverdef>
</ibmbibentry></prolog>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Adding to the front or back cover (CoverDef)” on page 91.

Contexts
Children: BackCover, FrontCover, MMObj.

Parents: IBMBibEntry.

CritDate (critical date for a document)

Purpose
The CritDate element a date for the document. This currently does not reset the
date symbol; the draft title page always shows the current date.

Examples
<CRITDATE>
<DATE>12 June 95</DATE>
<DESC>The date the document was approved for publication.</DESC>
</CRITDATE>

CorpName (corporation name)

260 ID Workbench: IBMIDDoc User’s Guide and Reference

|

|
|

|

|
|

|

|
|
|
|

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Date” on page 90.

Contexts
Children: Date, Desc.

Parents: CritDates.

CritDates (set of critical dates)

Purpose
The CritDates element contains a date in the life of the document.

Examples
<CRITDATES>
<CRITDATE>
<DATE>12 June 94
<DESC>The date the document was approved for publication.</DESC>
</CRITDATE>
</CRITDATES>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Date” on page 90.

Contexts
Children: CritDate.

Parents: DProlog, Prolog, SpecDProlog.

D (hierarchical division)

Purpose
The D (division) element defines the hierarchical organization of the information.

Migration Note
D replaces all the Hx elements from BookMaster.

You must explicitly end the D element in order to start another D at the same
hierarchical level. This is because the hierarchical level of each division is defined
by the containment structure, not by explicit tag names.

Examples
A simple markup example of the D element is:

CritDate (critical date for a document)

Chapter 25. IBMIDDoc Elements 261

|

|

|

|

|

|

|

|
|

|

|

|

|
|
|
|
|
|

|

|

|

|

|

|

|

<d>
<dprolog><titleblk>
<title>About Hierarchical Divisions</title>
</titleblk></dprolog>
<dbody>
<p>Hierarchical divisions define the logical organization
of a document.</p>
</dbody></d>

Attributes
CHAPTERNUM=chapter-number

You can use the CHAPTERNUM attribute on any first-level division tag to
assign the chapter number or appendic letter. For example, this markup:
<d chapternum="5"><dprolog><titleblk><title>End of the line

would cause the chapter number for the “End of the line” chapter to be 5. In
an appendix, the appendic letter would be E.

COPYR=copyrinf
IBMCOPYR=ibmcopyrinf

Specifies the IBM or non_IBM copyright information.

IBMSEC=sec_level
SEC=sec_level

Specifies the security classification of the D content.

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

LANGUAGE=lang_name
Specifies the language in which the division is written.

LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol
Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

STARTPAGE=starting-page-number
The STARTPAGE (starting page) attribute allows you to assign the beginning
page number to a section by using the that attribute on its division tag. It can
be used with all first-level division tags. The STARTPAGE attribute value can
be any positive integer, starting with 1. For example, if you use the following
markup:

D (hierarchical division)

262 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|

|

|
|

|
|

|
|

|
|
|
|

|
|

|
|

|
|
|
|
|
|

<d startpage="101"><dprolog><titleblk><title>Help information
...
<d startpage="201"><dprolog><titleblk><title>Safety information

the first chapter “Help information” starts on page 101, and the next chapter
“Safety information” starts on page 201.

style=bkm:(BookManager overrides)
IBMIDDoc and IDWB support BookManager override attributes that you can
use when building books.

TopicID
You can substitute a topic identifier for the one that is automatically
generated for BookManager books by using the TOPICID attribute on
the heading or implied heading tag whose topic identifier you want to
change. Here’s how:
<d style="bkm:(topicid=’Contents-1’)">
<dprolog><titleblk>
<title>Contents of Part 1</title>
</titleblk></dprolog>
<dbody></dbody></d>

The value of TOPICID must be a string of characters with no blanks.

TopicSel
You can prevent a heading or implied heading from being used as a
topic by using the TOPICSEL attribute, like this:
<d style="bkm:(topicsel=no)">
<dprolog><titleblk>
<title>Contents of Part 1</title>
</titleblk></dprolog>
<dbody></dbody></d>

The value of TOPICSEL can be either YES or NO.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Creating divisions (D element)” on page 20.

Contexts
Children: Abstract, DBody, DIntro, DProlog, DSum.

Parents: Appendix, BackM, Body, DBlk, DBody, DIntro, DSum, FrontM, LEDI,
MsgItem, ProcIntro.

Danger (danger notice)

Purpose
Use Danger to create a danger notice, consisting of one or more paragraphs or
other paragraph or phrase-level elements. Danger elements are normally used to
contain warnings about actions that may cause injury or death to a person.

D (hierarchical division)

Chapter 25. IBMIDDoc Elements 263

|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|

Examples
<danger>
Working under an automobile supported only
by the jack may result in injury or death. Always
use jack stands or ramps in axle pairs to support
your vehicle.
</danger>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “The perils of processing: Attention, caution, and danger” on page 48.

Contexts
Children: text (#pcdata), Address, Annot, APL, Bin, Bridge, CGraphic, Char, Cit,
Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines, LitData, LQ, MD, MkNote,
MMObj, ModInfo, MV, Num, Oct, OL, P, ParmL, PBlk, Ph, PK, PV, Q, RefKey,
Screen, SynPh, Syntax, Table, Term, TM, UL, Xmp, XPh, XRef.

Parents: AnnotBody, Bridge, DBody, Defn, DIntro, DSum, entry, LEDI, LI, LQ,
ModDesc, ModItem, MsgItem, PBlk, ProcEntry, ProcIntro, Safety.

Date

Purpose
Use the Date element to contain a date. IBMIDDoc does not define the format of
the date element, but processing systems can define format constraints for Date
element content.

Examples
<ANNOT>
<P>This change was made on <DATE>August 14, 1994</DATE>.
</ANNOT>

<ANNOT>
<P>This document was formatted on <DATE SPEC="AUTO">.
</ANNOT>

Attributes
See “Common Element Attributes (large set)” on page 227.

SPEC=AUTO
Indicates that the presented date is to be defined by the presentation system
and the defined document style. By default, this is the system date at the time
the document is processed. When AUTO is specified, the element must be
empty.

Usage
See “Date” on page 90.

Contexts
Children: text (#pcdata).

Danger (danger notice)

264 ID Workbench: IBMIDDoc User’s Guide and Reference

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, CritDate, Danger, Defn,
Desc, entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, NoteBody, P,
Ph, Q, Rev, SynNote, Warning.

DBlk (Division block)

Purpose
The DBlk element is used to organize divisions. A common use is to include two
or more divisions from an object library.

Examples
<objlib>
<objlibbody><dblk id="somechapters">
<d>
<dprolog><titleblk>
<title>A heading</title>
</titleblk></dprolog>
<dbody>
<p>some interesting information</p>
</dbody></d>
<d>
<dprolog><titleblk>
<title>Another heading</title>
</titleblk></dprolog>
<dbody>
<p>more interesting information.</p>
</dbody></d>
</dblk></objlibbody>
</objlib>
...
<dblk conloc="somechapters" props="novice">

Attributes
Conloc

The CONLOC attribute specifies that the content of another element of the
same type is to be used as the content of the referencing element. This enables
reuse of information. When the CONLOC attribute is specified, you cannot
specify the element’s end tag. The result of using CONLOC is exactly the same
as if the element being referred to had occurred at that point in the document.
See “Reusing elements from an object library” on page 191.

Attributes on the element are now passed to the element with the CONLOC;
this is a feature that began with IDWB release 3.4, patch IDWXF036.

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be
unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See “Property-Based
Retrieval” on page 195.

Date

Chapter 25. IBMIDDoc Elements 265

PropSrc
Points to an element whose properties are to be used as the properties of the
referencing element. See Chapter 20, “Property and Class Definitions” on
page 201.

Rev
The REV attribute references the Rev element which describes the last revision
level of the information. See “Using Revisions” on page 109.

Status
ignored by processes

Contexts
Children: D.

Parents: Appendix, BackM, Body, DBody, FrontM, LEDI, MsgItem.

DBody (division body)

Purpose
DBody contains the content of a hierarchical division; that is, the main content of a
chapter or topic.

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Creating divisions (D element)” on page 20.

Examples
<d>
<dprolog><titleblk>
<title>About Hierarchical Divisions</title>
</titleblk></dprolog>
<dbody>
<p>Hierarchical divisions define the logical organization
of a document.</p>
</dbody></d>

Contexts
Children: Annot, AsmList, Attention, BibList, Bridge, Caution, CGraphic, D,
Danger, DBlk, DL, Fig, FnList, GL, L, LERS, Lines, LitData, LQ, MarkList, MkNote,
MMObj, ModInfo, MsgList, Note, NoteList, OL, P, ParmL, PartAsm, PBlk, Proc,
Screen, Syntax, Table, UL, Xmp.

Parents: Abbrev, Abstract, Bibliog, D, Glossary, Legend, Part, Preface, SOA.

Dec (decimal number)

Purpose
Use the Dec element to identify decimal data, which is data that is encoded in a
base-10 numbering system.

DBlk (Division block)

266 ID Workbench: IBMIDDoc User’s Guide and Reference

Examples
<BIN>11000001</BIN> = <DEC>193<DEC>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Table 1 on page 44.

Contexts
Children: text (#pcdata).

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, MsgText, NoteBody,
P, Ph, Q, SynNote, Term, Warning.

DecisionPnt (decision point)

Purpose
The DecisionPnt element defines one or more condition-action pairs that define the
next step in a procedure.

Attributes
See “Common Element Attributes (large set)” on page 227.

Cond
Defines the condition which, if satisfied, indicates the action that should be
taken.

Then
What action to take if the condition is satisfied.

Else
What action to take if the condition is note satisfied.

Usage
See Chapter 22, “Creating maintenance analysis procedures” on page 207.

Examples
<PROC ID="BABYMAP" STYLE="BKM:(STYLE=BASE SEP=INLINE COMPACT)">
<TITLEBLK><TITLE>BABY JOHNNY IS CRYING</TITLE></TITLEBLK>
<PROCENTRY>SIX-MONTH OLD BABY JOHNNY WAS SLEEPING
PEACEFULLY; SUDDENLY HE BEGAN TO CRY.</PROCENTRY>
<PROCSTEP>
<PROCCMND>
<DESC>CHECK JOHNNY’S DIAPER</DESC>
</PROCCMND>
<DECISIONPNT>
<COND>IS THE DIAPER WET?</COND>
<THEN><PROCSTEP><PROCCMND>
<DESC>CHANGE THE DIAPER.</DESC>
</PROCCMND><PROCEXIT>JOHNNY WAS UNCOMFORTABLE.</PROCEXIT>
</PROCSTEP>
</THEN>
<ELSE>

Dec (decimal number)

Chapter 25. IBMIDDoc Elements 267

<DESC>CONTINUE AT <XREF REFID="HUNGRY">.</DESC>
</ELSE>
</DECISIONPNT>
</PROCSTEP><PROCSTEP ID="HUNGRY">
<DECISIONPNT>
<COND>IS JOHNNY HUNGRY?</COND>
<THEN><PROCSTEP><DECISIONPNT>
<COND>DOES JOHNNY HAVE TEETH?</COND>
<THEN><PROCSTEP><STEPNOTES>JOHNNY CAN EAT SOLID
FOOD.
CONTINUE AT <XREF REFID="FROZSTK">.
</STEPNOTES></PROCSTEP>
</THEN>
<ELSE><PROCSTEP ID="BOTTLE"><PROCCMND>
<DESC>WARM A BOTTLE.</DESC>
</PROCCMND><PROCCMND>
<DESC>FEED JOHNNY.</DESC>
</PROCCMND><PROCEXIT>JOHNNY NEEDED A BOTTLE.</PROCEXIT>
</PROCSTEP>
</ELSE>
</DECISIONPNT></PROCSTEP>
</THEN>
<ELSE><PROCSTEP><PROCCMND>
<DESC>ROCK JOHNNY TO SLEEP.</DESC>
</PROCCMND><PROCEXIT>JOHNNY WAS SLEEPY.</PROCEXIT>
</PROCSTEP>
</ELSE>
</DECISIONPNT>
</PROCSTEP></PROC>

Contexts
Children: Cond, Else, Then.

Parents: ProcStep.

Defn (definition of a term)

Purpose
The Defn element contains the definition of a term.

Examples
<dl>
<dlentry><term>gopher</term>
<defn>A burrowing rodent that feeds on roots of plants.
</defn>
</dlentry>
<dlentry><term>lawn</term>
<defn>Gopher highway. <p>Can be identified by dinner-plate-sized
mounds of dirt where grass used to be.</p></defn>
</dlentry>
<dlentry><term>agapanthus</term>
<defn>Lovely flowering plant, the roots of which are
the preferred food of gophers. <p>If your flourishing
agapanthus suddenly keels over, it means a gopher
has had a feast.</p></defn>
</dlentry>
</dl>

Attributes
See “Common Element Attributes (large set)” on page 227.

DecisionPnt (decision point)

268 ID Workbench: IBMIDDoc User’s Guide and Reference

Usage
See “Definition lists” on page 32.

Contexts
Children: text (#pcdata), Address, Annot, APL, Attention, Bin, Bridge, Caution,
CGraphic, Char, Cit, Danger, Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines,
LitData, LQ, MD, MkNote, MMObj, ModInfo, MV, Note, NoteList, Num, Oct, OL,
P, ParmL, PBlk, Ph, PK, PV, Q, RefKey, Screen, SynPh, Syntax, Table, Term, TM,
UL, Xmp, XPh, XRef.

Parents: DLEntry, GLEntry, Parm.

DefnHd (definition description heading)

Purpose
The DefnHd element contains the heading for the description portion of a
definition or parameter list.

Examples
<dl><termhd>Setting</termhd>
<defnhd>Description</defnhd>
<dlentry><term>Low</term>
<defn>A good setting for simmering soups.</defn>
</dlentry>
<dlentry><term>Medium</term>
<defn>After the water has boiled, use this setting
for cooking the spaghetti.</defn>
</dlentry>
<dlentry><term>High</term>
<defn>Use this setting to get water boiling fast.
</defn>
</dlentry>
</dl>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Definition lists” on page 32.

Contexts
Children: text (#pcdata), L, Ph, Term, TM.

Parents: DL, ParmL.

Delim (syntax delimiter)

Purpose
The Delim tag specifies a delimiter that is to indicate the start or end of keywords,
variables, operators, or groups. The delimiter can consist of one or more characters.

Defn (definition of a term)

Chapter 25. IBMIDDoc Elements 269

Examples
<syntax>
<group>
<kwd>FRED</kwd>
<delim>+</delim>
<kwd>WILMA</kwd>
</group>
</syntax>

Attributes
OPTREQ=REQ | OPT

Indicates whether or not the delimiter is optional or required. REQ (required)
is the default.

STARTEND=START | END
The STARTEND attribute has a value of START or END, depending upon
whether the Delim element is the starting or ending delimiter in the syntax.

CONVAR=CONSTANT|VAR
Indicates whether the content of the element is a constant or a variable in the
context where is it used.

LINKEND=reference-id
Contains an ID reference that enables a link to an arbitrary location in the
document.

See “Common Element Attributes (large set)” on page 227.

Usage
See “The Delim (delimiter) element” on page 154.

Contexts
Children: text (#pcdata).

Parents: Group, SynPh.

Desc (element description)

Purpose
The Desc element contains a description of an element. Many elements allow Desc
in their content, usually as the first element, or following the title. Desc is intended
to contain a description of the content of the element within which Desc appears.
The presentation effect of a given Desc element is determined by the style of the
element that contains the Desc. For example, within a figure or table, the Desc may
be presented as part of the caption; in another element the Desc may not be
presented at all.

Examples
<fig ID="figa">
<cap>Your CPU with the Whantoozler 3.0 Installed</cap>
<desc>This figure shows the elegance of the Whantoozler when properly
installed.</desc>
</FIG>

Delim (syntax delimiter)

270 ID Workbench: IBMIDDoc User’s Guide and Reference

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: text (#pcdata), Address, APL, Bin, Char, Cit, Date, Dec, DL, Fig, Hex, L,
MD, MMObj, MV, Note, NoteList, Num, Oct, OL, P, PBlk, Ph, PK, PV, Q, RefKey,
StepRef, SynPh, Term, TM, UL, XPh, XRef.

Parents: Authors, BibEntry, CritDate, Else, Fig, IBMBibEntry, IBMLibEntry,
LERSDef, LibEntry, Mark, ModInfo, ModInfoDef, ModItemDef, MsgItemDef,
ObjLib, Proc, ProcCmnd, PropDef, PropDesc, PropGroup, Qualif, Rev, Table, Then.

DIntro (division introduction)

Purpose
The DIntro element contains the introduction to a hierarchical division D.

Note that regular D elements are used to subdivide the DIntro section, but that
they are not numbered like the divisions in the division body. This is possible
because the divisions within the division introduction are structurally
distinguished from the divisions in the division body.

Examples
<d>
<dprolog><titleblk>
<title>My Little Chapter</title>
</titleblk></dprolog>
<dintro>
<p>My little division introductory sentence.</p>
</dintro>
<dbody>
<p>Here’s the beginning of my chapter.</p>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Division introductions” on page 24.

Contexts
Children: Annot, AsmList, Attention, BibList, Bridge, Caution, CGraphic, D,
Danger, DL, Fig, FnList, GL, L, Lines, LitData, LQ, MarkList, MkNote, MMObj,
ModInfo, Note, NoteList, OL, P, ParmL, PBlk, Screen, Syntax, Table, TitleBlk, TOC,
UL, Xmp.

Parents: Abbrev, Abstract, Bibliog, D, Glossary, Legend, MasterIndex, Part, Preface,
SOA.

Desc (element description)

Chapter 25. IBMIDDoc Elements 271

DL (definition list)

Purpose
The DL element contains a list of pairs of terms and definitions. Use definition lists
as a generic definition structure for defining things other than glossary terms.
Entries can be organized within a definition list using DLBlk elements. Bridge
elements can also be used to create transitions or connections between blocks of
entries.

Examples
<dl>
<dlentry><term>gopher</term>
<defn>A burrowing rodent that feeds on roots of plants.
</defn>
</dlentry>
<dlentry><term>lawn</term>
<defn>Gopher highway. <p>Can be identified by dinner-plate-sized
mounds of dirt where grass used to be.</p></defn>
</dlentry>
<dlentry><term>agapanthus</term>
<defn>Lovely flowering plant, the roots of which are
the preferred food of gophers. <p>If your flourishing
agapanthus suddenly keels over, it means a gopher
has had a feast.</p></defn>
</dlentry>
</dl>

Attributes
TermWidth= Small | Meduim | Large | 1 | 2

You can use the TERMWIDTH attribute to determine the indentation size of
the definition list. The valid choices are: small (.5 inch, the default), medium (1
inch), and large (2 inches). The value “1” is for 1-character width; “2” is for a
2-character width.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as
defaults for this tag. See Chapter 9, “Using definition tags” on page 105 for
more information.

HeadStyle=base_h | italic_h | bold_h | monospaced_h | underlined_h |
bold_italic_h | italic_underlined_h | bold_underlined_h |
bold_italic_underlined_h

Specifies the highlighting to use for the list’s TermHd and DefnHd heading
tags. The default is bold.

All values work for Xyvision, XHTML, HTML, and BookMaster. For IPF or
RTF, there are some inconsistencies due to the limitations of those formats:
“monospaced” is ignored, and the default style (bold) is used for terms and
headings. “bold_italic_underlined” does not exist in IPF or RTF; this is treated
the same as bold_underlined. “base” works on everything but definition terms;
there is no plain style in IPF, so the default bold will not be over-ridden.

DIntro (division introduction)

272 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

TermStyle=base | italic | bold | monospaced | underlined | bold_italic |
italic_underlined | bold_underlined | bold_italic_underlined

Specifies the highlighting to use for the list’s Term tags. The default is bold.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Definition lists” on page 32.

Contexts
Children: Bridge, DefnHd, DLBlk, DLEntry, TermHd.

Parents: AnnotBody, Attention, BackCover, Bridge, Caution, Cond, Copyr, Danger,
DBody, Defn, Desc, DIntro, DSum, EdNotices, entry, Fig, FigSeg, Fn, FrontCover,
LEDesc, LEDI, LI, LQ, MkNote, ModDesc, ModItem, MsgItem, NItem, NoteBody,
Notices, P, PBlk, ProcEntry, ProcExit, ProcIntro, Safety, Sem, SynNote, TextAlt,
Warning.

DLBlk (definition list block)

Purpose
The DLBlk element is used to organize definition list entries within a definition
list.

Examples
<dl>
<dlblk>
<dlentry><term>Cat</term>
<defn>A house pet
that purrs when happy.</defn></dlentry>
<dlentry><term>Dog</term>
<defn>A house pet that wags
its tail when happy.</defn></dlentry>
</dlblk>
<dlblk>
<dlentry><term>Fish</term>
<defn>A house pet
with scales that swims.</defn></dlentry>
<dlentry><term>Turtle</term>
<defn>A house pet with
scales that swims and walks slowly.</defn></dlentry>
</dlblk>
</dl>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Definition lists” on page 32.

Contexts
Children: Bridge, DLEntry, Title.

Parents: DL.

DL (definition list)

Chapter 25. IBMIDDoc Elements 273

|
|
|

|

DLDef (Definition list definition)

Purpose
The DLDef element sets attribute defaults for definition lists and parameter lists.
DLDef goes within the document prolog to set definitions for the entire document;
or within a division prolog to set definitions for just that division. The DLDef tag
goes inside a PropDefs tag.

Examples
<propdefs>
<dldef defname="mega" termwidth="large" termstyle="bold_italic">
</propdefs>
...
<dl def="mega">
<dlentry><term>zebra</term>
<defn>Striped horsie.</defn>
</dlentry>
</dl>

Attributes
DEFNAME=definition-name

The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

TermWidth= Small | Meduim | Large | 1 | 2
You can use the TERMWIDTH attribute to determine the indentation size of
the definition list. The valid choices are: small (.5 inch, the default), medium (1
inch), and large (2 inches). The value “1” is for 1-character width; “2” is for a
2-character width.

HeadStyle=base_h | italic_h | bold_h | monospaced_h | underlined_h |
bold_italic_h | italic_underlined_h | bold_underlined_h |
bold_italic_underlined_h

Specifies the highlighting to use for the list’s TermHd and DefnHd heading
tags. The default is bold.

All values work for Xyvision, XHTML, HTML, and BookMaster. For IPF or
RTF, there are some inconsistencies due to the limitations of those formats:
“monospaced” is ignored, and the default style (bold) is used for terms and
headings. “bold_italic_underlined” does not exist in IPF or RTF; this is treated
the same as bold_underlined. “base” works on everything but definition terms;
there is no plain style in IPF, so the default bold will not be over-ridden.

DLBlk (definition list block)

274 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

TermStyle=base | italic | bold | monospaced | underlined | bold_italic |
italic_underlined | bold_underlined | bold_italic_underlined

Specifies the highlighting to use for the list’s Term tags. The default is bold.

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See “Property-Based
Retrieval” on page 195.

Usage
See Chapter 9, “Using definition tags” on page 105.

Contexts
Children: empty.

Parents: PropDefs, PropGroup.

DLEntry (definition list entry)

Purpose
The DLEntry element contains a single term and its definition. Use the DLEntry
element within a definition list (DL) to define information that is not glossary
information. Glossary entries (GLEntry) should be used for formal, dictionary-style
definitions of words.

Examples
<dl>
<dlentry><term>gopher</term>
<defn>A burrowing rodent that feeds on roots of plants.
</defn>
</dlentry>
<dlentry><term>lawn</term>
<defn>Gopher highway. <p>Can be identified by dinner-plate-sized
mounds of dirt where grass used to be.</p></defn>
</dlentry>
<dlentry><term>agapanthus</term>
<defn>Lovely flowering plant, the roots of which are
the preferred food of gophers. <p>If your flourishing
agapanthus suddenly keels over, it means a gopher
has had a feast.</p></defn>
</dlentry>
</dl>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Definition lists” on page 32.

Contexts
Children: Defn, Term.

Parents: DL, DLBlk.

DLDef (Definition list definition)

Chapter 25. IBMIDDoc Elements 275

|
|
|

|
|
|
|

|

|

|

|

|

DocTitle (document title)

Purpose
The DocTitle element contains document title information. You should always
provide a short title for IBM documentation. The short title will be used in places
like bookshelf lists, citations, and the book’s spine. The complete title that appears
on the document title page or cover page is defined by the document style and
may include data from other prolog elements.

Examples
<prolog>
<ibmbibentry><doctitle><titleblk>
<title>My Cute, Little Document</title>
</titleblk></doctitle>
<ibmdocnum>SC99-1234-01</ibmdocnum>
<authors>
<author><person>
<name>Fred Mertz</name>
<address>East Overshoe, SD</address>
</person></author>
</authors>
</ibmbibentry>
</prolog>

Usage
See “Document title” on page 88.

Contexts
Children: Library, TitleBlk.

Parents: BibEntry, IBMBibEntry.

DProlog (division prolog)

Purpose
The DProlog element contains metainformation about a division, which is
information that describes the division, such as the division title, the author, and so
on. It also contains many different types of markup definitions used to define
classes and properties for the division.

Examples
<d>
<dprolog><titleblk>
<title>My Little Chapter</title>
</titleblk>
<revdefs>
<rev id="v3r4" ident="use">
<date>June 5th</date>
<desc>Something happened...</desc>
</rev>
</revdefs></dprolog>
<dbody>
<p>Here’s the beginning of my chapter.</p>
<p rev="v3r4">Something that changed on June 5th.
</p>
</dbody></d>

DLEntry (definition list entry)

276 ID Workbench: IBMIDDoc User’s Guide and Reference

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Division prologs” on page 23.

Contexts
Children: Approvers, Authors, BibEntryDefs, CopyrDefs, CritDates, GlDefs,
IBMProdInfo, IdxDefs, LDescs, Maintainer, MasterIndexInfo, MetaData, ObjLib,
Owners, ProdInfo, PropDefs, QualifDefs, RetKey, RevDefs, TitleBlk.

Parents: D, Part.

DSum (division summary)

Purpose
DSum contains a summary of the informational content of the division.

Examples
<d>
<dprolog>
<titleblk><title>Wantoozler features</title>
</titleblk>
</dprolog>
<dbody>
...
</dbody>
<dsum>
<p>In summary, the Whantoozler can triple the
normal operating speed of your system.</p>
</dsum>
</d>

Usage
See “Creating divisions (D element)” on page 20.

Contexts
Children: Annot, AsmList, Attention, BibList, Bridge, Caution, CGraphic, D,
Danger, DL, Fig, FnList, GL, L, Lines, LitData, LQ, MarkList, MkNote, MMObj,
ModInfo, Note, NoteList, OL, P, ParmL, PBlk, Screen, Syntax, Table, TitleBlk, UL,
Xmp.

Parents: Abbrev, Abstract, Bibliog, D, Glossary, Legend, MasterIndex, Part, Preface,
SOA.

DVCFObj (DVCF Migration Element)

Purpose
This element should only be temporarily used when migrating BookMaster DVCF
coding to IBMIDDoc. Do not continue to use this; you will be warned with
messages when your document is processed.

DProlog (division prolog)

Chapter 25. IBMIDDoc Elements 277

Contexts
Children: any element.

Parents:.

EdNotices (edition notices)

Purpose
The EdNotices element contains the edition notices for the document, including
any legally required statements about intended use, updates, and the like.

Examples
<ibmiddoc ibmcopyr="1996, 1999">
...
<ednotices><title>First Edition (June 1997)</title>
<p>This edition applies to the IBMIDDoc language,
Version 4.2, and to all subsequent releases
and modifications until otherwise indicated in new
editions.</p>
</ednotices>

Attributes
SPEC=MAN

Specifies whether the edition notice is generated automatically or manually. At
this time, MAN is the only supported value.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Notices and Edition notices” on page 98.

Contexts
Children: DL, Fig, L, MMObj, Note, NoteList, OL, P, PBlk, Table, Title, UL.

Parents: FrontM.

Else (other procedure path to follow)

Purpose
The Else element contains the step or steps to follow if the Then condition is not
met.

Examples

Usage
See Chapter 22, “Creating maintenance analysis procedures” on page 207.

Contexts
Children: Desc, Proc, ProcStep.

Parents: DecisionPnt.

DVCFObj (DVCF Migration Element)

278 ID Workbench: IBMIDDoc User’s Guide and Reference

Entry (table entry)

Purpose
The Entry element contains an entry within a row.

Examples
<table pgwide="0" id="tablesample">
<cap>Sample table caption</cap>
<tgroup cols="1">
<colspec colname="col1">
<tbody>
<row>
<entry colname="col1">my little</entry>
</row>
<row>
<entry colname="col1">sample table</entry>
</row>
</tbody>
</tgroup>
</table>

Attributes
COLNAME=column_name

Specifies the column name to which the Entry belongs.

NAMEST=start_name
Specifies the name of the leftmost column of a horizontal span.

NAMEEND=end_name
Specifies the name of the rightmost column of a horizontal span.

SPANNAME=span_name
Specifies the name of a horizontal span in a TGroup.

MOREROWS=number
Specifies the number of additional rows to add in a vertical span.

VALIGN=TOP|MIDDLE|BOTTOM
This attribute specifies the vertical alignment of the text contained in the Entry
elements.

TOP
specifies alignment of the text at the top of the Entry elements.

MIDDLE
specifies alignment of the text at the middle of the Entry elements.

BOTTOM
specifies alignment of the text at the bottom of the Entry elements (the
default).

ALIGN=LEFT | RIGHT | CENTER | JUSTIFY | CHAR
This attribute specifies the horizontal positioning of the text contained in the
column:

LEFT
specifies left alignment (the default).

RIGHT
specifies right alignment.

Else (other procedure path to follow)

Chapter 25. IBMIDDoc Elements 279

CENTER
Specifies center alignment.

CHAR
Specifies the character that is used for alignment.

CHAROFF=number
Specifies the character offset for Entry elements in this column.

COLSEP=0 (NO) |1 (YES)
This attribute’s value specifies that the internal column rules should be:
v drawn to the right of each Entry element that ends a column (1)
v not displayed at all (0)

ROWSEP=0 (NO) |1 (YES)
This attribute’s value specifies that the internal row rules should be:
v drawn below each Entry element that ends a row (1)
v not displayed at all (0)

ROTATE=0 (NO) |1 (YES)
Specifies whether the entry should be rotated.

Shade=NOShade | XLight | Light | Meduim | Dark | XDark
Use the Shade attribute to specify the shading. This table example shows the
shading values used in table cells:

Table 21. Cell entry shading. In the editor, use the modify attributes icon or Ctrl-A to set the
Shade attribute for the cell’s Entry tag.

noshade (0%) xlight (5%) light (26%) medium
(50%)

dark (74%) xdark (100%)

the quick brown fox jumps over the lazy dog

Usage
See Chapter 7, “Creating IBMIDDoc Tables” on page 67.

Contexts
Children: text (#pcdata), Address, Annot, APL, Attention, Bin, Bridge, Caution,
CGraphic, Char, Cit, Danger, Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines,
LitData, LQ, MD, MkNote, MMObj, MV, Note, NoteList, Num, Oct, OL, P, ParmL,
PBlk, Ph, PK, PV, Q, RefKey, Screen, SynPh, Syntax, Term, TM, UL, Xmp, XPh,
XRef.

Parents: row.

ExternalFileName

Purpose
This specifies the file name of this document. This is used for PDF
cross-referencing.

Examples
<externalfilename>iddugref</externalfilename>

Entry (table entry)

280 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|

||
|

||||
|
||

||||||

Contexts
Children: text (#pcdata), Ph.

Parents: BibEntry, IBMBibEntry.

Fig (figure)

Purpose
The Fig element contains and identifies figures, such as images, examples, and
formulas. The figure serves to contain the exhibits and associate a caption and a
description with them. It also allows those exhibits to be referenced.

Use FigSeg elements to break long figures into smaller chunks to enable breaking
of figures at logical points. In a code sample, for example, you can use one FigSeg
for each subroutine to ensure that no subroutines are broken in the middle.

Examples
<fig style="bkm:(place=inline width=column)">
<lines>Here are some lines
in the sample, simple figure.</lines>
</fig>

Attributes
FRAME=NONE | BOX | RULES

Causes the figure to have a frame. The default is none — no frame.

Box Causes a box to be placed around the figure.

Rules Causes a line to be placed above and below the figure; to visually
separate it from the surrounding text.

PGWIDE=0 | 1
This specifies the width of the figure. 1 is for a page-wide figure; 0 uses the
current column width (0 is the default).

ScalePct=scale-percent
You can use the ScalePct attribute to scale the text up or down in the element.
The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:
scalepct="80"

STYLE=″bkm:(place=inline)″
This style override ensures the following:

place=inline
This causes the figure to be placed inline for BookMaster. Normally,
BookMaster formats figures by floating them to the top of the next
page.

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as
defaults for this tag. See Chapter 9, “Using definition tags” on page 105 for
more information.

See “Common Element Attributes (large set)” on page 227.

ExternalFileName

Chapter 25. IBMIDDoc Elements 281

|
|
|

|
|
|
|
|

|

|
|
|
|
|

Usage
See “Figures” on page 57.

Contexts
Children: Annot, Bridge, Cap, CGraphic, Desc, DL, FigSeg, Formula, GL, L, Lines,
LitData, LQ, MkNote, MMObj, Note, NoteList, OL, P, ParmL, PBlk, RefKey, Screen,
Syntax, UL, Xmp.

Parents: AnnotBody, Attention, Bridge, Caution, Cond, Copyr, Danger, DBody,
Defn, Desc, DIntro, DSum, EdNotices, entry, Fn, LEDesc, LEDI, LI, LQ, MkNote,
ModDesc, ModItem, MsgItem, NItem, NoteBody, Notices, P, PBlk, ProcEntry,
ProcExit, ProcIntro, Safety, Sem, SynNote, Warning.

FigDef (Figure definition)

Purpose
The FigDef element sets attribute defaults for figures. FigDef goes within the
document prolog to set definitions for the entire document; or within a division
prolog to set definitions for just that division. The FigDef tag goes inside a
PropDefs tag.

Examples
<propdefs>
<figdef defname=colfigs pgwide=0 frame=box scalepct=120>
<propdefs>
...
<fig id=jkl def=colfigs>

Attributes
DEFNAME=definition-name

The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

FRAME=NONE | BOX | RULES
Causes the figure to have a frame. The default is none — no frame.

Box Causes a box to be placed around the figure.

Rules Causes a line to be placed above and below the figure; to visually
separate it from the surrounding text.

PGWIDE=0 | 1
This specifies the width of the figure. 1 is for a page-wide figure; 0 uses the
current column width (0 is the default).

ScalePct=scale-percent
You can use the ScalePct attribute to scale the text up or down in the element.

Fig (figure)

282 ID Workbench: IBMIDDoc User’s Guide and Reference

|

|
|

|

|
|
|
|

|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|

||

||
|

|
|
|

|
|

The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:
scalepct="80"

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See “Property-Based
Retrieval” on page 195.

Usage
See Chapter 9, “Using definition tags” on page 105.

Contexts
Children: empty.

Parents: PropDefs, PropGroup.

FigList (list of figures)

Purpose
The FigList element causes a figure list to be generated.

Examples
<figlist><gendtitle></figlist>

Attributes
SPEC= AUTO | MAN

Specifies that the content of the element is generated. If SPEC=AUTO is
specified, a list of all figures in the document is generated.

LAYOUT=Default-Layout | OneCol | TwoCol
Specifies the column-style for the section.

Default-Layout
The section uses the default layout for the document style.

OneCol
The headings and text format across the entire page.

TwoCol
The text formats in two columns. Headings format across the page or
with the two-column text.

Usage
See “List of figures” on page 100.

Contexts
Children: CLE, GendTitle, RetKey, TitleBlk.

Parents: FrontM.

FigDef (Figure definition)

Chapter 25. IBMIDDoc Elements 283

|
|
|

|

|
|
|
|

|

|

|

|

|

|
|

|
|

|
|

|
|
|

FigSeg (figure segment)

Purpose
The FigSeg element organizes the content of a figure into logical segments. The
primary intent of FigSeg is to contain parts of a figure that must be kept together
when the figure is presented.

Use multiple figure segments to break long figures into smaller chunks to enable
breaking of figures at logical points. In a code sample, for example, you might use
one figure segment for each subroutine, ensuring that no subroutines will be
broken in the middle.

Examples
<fig id="samplefigdesc" style="bkm:(place=inline width=column)">
<cap>Here’s a sample figure with a caption and description
</cap>
<desc>This figure has a description. Note that descriptions
have punctuations like sentences.</desc>
<figseg>
<xmp>Here is the first part
of a coding example</xmp>
</figseg>
<figseg>
<xmp>Here is the second part
of a coding example</xmp>
</figseg>
</fig>

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: Annot, Bridge, CGraphic, DL, Formula, GL, L, Lines, LitData, LQ,
MkNote, MMObj, Note, NoteList, OL, P, ParmL, PBlk, RefKey, Screen, Syntax, UL,
Xmp.

Parents: Fig.

FileNum (file number)

Purpose
The FileNum element contains the file number of the document. File numbers are
unique to the IBMBibEntry element, and are only used for IBM products.

Examples
<FileNum>
444-4444-44
</FileNum>

Attributes
See “Common Element Attributes (large set)” on page 227.

FigList (list of figures)

284 ID Workbench: IBMIDDoc User’s Guide and Reference

Usage
See “Document title” on page 88.

Contexts
Children: text (#pcdata), Ph.

Parents: IBMBibEntry.

Fn (footnote)

Purpose
Use Fn to annotate text with notes that are not appropriate for inclusion in-line or
to indicate the source for facts or other material used in the text. Footnotes are
associated with the content of the element containing the footnote.

Examples
<p>There’s a footnote<fn>While some folks do not like
footnotes; they sometimes contain a nugget of priceless
lore. Did you know IBMIDDoc’s grandmother was named
ISIL?</fn> around here somewhere.</p>

Attributes
refid=id

Refers to another footnote identifier. If this attribute is specified, this footnote
must be empty.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Footnotes” on page 46.

Contexts
Children: text (#pcdata), Address, Annot, APL, Bin, Bridge, CGraphic, Char, Cit,
Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines, LitData, LQ, MD, MMObj,
ModInfo, MV, Note, NoteList, Num, Oct, OL, P, ParmL, PBlk, Ph, PK, PV, Q,
RefKey, Screen, SynPh, Syntax, Table, Term, TM, UL, Xmp, XPh, XRef.

Parents: FnList.

FNList (footnote list)

Purpose
The FnList element contains a list of footnotes.

Examples
<FNLIST spec="auto">

FileNum (file number)

Chapter 25. IBMIDDoc Elements 285

Attributes
SPEC=AUTO

Specifies that the content of the element is generated. If SPEC=AUTO is
specified, all Fn elements in the document are presented.

See “Common Element Attributes (large set)” on page 227.

Contexts
Children: Fn.

Parents: DBody, DIntro, DSum, LEDI, MsgItem, PBlk, ProcIntro.

Formula (math formula)

Purpose
The Formula element contains or references a mathematical formula.

The NOTATION attribute must not be used when the OBJ attribute is used. If
neither the OBJ or NOTATION attribute is specified, the SGML processor assumes
that the inline formula data is encoded using the Script Mathematical Formula
Formatter (SMFF) mathematics formula language. Although SMFF is implied if the
notation type is not specified, the preferred IBMIDDoc form is to explicitly specify
the NOTATION=SMFF, when applicable.

The content of Formula must be inspected and any occurrences of </ must be
modified to use a symbol name < sl to insure the formula element is not
prematurely ended by an unintended end tag delimiter in the data.

Examples
The first example illustrates how the entity is encoded. The second example shows
how to use a formula element that contains the wave1 entity reference.
<!ENTITY wave1 PUBLIC ’+//ISBN 0-933186::IBM//ENTITY formula//EN’ SDATA SMFF >

...
<FORMULA ID="pwave1" OBJ="wave1">

The next example shows a formula element that contains a formula using SMFF
notation.
<FORMULA NOTATION="smff">
integral from 0 to infinity of d x
</FORMULA>

Attributes
OBJ=file-entity-name

Refers to an external file that contains mathematical formula specifications. The
attribute value is the name of a declared entity. This attribute is only used
when the formula data is in an external file, and the Formula element must be
empty when it is used. Note that the entity declaration must include the
notation of the mathematical formula information.

FNList (footnote list)

286 ID Workbench: IBMIDDoc User’s Guide and Reference

When using the OBJ attribute, the formula element must be empty. The entity
declaration that defines the entity referred to by this attribute must include the
notation used to encode the mathematical formula information.

Notation=SMFF
Refers to the notation that is used to encode the mathematical formula data
that is included inline in the document. It should be specified if the formula
data is inline in the document. It should not be specified if the Object attribute
is used to refer to an external entity containing the formula data.

Future Enhancement
At this time, only the SMFF is supported. Other formats will be
supported at a later date.

See “Common Element Attributes (large set)” on page 227.

Contexts
Children: text (cdata).

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, entry,
Fig, FigSeg, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, NoteBody, P,
Ph, Q, SynNote, Term, Warning.

Fragment (syntax fragment)

Purpose
The Fragment element contains a labeled subpart of a syntax definition. Use syntax
fragments to organize subparts of a large syntax definition that either appear
multiple times or are recursively defined, or parts that are too complicated to
appear in place. Fragments are referred to with the FragRef element.

Examples
<syntax>
<fragref><title>Common attributes</title></fragref>
<fragment><title>Common attributes</title>
<group optreq="opt" style="bkm:(composite)">
<kwd>ID</kwd>
<oper>=</oper>
<var>identifier</var>
</group>
<group optreq="opt" style="bkm:(composite)">
<kwd>STYLE</kwd>
<oper>=</oper>
<var>style stuff</var>
</group>
</fragment>
</syntax>

Attributes
LINKEND=element_id

The ID value of the element being linked to or the ID of a NameLoc element.

See “Common Element Attributes (large set)” on page 227.

Formula (math formula)

Chapter 25. IBMIDDoc Elements 287

Usage
See “The FRAGMENT and FRAGREF (fragment reference) element” on page 155.

Contexts
Children: FragRef, Group, SynNote, Title.

Parents: SynBlk, Syntax.

FragRef (syntax fragment reference)

Purpose
The FragRef element provides a logical reference to a syntax definition fragment.
Use fragment references to create symbolic references to subparts of a syntax
definition or to abstract constructs that are not explicitly defined. For example, you
can reduce the complexity of a definition by replacing complex subparts with
fragment references with meaningful titles. You can also use fragment references to
define recursive constructs or to refer to abstract constructs that are not explicitly
defined.

Examples
<syntax>
<fragref><title>Common attributes</title></fragref>
<fragment><title>Common attributes</title>
<group optreq="opt" style="bkm:(composite)">
<kwd>ID</kwd>
<oper>=</oper>
<var>identifier</var>
</group>
<group optreq="opt" style="bkm:(composite)">
<kwd>STYLE</kwd>
<oper>=</oper>
<var>style stuff</var>
</group>
</fragment>
</syntax>

Attributes
OPTREQ=REQ | OPT

Indicates whether the fragment is optional or required. REQ (required) is the
default.

FRAGID=fragment_ID
Refers to a Fragment element. When FRAGID is specified, it is an error to
specify any content or the FragRef end tag.

See “Common Element Attributes (large set)” on page 227.

Usage
See “The FRAGMENT and FRAGREF (fragment reference) element” on page 155.

Contexts
Children: Title.

Parents: Fragment, Group, SynBlk, Syntax.

Fragment (syntax fragment)

288 ID Workbench: IBMIDDoc User’s Guide and Reference

FrontCover

Purpose
The FrontCover element contains a reference to the art used for the document’s
front cover.

Examples
<ibmbibentry><doctitle><titleblk>
<title>My Document</title>
</titleblk></doctitle>
<ibmdocnum></ibmdocnum>
<coverdef><frontcover><mmobj><objref obj="front1">
<textalt></textalt>
</mmobj></frontcover><backcover><mmobj>stago.objref obj="back1">
<textalt></textalt>
</mmobj></backcover></coverdef></ibmbibentry>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Adding to the front or back cover (CoverDef)” on page 91.

Contexts
Children: BibList, CGraphic, DL, Lines, LitData, MMObj, OL, P, PBlk, Table, UL,
Xmp.

Parents: CoverDef.

FrontM (front matter)

Purpose
The FrontM element contains the material that precedes the body of a document,
such as the preface or table of contents.

Examples
<ibmiddoc>
<prolog>
...
</prolog>
<frontm style="display=’tipage cover spine’">
...
</frontm>
<body>
...
</ibmiddoc>

Attributes
STYLE=″display=’tipage cover spine’ ″

Sets style items such as title page, covers, and spine. See “Front matter
(FrontM)” on page 98 for the values to use.

See “Common Element Attributes (large set)” on page 227.

FragRef (syntax fragment reference)

Chapter 25. IBMIDDoc Elements 289

Usage
See “Front matter (FrontM)” on page 98.

Contexts
Children: Abbrev, Abstract, Bibliog, D, DBlk, EdNotices, FigList, Glossary,
IBMSafety, Legend, Notices, Preface, RCF, Safety, SOA, TList, TOC.

Parents: IBMIDDoc.

GendTitle (default title specification)

Purpose
The GendTitle element causes the system default title for certain specialized
divisions to be used at processing time. The GendTitle element has no content. The
processing application and document style determine the title that will be
generated.

Examples
<toc><gendtitle></toc>

Attributes
ID=identifier

The ID attribute identifies an element within an SGML document. IDs must be
unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

Style
The Style attribute contains either a reference to a separate style specification
for an element or a set of element-specific presentation style definitions when
the processing system does not support separate styles for elements. Assigning
a value to the STYLE attribute modifies how an element is presented when it is
output.

HyTime
ignored by processes

InfoMast
A fixed attribute used to classify the element.

Contexts
Children: empty.

Parents: FigList, IBMSafety, Index, PNIndex, RCF, Safety, SpecDProlog, TList, TOC.

GL (glossary list)

Purpose
The GL element contains glossary entries. A glossary list contains one or more
glossary entries (GLEntry), which in turn contain a term and one or more

FrontM (front matter)

290 ID Workbench: IBMIDDoc User’s Guide and Reference

definitions. Entries can be organized within a glossary list using glossary block
(GLBlk) elements. Bridge elements can also be used to create transitions or
connections between blocks of entries.

Glossary entries can also be used within normal element content to be collected
automatically, or placed within document or division prologs when the terms
apply to an entire document or a to specific division.

Unlike definition list entries, glossary entries can associate multiple definitions
with a single term.

Glossary lists are normally contained by a Glossary division in the BackM.

Examples
<backm>
...
<glossary>
<specdprolog><gendtitle></specdprolog>
<dbody>

<gl>...</gl>
</dbody>
</glossary>
...
</backm>

Attributes
SPEC=AUTO

Specifies that the content of the element is generated.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as
defaults for this tag. See Chapter 9, “Using definition tags” on page 105 for
more information.

RETKEY=None | NoDup
Use the RetKey attribute to enable automatic running headings for glossary
lists. NoDup indicates that the first and last non-blank glossary terms on the
page are to be used. The two terms are joined together, separated by a bullet
or other character, and the combined string is used as the retrieval subject for
the page. If the first and last glossary terms on the page are the same, only the
last glossary term is displayed in the running heading or footing. The values
First and FirstLast can also be coded; but they are not currently supported.

If you code any explicit RetKey elements, they are honored and will appear. If
you nest elements that can generate a running heading (for example, a MsgList
inside Lers), only the outer active generated heading is used. That is, if you
specified automated RetKey generation for LERS and MSGLIST, a Msgno
inside Lers will not be used in the RetKey area. But if you had an explicit
RetKey inside the Msg, then the RetKey is honored as an explicit override.

See “Common Element Attributes (large set)” on page 227.

GL (glossary list)

Chapter 25. IBMIDDoc Elements 291

|
|
|
|
|

Usage
See Chapter 13, “Glossaries” on page 137.

Contexts
Children: Bridge, GLBlk, GLEntry.

Parents: AnnotBody, Attention, Bridge, Caution, Danger, DBody, Defn, DIntro,
DSum, entry, Fig, FigSeg, Fn, LEDI, LI, LQ, MkNote, ModDesc, ModItem,
MsgItem, NoteBody, P, PBlk, ProcIntro, SynNote, Warning.

GLBlk (glossary list block)

Purpose
The GLBlk element organizes glossary list entries within a glossary list. For
example, you can use GLBlk to create logical subdivisions within a long glossary
list.

Examples
<GL>
<GLBLK>
<TITLE>A</TITLE>
<GLENTRY>
<TERM>acopy</TERM>
<DEFN>A transaction program which provides a command line interface to
the APPC File Transfer Protocol (AFTP) facility.
</DEFN>
</GLENTRY>
<GLENTRY>
<TERM>advanced program-to-program communication (APPC)</TERM>
<DEFN>The general facility characterizing
the LU 6.2 architecture and its
various implementations in products.
</DEFN>
<DEFN>Sometimes used to refer to the LU 6.2
architecture and its product
implementations as a whole, or to an LU 6.2 product feature in
particular, such as an APPC application program interface.
</DEFN>
</GLENTRY>
</GLBLK>
</GL>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Separating letter groups in a glossary” on page 138.

Contexts
Children: Bridge, GLEntry, Title.

Parents: GL.

GL (glossary list)

292 ID Workbench: IBMIDDoc User’s Guide and Reference

|

GLDef (Glossary list definition)

Purpose
The GLDef element sets attribute defaults for glossary lists. GLDef goes within the
document prolog to set definitions for the entire document; or within a division
prolog to set definitions for just that division. The GLDef tag goes inside a
PropDefs tag.

Examples
<propdefs>
<gldef retkey="nodup">
</propdefs>

Attributes
DEFNAME=definition-name

The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

RETKEY=None | NoDup
Use the RetKey attribute to enable automatic running headings for glossary
lists. NoDup indicates that the first and last non-blank glossary terms on the
page are to be used. The two terms are joined together, separated by a bullet
or other character, and the combined string is used as the retrieval subject for
the page. If the first and last glossary terms on the page are the same, only the
last glossary term is displayed in the running heading or footing. The values
First and FirstLast can also be coded; but they are not currently supported.

If you code any explicit RetKey elements, they are honored and will appear. If
you nest elements that can generate a running heading (for example, a MsgList
inside Lers), only the outer active generated heading is used. That is, if you
specified automated RetKey generation for LERS and MSGLIST, a Msgno
inside Lers will not be used in the RetKey area. But if you had an explicit
RetKey inside the Msg, then the RetKey is honored as an explicit override.

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See “Property-Based
Retrieval” on page 195.

Usage
See Chapter 9, “Using definition tags” on page 105.

GLBlk (glossary list block)

Chapter 25. IBMIDDoc Elements 293

|
|

|

|
|
|
|

|

|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|

|

Contexts
Children: empty.

Parents: PropDefs, PropGroup.

GlDefs (glossary definitions)

Purpose
The GlDefs element contains GLEntrys that can be referred to from other places in
the document or division.

Contexts
Children: GLEntry.

Parents: DProlog, Prolog, SpecDProlog.

GlEntry (glossary list entry)

Purpose
The GLEntry element contains a single term and its definition. Use the GLEntry
element within a glossary list (GL) to define information.

Examples
<gl>
<glentry><term>gopher</term>
<defn>A burrowing rodent that feeds on roots of plants.
</defn>
</glentry>
<glentry><term>lawn</term>
<defn>Gopher highway. <p>Can be identified by dinner-plate-sized
mounds of dirt where grass used to be.</p></defn>
</glentry>
<glentry><term>agapanthus</term>
<defn>Lovely flowering plant, the roots of which are
the preferred food of gophers. <p>If your flourishing
agapanthus suddenly keels over, it means a gopher
has had a feast.</p></defn>
</glentry>
</gl>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Definition lists” on page 32.

Contexts
Children: Defn, Term.

Parents: GL, GLBlk, GlDefs.

GLDef (Glossary list definition)

294 ID Workbench: IBMIDDoc User’s Guide and Reference

|

|

|

Glossary

Purpose
The DL element contains a list of pairs of terms and definitions. Use definition lists
as a generic definition structure for defining things other than glossary terms.
Entries can be organized within a definition list using DLBlk elements. Bridge
elements can also be used to create transitions or connections between blocks of
entries.

Examples
<gl>
<glentry><term>gopher</term>
<defn>A burrowing rodent that feeds on roots of plants.
</defn>
</glentry>
<glentry><term>lawn</term>
<defn>Gopher highway. <p>Can be identified by dinner-plate-sized
mounds of dirt where grass used to be.</p></defn>
</glentry>
<glentry><term>agapanthus</term>
<defn>Lovely flowering plant, the roots of which are
the preferred food of gophers. <p>If your flourishing
agapanthus suddenly keels over, it means a gopher
has had a feast.</p></defn>
</glentry>
</gl>

Attributes
LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol

Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 13, “Glossaries” on page 137.

GlEntry (glossary list entry)

Chapter 25. IBMIDDoc Elements 295

|
|

|
|

|
|
|
|

|
|

|
|

Contexts
Children: DBody, DIntro, DSum, SpecDProlog.

Parents: BackM, FrontM.

Group

Purpose
The Group element defines the syntax group and lets you give the group a name
in a Title element. The Title element enables the Group to be automatically
fragmented if it is too large to fit the current area.

Examples
<syntax>
<group>
<kwd>FORM</kwd>
<kwd>PROC</kwd>
</group>
</syntax>

Attributes
REPID=repeat-ID

Specifies the group repeats. the REPID points to a REPSEP element in the same
syntax diagram.

OPTREQ=DEF | REQ | OPT
Indicates whether or not the group is a default, optional, or required. REQ is
assumed.

CHOICESEQ=CHOICE | COMPOSITE | SEQ
Indicates whether the items for this group are choices (you select one of the
items), sequential (you enter each of them in order), or composite (sequential
with no space or lines between the syntax elements).

See “Common Element Attributes (large set)” on page 227.

Usage
See “The Group element” on page 150.

Contexts
Children: Delim, FragRef, Group, Kwd, Oper, Sep, SynNote, Title, Var, XRef.

Parents: Fragment, Group, SynBlk, Syntax.

Hex (hexadecimal)

Purpose
Use the Hex element to identify hexadecimal data.

Examples
<BIN>1100 0001</BIN> = <HEX>C1</HEX>

Glossary

296 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Table 1 on page 44.

Contexts
Children: text (#pcdata).

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, MsgText, NoteBody,
P, Ph, Q, SynNote, Term, Warning.

IBMBibEntry (IBM bibliographic entry)

Purpose
Use IBMBibEntry to define the bibliographic information about an IBM document.

IBMBibEntry elements can be specified in a BibEntryDefs element or object
container and used by reference from within a document, for example, from Cit
and Q elements. When IBMBibEntry is specified within Cit, Q, and LQ, the
IBMBibEntry elements are collected for use in a generated bibliography.

Contained IBMBibEntry elements and IBMLibEntry elements are normally used
within re-used information in order to ensure that the re-used information is
completely self-contained. In other words, these elements should be used within
the scope of the information that is being re-used. For example, if a Division
element is re-used, the IBMBibEntry and IBMLibEntry elements should be
contained within that same division’s DProlog element. This allows these elements
to be completely contained, and thus completely re-usable, along with the division
that is being re-used.

Examples
<ibmiddoc>
<prolog><ibmbibentry><doctitle>
<library><titleblk>
<title>My Library</title>
</titleblk></library>
<titleblk>
<title>My Document of Interesting Things</title>
<stitle>Interesting things</stitle>
<subtitle>Or, Cool Things I Like</subtitle>
</titleblk></doctitle></ibmbibentry>

Attributes
DOCLINK=ID

The DocLink attribute specifies the ID of the URL defined on a Notloc element.

DOCNAME=entity_name
Contains a reference to the ID or name of an entity that is defined in the
document that must also be referenced by a NameLoc element. This indicates a
cross-document target with the specified ID value.

See “Common Element Attributes (large set)” on page 227.

Hex (hexadecimal)

Chapter 25. IBMIDDoc Elements 297

Usage
See Chapter 14, “Bibliographies and citations” on page 141.

Contexts
Children: Authors, CoverDef, Desc, DocTitle, ExternalFileName, FileNum,
IBMDocNum, IBMPartNum, ISBN, OrigIBMDocNum, PrtLoc, PublicId, Publisher,
RetKey, VolId.

Parents: BibEntryDefs, BibList, Cit, Prolog.

IBMBOFNum (bill of forms number)

Purpose
The IBMBOFNum element contains the IBM Bill of Forms number for the
described library.

Examples
<bibentrydefs>
<ibmlibentry>
<library><titleblk><title>BS/300</title></titleblk>
</library>
<ibmbofnum>SBOF-1234-0</ibmbofnum>
</ibmlibentry>
</bibentrydefs>

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: text (#pcdata), Ph.

Parents: IBMLibEntry.

IBMDocNum (IBM document number)

Purpose
The IBMDocNum element contains the assigned IBM document number for the
document.

Examples
<ibmbibentry><doctitle><titleblk>
<title>My Document</title>
</titleblk></doctitle>
<ibmdocnum>SC99-1234-00</ibmdocnum>
<ibmpartnum>1234F99</ibmpartnum>
</ibmbibentry><ibmprodinfo>
<prodname>My Product</prodname>
<ibmpgmnum>1234-XX1</ibmpgmnum>
<ibmfeatnum>1754</ibmfeatnum>
</ibmprodinfo>

Attributes
See “Common Element Attributes (large set)” on page 227.

IBMBibEntry (IBM bibliographic entry)

298 ID Workbench: IBMIDDoc User’s Guide and Reference

Usage
See “Document number” on page 89.

Contexts
Children: text (#pcdata), Ph.

Parents: IBMBibEntry.

IBMFeatNum (IBM feature number)

Purpose
The IBMFeatNum element contains the assigned IBM feature number for the
document.

Examples
<ibmbibentry><doctitle><titleblk>
<title>My Document</title>
</titleblk></doctitle>
<ibmdocnum>SC99-1234-00</ibmdocnum>
<ibmpartnum>1234F99</ibmpartnum>
</ibmbibentry><ibmprodinfo>
<prodname>My Product</prodname>
<ibmpgmnum>1234-XX1</ibmpgmnum>
<ibmfeatnum>1754</ibmfeatnum>
</ibmprodinfo>

Contexts
Children: text (#pcdata), Ph.

Parents: IBMProdInfo.

Attributes
See “Common Element Attributes (large set)” on page 227.

IBMIDDoc (IBM-specific product documentation)

Purpose
The IBMIDDoc element contains IBM product information. The IBMIDDoc
document type is used within IBM to create information deliverables for IBM
products. This document type conforms to the IBM InfoMast Architecture and the
HyTime standard (ISO/IEC 10744). The IBMIDDoc element contains an entire
IBMIDDoc document.

An IBMIDDoc document is divided into four main elements: Prolog, FrontM, Body,
and BackM. Only the Body element is required. The Prolog contains all the
information that describes the document itself, such as the document title, author,
document numbers, property definitions, and so on. The other sections contain the
content of the document organized into divisions, either by D elements or by
specialized divisions, such as Preface or Bibliog.

IBMDocNum (IBM document number)

Chapter 25. IBMIDDoc Elements 299

Examples
<IBMIDDOC SEC="IXM Confidential" LANGUAGE="USENGLISH" "COPYR="ibmprimary" "lotus"
"IBMCOPYR="1994, 1995" ID="edfl0mstv2r1">
...
</IBMIDDOC>

Attributes
In addition to support for general attributes, IBMIDDoc can also have several other
attributes:

AppPrefix
Controls the automatic generation of the word ″Appendix″ from the heading
text.

DEFAULT-APP
Use the default for this style. (This is the default value.)

TEXT-APP
Add text and the number.

NONE-APP
Do not add any prefix.

NUMONLY-APP
Add the division number as a prefix.

ChapPrefix
Controls the automatic generation of the word ″Chapter″ from the heading
text.

DEFAULT-CHAP
Use the default for this style. (This is the default value.)

TEXT-CHAP
Add text and the number.

NONE-CHAP
Do not add any prefix.

NUMONLY-CHAP
Add the division number as a prefix.

Class
Has a few values for HTML-published information. No entry generates a
HTML-like book; running feet connect the pages together; headings link back
to the table of contents.

article
Specified HTML article format. A table of contents is generated. The
articles have no automatic running footing that connect the pages together.
Use this with the HTML frame option to generate a frame-based set of
articles with a “twisty” table of contents.

articles
Also specifies HTML article format. No table of contents is generated.

CLASSIF= CONFRES | RES | LIC
Identifies the classification of restricted materials.

CONFRES
Confidential restricted material

IBMIDDoc (IBM-specific product documentation)

300 ID Workbench: IBMIDDoc User’s Guide and Reference

RES
Restricted material

LIC
Licensed material

CLASSIF=LIC for the style TIV8x11, causes that Tivoli style to include the
licensed statement on each page and on the cover.

Copyr=reference-ID
References the ID for a copyright definition defined in an IBMBibEntry
element.

DOCSTYLE=document-style
Specifies the style of the document. You can specify these styles:

IBM8X11
8-1/2 by 11 inch style. Replaces BookMaster style IBMXAGD.

IBM7X9
7 by 9 inch style. Replaces BookMaster style IBMXGGD.

IBM2COL
8.5x11 style (2 column layout)

IBMCD
4.75x4.75 style (for CD Jewel Case booklets)

IBMREFC
Reference cards (3-5/8x9in.).

IBM5X8
5.5x8.5 style (for hardware).

IBM4X6
4.25x6.25 style (for hardware).

IBM8X5
5.5x8.5 landscape style (for hardware).

IBM9X7
7x9 landscape style.

If you create a PDF from this style, the pages may switch between
landscape and portrait presentation in Adobe Acrobat Reader or
Exchange. Add the following lines to your PostScript file before
distilling it to prevent this from occurring:
/currentdistillerparams where {pop}
{userdict /currentdistillerparams {1 dict} put} ifelse
/setdistillerparams where {pop}
{userdict /setdistillerparams {pop} put} ifelse
<< /AutoRotatePages /All >> setdistillerparams

IBMLAND
Printer System’s landscape books. (Not for BookMaster)

IBMXAGD
User Guides (8.5x11in., A4); old BookMaster style.

IBMXARF
Reference (8.5x11in., A4); old BookMaster style. This can be replaced by
using a style of ibm8x11 and a layout of onecol.

IBMXGGD
Summary Guides (7-3/8x9in.); old BookMaster style.

IBMIDDoc (IBM-specific product documentation)

Chapter 25. IBMIDDoc Elements 301

TIV7X9
7x9 style for Tivoli

This style creates automatic running headers for titles. The style puts
Part, Chapter, and Tivoli head 1 text in the RETKEY area. The STitle
content, if specified, replaces the Title content in the running heading.

TIV8X11
8.5x11 style for Tivoli

This style creates automatic running headers for titles. The style puts
Part, Chapter, and Tivoli head 1 text in the RETKEY area. The STitle
content, if specified, replaces the Title content in the running heading.

OBIPORT
5.5x8.5 style (for Options by IBM)

OBIWWA6P
4.25x5.75 style (for Options by IBM)

SMALLFLG
3.625x8.5 style (for hardware)

IBMCopyr=current-year | first-year, current-year
Specifies the copyright date year for IBM publications. You enter either one
date 1999 or two 1999, 2000.

IBMSEC=UNC | IC
Specifies the IBM security classification for the document. Note that you
should use the SEC attribute instead of IBMSEC, with the security classification
typed out. If you specify both IBMSEC and SEC, the SEC attribute is used.

unc Unclassified

ic IBM Confidential

Language
Specifies the language in which the document is written.

The valid values for the Language attribute on IBMIDDoc element are:
v BDUTCH or nl_BE
v BFRENCH or fr_BE
v BPORTUGUESE or pt_BR
v BULGARIAN or bg_BG
v CATALAN or ca_ES
v CENGLISH or en_CA
v CFRENCH or fr_CA
v CROATIAN or hr_HR
v CZECH or cs_CZ
v DANISH or da_DK
v DUTCH or nl_NL
v ENGLISH, en_US, or USENGLISH
v ESTONIAN or et_EE
v FINNISH or fi_FI
v FRENCH or fr_FR
v GERMAN or de_DE
v GREEK or el_GR
v HUNGARIAN or hu_HU
v ICELANDIC or is_IS
v ITALIAN or it_IT
v JAPANESE or ja_JP
v KOREAN or ko_KR

IBMIDDoc (IBM-specific product documentation)

302 ID Workbench: IBMIDDoc User’s Guide and Reference

v LATVIAN or lv_LV
v LITHUANIAN or lt_LT
v MACEDONIAN or mk_MK
v NORWEGIAN or no_NO
v POLISH or pl_PL
v PORTUGUESE or pt_PT
v ROMANIAN or ro_RO
v RUSSIAN or ru_RU
v SCHINESE or zh_CN
v SERBIAN or sr_SP
v SFRENCH or fr_CH
v SGERMAN or de_CH
v SITALIAN or it_CH
v SLOVAK or sk_SK
v SLOVENIAN or sl_SI
v SPANISH or es_ES
v SWEDISH or sv_SE
v TCHINESE or zh_TW
v THAI or th_TH
v TURKISH or tr_TR
v UKENGLISH or en_GB

LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol
Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

MAXTOC=number
Specifies the maximum heading level to be included in the table of contents.
The default for the style IBM8X11 is 3. Specifying maxtoc=4 will include
divisions to heading level 4.

MULTIVOL=OneVol | Index-Folio
This indicates whether the book is part of a multiple-volume set. Specifying
“Index-Folio” adds “X-” as a prefix for the page numbers in the index and
starts the page numbering from 1.

PageNumber
There are three options for the PageNumber attribute: FBC, SEQ, and
Default-Folio.

SEQ
Sequential page numbering: The front matter page numbers use roman
numerals. The body and back matter use arabic numerals.

Note: The 3.2 GA version of the Xyvision code will only support
PageNumber=Seq.

IBMIDDoc (IBM-specific product documentation)

Chapter 25. IBMIDDoc Elements 303

|

|
|

|
|

|
|
|
|

|
|

|
|

FBC
Folio-by-Chapter numbering: The front matter page numbers use roman
numerals, body and appendixes add the chapter or appendix number as a
prefix and restart the page number at every new level-1 division. For
example, chapters and sections are numbered 1-1, 1-2, 2-1, 2-2, etc.
Appendixes are numbered A-1, A-2, etc. Non-appendix back matter
sections are numbered X-1, X-2, etc. and are not reset at new level-1
divisions.

Default-Folio
This is the default value for PageNumber. Use the default page numbering
style for this document style. Currently, all document styles default to SEQ.

PartPrefix
Controls the automatic generation of the word “Part” in the heading text.

DEFAULT-PART
Use the default for this style. (This is the default value.)

TEXT-PART
Add text and the number.

NONE-PART
Do not add any prefix.

NUMONLY-PART
Add the division number as a prefix.

SEC
Specifies the security classification. Note that you should use the SEC attribute
instead of IBMSEC, with the security classification typed out. If you specify
both IBMSEC and SEC, the SEC attribute is used.

STYLE=overrides
This allows specific style overrides.

keepblanks and removeblanks
These are used to control how blanks are treated. The default behavior
keeps blanks at the end of phrase elements (such as Ph, Address, and
Term), and literal data (such as Xmp, Cgraphic, and LitData). It will
remove trailing blanks at the end of other elements, such as
paragraphs (P). You can use the KEEPBLANKS option to keep all
blanks; both those at the end of phrases and those at the end of
paragraphs. You can use the REMOVEBLANKS option to remove all
trailing blanks, both those at the end of phrases and those at the end of
paragraphs.

As an example, the default for this markup is to keep the blanks inside
the phrase tags. So this markup:
Hi <ph style="bold"> there </ph> handsome.

Effectively becomes this when the output is formatted:

Hi there handsome.

Through migration from BookMaster or other means, several times the
phrase tags were done this way:
Hi <ph style="bold">there </ph>handsome.

If you use REMOVEBLANKS, the text concatenates like this:

IBMIDDoc (IBM-specific product documentation)

304 ID Workbench: IBMIDDoc User’s Guide and Reference

Hi therehandsome.

xpp:(bookmarks)
Causes the bookmarks in Acrobat PDF files to match the table of
contents. This creates a most excellent way of navigating the PDF. This
is now the default setting.

xpp:(justify)
For DBCS languages only, this causes the formatting for flowed text
items to be left and right-justified. The opposite setting is nojustify or
ragged.

MLSPrefix=YES | NO
Indicates the document is part of a multiple-language safety book. The page
number prefixes are determined by the document’s language attribute.

BRAND
Specifies the type of product identification branding to be used for the
document.

DefaultBrand
This is the default; no special branding information is produced.

eserver-white
For the IBM ERserver brand, this specifies black cover text on a white
background.

eserver-black
For the IBM ERserver brand, this specifies white cover text on a black
background. Don’t use this one without prior approval by SDF.

NewBrand
Indicates the value of the NEWBRAND attribute should be used.

NEWBRAND=brand-name
This is where you would enter a special brand name; as defined by the ID
Workbench team, to handle a future brand in the middle of a release.

UNMSPACE=Separate | unify
Currently not used.

ID Allows you to assign an identifier to the entire document.

Company
Specifies the company for non-IBM trademarks.

DTDVersion
A fixed attribute that indicates the level of the DTD.

Contexts
Must occur in same entity (file) as the IBMIDDoc document type declaration
(DTD) and must be highest-level element in the document.

Children: BackM, Body, FrontM, Prolog.

Parents:.

IBMIDDoc (IBM-specific product documentation)

Chapter 25. IBMIDDoc Elements 305

IBMLibEntry (IBM document library definition)

Purpose
The IBMLibEntry element contains an IBM-specific library definition. Library
entries contain information about a library or collection of documents.

Use IBMLibEntry to define the bibliographic information about a library or other
collection of IBM documents. You can use the Class attribute and the ClassDef
element to define different classes of LibEntry to correspond to different classes of
collection. For example, you may have product libraries that are themselves
collected into larger libraries of libraries. You could define a class of "CollectionKit"
for libraries of libraries and then use IBMLibEntry elements to define the contents
of a given collection kit.

IBMLibEntry can also be specified in a BibEntryDefs section or ObjLib and used by
reference from within a document, for example, from Cit elements.

When IBMLibEntry elements are specified within Cit. the IBMLibEntry elements
are collected for use in a generated bibliography.

Contained IBMBibEntry elements and IBMLibEntry elements are normally
specified within re-used information in order to ensure that the re-used
information is completely self-contained. In other words, these elements should be
used within the scope of the information that is being re-used. For example, if a
Division element is re-used, the IBMBibEntry and IBMLibEntry elements should be
contained within that same division’s DProlog element. This allows these elements
to be completely contained, and thus completely re-usable, within the division that
is being re-used.

Examples
<IBMLIBENTRY ID=IBMIDDocLIB>
<LIBRARY>IBMIDDoc Library</LIBRARY>
<PUBLISHER>IBM Corporation
<ADDRESS>
</ADDRESS>
</PUBLISHER>
<PRTLOC>USA
<IBMBOFNUM>SBOF-6000-00
<PUBLICID>+//ISBN 0-19-9999
//LIB SBOF-6000-00
/IBMIDDoc Library
/rickd@nando.net
/Networking Software
//EN
<CONTAINEDDOCS BIBIDS="IBMIDDocUG IBMIDDocTUT">
<DESC>Documentation for the IBMIDDoc language.
IBMIDDoc is an SGML language for creating printed and online
technical information.
</IBMLIBENTRY>

Attributes
Library

The library name.

Publisher
Contains the name of the publisher followed by an optional address element.

IBMIDDoc (IBM-specific product documentation)

306 ID Workbench: IBMIDDoc User’s Guide and Reference

PrtLoc
Contains the name location where the document was printed.

IBMBOFNum
The IBM bill of forms (BOF) number assigned to this library.

IBMPartNum
The IBM part number assigned to this library.

ProdName
The product name with which this library is associated.

ISBN
The ISBN number assigned to this library.

PublicID
The SGML public identifier assigned to this library. This is the same public
identifier used in entity declarations for the system object that represents this
library.

ContainedDocs
Defines the documents contained in this library and the default order for
presenting the documents when the library definition is presented.

The contained documents can be identified directly using Cit elements, or
indirectly by specifying BibEntry or LibEntry IDs.

The order the contained documents are specified in ContainedDocs defines the
default order for presenting the library contents.

Desc
Contains a description of the library.

Contexts
Children: ContainedDocs, Desc, IBMBOFNum, IBMPartNum, ISBN, Library,
ProdName, PrtLoc, PublicId, Publisher.

Parents: BibEntryDefs, BibList, Cit.

IBMMail (IBMMail e-mail address)

Purpose
The IBMMail element contains an IBMMail email address.

Examples
<IBMIDDOC>
<PROLOG>

...
<OWNERS>
<CORP>
<CORPNAME>IBM CORPORATION</CORPNAME>
<ADDRESS>INFORMATION DEVELOPMENT

IBM RTP
DEPT. E14D
500/D162
ATTN: Rick Dennis

<INTERNET>rickd@nando.net</INTERNET>
<PHONE>919-254-4062</PHONE>
<VNET>RICKD@RTPNOTES</VNET>
<IBMMAIL>IBMMail Exchange: USIBM3345 at IBMMAIL</VNET>

IBMLibEntry (IBM document library definition)

Chapter 25. IBMIDDoc Elements 307

<POSTALCODE>27614</POSTALCODE>
</ADDRESS>
</CORP>
</OWNERS>
<MAINTAINER>
<PERSON>
<NAME>Rick Dennis</NAME>
</PERSON>
</MAINTAINER>
</PROLOG>

Attributes
#PCDATA

Contains the IBMMail email address.

Contexts
Children: text (#pcdata).

Parents: Address.

IBMPartNum (IBM part number)

Purpose
The IBMPartNum element contains the IBM part number of the document.

Examples
<ibmbibentry><doctitle><titleblk>
<title>My Document</title>
</titleblk></doctitle>
<ibmdocnum>SC99-1234-00</ibmdocnum>
<ibmpartnum>1234F99</ibmpartnum>
</ibmbibentry><ibmprodinfo>
<prodname>My Product</prodname>
<ibmpgmnum>1234-XX1</ibmpgmnum>
<ibmfeatnum>1754</ibmfeatnum>
</ibmprodinfo>

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: text (#pcdata), Ph.

Parents: IBMBibEntry, IBMLibEntry.

IBMPgmNum (IBM program number)

Purpose
The IBMPgmNum element contains the IBM program number of an IBM program
product that is described by the document.

IBMMail (IBMMail e-mail address)

308 ID Workbench: IBMIDDoc User’s Guide and Reference

Examples
<ibmbibentry><doctitle><titleblk>
<title>My Document</title>
</titleblk></doctitle></ibmbibentry>
<ibmprodinfo>
<prodname>My Product</prodname>
<ibmpgmnum>1234-XX1</ibmpgmnum>
<ibmfeatnum>1754</ibmfeatnum>
</ibmprodinfo>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Using IBMProdInfo” on page 92.

Contexts
Children: text (#pcdata), Ph.

Parents: IBMProdInfo.

IBMProdInfo (IBM product information)

Purpose
The IBMProdInfo element contains information about an IBM product that is
associated with the document.

Examples
<ibmbibentry><doctitle><titleblk>
<title>My Document</title>
</titleblk></doctitle></ibmbibentry>
<ibmprodinfo>
<prodname>My Product</prodname>
<ibmfeatnum>1754</ibmfeatnum>
</ibmprodinfo>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Using IBMProdInfo” on page 92.

Contexts
Children: IBMFeatNum, IBMPgmNum, ModLvl, ProdName, Release, Version.

Parents: DProlog, Prolog, SpecDProlog.

IBMSafety (IBM safety notices)

Purpose
The IBMSafety element is designed to contain IBM-specific safety notices about
safe hardware practices. THis is not yet implemented.

IBMPgmNum (IBM program number)

Chapter 25. IBMIDDoc Elements 309

Examples
<frontm>
<ibmsafety spec="auto"><gendtitle></ibmsafety>
...
</frontm>

Attributes
LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol

Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

SPEC=AUTO|MAN
Specifies that the content of the element is generated. SPEC=AUTO is the
default value, and causes the appropriate generated text to be included.

See “Common Element Attributes (large set)” on page 227.

Contexts
Children: GendTitle, RetKey, TitleBlk.

Parents: FrontM.

IdxDefs (central index entries)

Purpose
The IdxDefs element contains central index entries for the document or division.

Examples
<prolog><ibmbibentry><doctitle><titleblk>
<title>Index test</title>
</titleblk></doctitle></ibmbibentry>
<idxdefs>
<i1 id="becha"><idxterm>a bechamel sauce</idxterm></i1>
<i1 seeid="becha"><idxterm>a white sauce</idxterm></i1>
</idxdefs></prolog>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Defining index entries (central indexing)” on page 120.

IBMSafety (IBM safety notices)

310 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|

|
|
|
|

|
|

|
|

Contexts
Children: I1, I2, I3, IRef.

Parents: DProlog, Prolog, SpecDProlog.

IdxTerm (index term)

Purpose
The IdxTerm element contains a term that is to be included in the index.

Examples
<i1><idxterm>dessert sauces</idxterm></i1>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 11, “Indexing” on page 115.

Contexts
Children: text (#pcdata), Ph.

Parents: ClassDef, I1, I2, I3.

Index

Purpose
The Index element contains a title for the index, if one is specified.

The normal use of Index is to contain an index that is automatically generated
from the index entries within the document content.

Examples
<backm>
<index>
<gendtitle>
</index>
</backm>

Attributes
Toc=toc | notoc

Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

IdxDefs (central index entries)

Chapter 25. IBMIDDoc Elements 311

SPEC=AUTO | MAN
Specifies that the content of the element is generated. SPEC=AUTO is the
default value.

LAYOUT=Default-Layout | OneCol | TwoCol | ThreeCol
Specifies the column-style for this portion of the book.

Default-Layout
The section uses the default layout for the document style.

OneCol
The entries format across the entire page.

TwoCol
The entries format in two columns.

ThreeCol
The entries format in three columns.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Generating the index” on page 123.

Contexts
Children: GendTitle, RetKey, TitleBlk.

Parents: BackM.

Internet (internet e-mail address)

Purpose
The Internet element contains an Internet email address.

Examples
<address>
ATTN Dept 245
3605 Hwy 52 N
Rochester MN
<postalcode>55901-9986</postalcode>
<internet>fred@us.ibm.com</internet>
</address>

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: text (#pcdata).

Parents: Address.

Index

312 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|

|
|

|
|

|
|

IRef (index entry reference)

Purpose
The IRef element associates an element with an index entry by referring to an
index entry defined elsewhere in the document, either in content or in an IdxDefs
element.

Index entries specified in the information content are normally used to generate a
traditional index. When index entries are specified in an IdxDefs element within
Prolog or DProlog, they define index structures that can be used by reference from
within the document content. Index entries within IdxDefs will not appear in a
generated index unless specifically referred to.

Examples
<i1><idxterm>sauces</idxterm>
<i2 id="mayo"><idxterm>mayonnaise</idxterm></i2></i1>
...
<iref refids="mayo">
...
<iref refids="mayo">

Attributes
REFIDS=index_entry_ids

Refers to one or more index entries (I1, I2, or I3) to be associated with the
element that contains this IRef.

PRIMARY=PRIMARY
Indicates that this entry is a primary entry for the term. The primary term is
usually given some form of emphasis. There should be only one primary entry
for each term.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Cross referencing index entries” on page 118.

Contexts
Children: empty.

Parents: IdxDefs.

ISBN (document ISBN number)

Purpose
The ISBN element contains a document’s ISBN number.

Examples
<P>To better understand the intricacies of SGML, see
<CIT>
<BIBENTRY>
<DOCTITLE>
<TITLEBLK>
<TITLE>The SGML Handbook</TITLE>

Internet (internet e-mail address)

Chapter 25. IBMIDDoc Elements 313

</TITLEBLK>
<AUTHOR>
<NAME>Charles F. Goldfarb
</NAME>
</AUTHOR>
<PUBLISHER>
<CORPNAME>
Oxford University Press
</CORPNAME>
<ADDRESS>
Walton St
Oxford OX2 6DP
</ADDRESS>
</PUBLISHER>
<PRTLOC>Printed and Bound in Great Britain
<ISBN>0-19-835737-9
<PUBID>+//ISBN 0-19-853737-9//DOCUMENT The SGML Handbook//EN
</BIBENTRY>
</CIT>
for more information.

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
For more information about the ISBN element, see “An example of using BibEntry
and BibEntryDefs” on page 144.

Contexts
Children: text (#pcdata), Ph.

Parents: BibEntry, IBMBibEntry, IBMLibEntry, LibEntry.

I1 (primary index entry)

Purpose
The I1 element contains an index entry and related secondary or tertiary
(third-level) entries. An index entry is associated with the element that directly
contains it.

Index entries specified in the information content will be used to generate a
traditional index. When index entries are specified in an IdxDefs element within
Prolog or DProlog, they define index structures that can be used by reference from
within the document content. Index entries within IndexDefs will not appear in a
generated index unless specifically referred to.

Examples
<i1><idxterm>dessert sauces</idxterm></i1>

Attributes
SEEID=i1_ids | i2_ids

Defines a SEE or SEE ALSO reference for cross-referencing. This points at one
or more IDs on I1 or I2 index tags. Multiple IDs should be separated by

ISBN (document ISBN number)

314 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|

blanks. Using the SEEID instead of SEETEXT ensures that there are
corresponding index entries; because of the cross-reference. See “Defining See
and See-also references” on page 121.

SEETEXT=see_also_text
Contains the text of a see or see also reference. For example, under an I1 entry
of Poultry, you can use SEETEXT="Chicken, Turkey, Quail, Duck, and Goose".
When you specify the SEETEXT attribute, you must ensure that there are index
entries for each word or phrase mentioned in the SEETEXT content. SEEID and
SEETEXT can both be specified, if desired. SEEID takes precedence over
SEETEXT. See “Defining See and See-also references” on page 121.

SORTKEY=sortkey text
When specified, the SortKey= text is used to sort the entry, rather than the
index entry text itself. This is not currently supported by Xyvision. See
“Controlling the Index Sorting” on page 123.

PRIMARY=Primary
Indicates that this entry is a primary entry for the term. The primary term is
usually given some form of emphasis. There should be only one primary entry
for each term. Not supported for most of the IDWB transforms.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 11, “Indexing” on page 115.

Contexts
Children: I2, IdxTerm.

Parents: IdxDefs.

I2 (secondary index entry)

Purpose
The I2 element contains an index entry and any related tertiary (third-level) entries.
An index entry is associated with the element that directly contains it. I2 outside
the context of I1 must use the I1ID attribute to refer to an I1 element.

Index entries specified in the information content will be used to generate a
traditional index. When index entries are specified in an IdxDefs element within
Prolog or DProlog, they define index structures that can be used by reference from
within the document content. Index entries within IndDefs will not appear in a
generated index unless specifically referred to.

Examples
<i1><idxterm>dessert sauces</idxterm>
<i2><idxterm>butterscotch</idxterm></i2>
<i2><idxterm>hot fudge</idxterm>
<i3><idxterm>microwave method</idxterm></i3>
<i3><idxterm>stovetop method</idxterm></i3>
</i2>
<i2><idxterm>strawberry</idxterm></i2>
</i1>

I1 (primary index entry)

Chapter 25. IBMIDDoc Elements 315

|
|
|

|
|
|
|

Attributes
I1ID=i1 id

Refers to the first level entry for this second level entry. I1ID is required when
I2 occurs outside the context of an I1 element.

SEEID=i1_ids | i2_ids
Defines a SEE or SEE ALSO reference for cross-referencing. This points at one
or more IDs on I1 or I2 index tags. Multiple IDs should be separated by
blanks. Using the SEEID instead of SEETEXT ensures that there are
corresponding index entries; because of the cross-reference. See “Defining See
and See-also references” on page 121.

SEETEXT=see_also_text
Contains the text of a see or see also reference. For example, under an I2 entry
of Poultry, you can use SEETEXT="Chicken, Turkey, Quail, Duck, and Goose".
When you specify the SEETEXT attribute, you must ensure that there are index
entries for each word or phrase mentioned in the SEETEXT content. SEEID and
SEETEXT can both be specified, if desired. SEEID takes precedence over
SEETEXT. See “Defining See and See-also references” on page 121.

SORTKEY=sortkey text
When specified, the SortKey= text is used to sort the entry, rather than the
index entry text itself. This is not currently supported by Xyvision. See
“Controlling the Index Sorting” on page 123.

PRIMARY=Primary
Indicates that this entry is a primary entry for the term. The primary term is
usually given some form of emphasis. There should be only one primary entry
for each term. Not supported for most of the IDWB transforms.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 11, “Indexing” on page 115.

Contexts
Children: I3, IdxTerm.

Parents: I1, IdxDefs.

I3 (tertiary index entry)

Purpose
The I3 element contains a third-level index entry. An index entry is associated with
the element that directly contains it. I3 outside the context of I2 must use the I2ID
attribute to refer to an I2 element.

Index entries specified in the information content will be used to generate a
traditional index. When index entries are specified in an IdxDefs element within
Prolog or DProlog, they define index structures that can be used by reference from
within the document content. Index entries within IndexDefinition will not appear
in a generated index unless specifically referred to.

I2 (secondary index entry)

316 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|
|

|
|
|
|

Examples
<i1><idxterm>dessert sauces</idxterm>
<i2><idxterm>butterscotch</idxterm></i2>
<i2><idxterm>hot fudge</idxterm>
<i3><idxterm>microwave method</idxterm></i3>
<i3><idxterm>stovetop method</idxterm></i3>
</i2>
<i2><idxterm>strawberry</idxterm></i2>
</i1>

Attributes
I2ID=i2 id

Refers to the first level entry for this second level entry. I2ID is required when
I3 occurs outside the context of an I2 element.

SORTKEY=sortkey text
When specified, the SORTKEY text is used to sort the entry, rather than the
index entry text itself.

PRIMARY=Primary
Indicates that this entry is a primary entry for the term. The primary term is
usually given some form of emphasis. There should be only one primary entry
for each term.

Usage
See Chapter 11, “Indexing” on page 115.

Contexts
Children: IdxTerm.

Parents: I2, IdxDefs.

Kwd (syntax keyword)

Purpose
Use Kwd to define keywords within a syntax definition. Keywords are literal
values that must be specified exactly as shown in the diagram.

Examples
<syntax>
<group>
<kwd>FORM</kwd>
<kwd optreq="opt">PROC</kwd>
</group>
</syntax>

Attributes
ABBREVS=abbreviations

Lists the valid blank delimited abbreviations for the keyword.

OPTREQ=REQ | OPT | DEF
Indicates whether or not the keyword is optional. REQ (required) is the
default.

I3 (tertiary index entry)

Chapter 25. IBMIDDoc Elements 317

LINKEND=id
Contains an ID reference that enables a link to an arbitrary location in the
document.

See “Common Element Attributes (large set)” on page 227.

Usage
See “The KWD (keyword) element” on page 152.

Contexts
Children: text (#pcdata).

Parents: Group, SynPh.

L (explicit link)

Purpose
The L element links a phrase to any place in a document, another document, or a
non-text object, such as a multimedia presentation.

L can point to either another element in the same document, or it can point to a
NameLoc element, through which it can link to almost anything. What you can
link to via NameLoc is limited only by the online presentation system you use.

Note: IBMIDDoc neither defines nor limits the types of things you can link to from
a document. The linking you can do is determined by the online
presentation system you are using.

As a rule, it is worth using NameLoc when something will be linked to more than
twice within the same document, because the indirection provided by NameLoc
makes maintaining those links easier.

Examples
<d id="xrefhyl">
<dprolog><titleblk>
<title>All about linking</title>
</titleblk></dprolog>
<dbody>
<p>Hypertext links (we’ll just call them links from
now on) connect elements in one part of an online
document to elements in another part of the same document
or a separate online document. </p>
...
<p>Sometimes you need to <l linkend="xrefhyl">link</l> to
other topics.</p>

Attributes
LINKEND=element_id

The ID value of the element being linked to or a NameLoc element that
ultimately locates the object or objects being linked to.

SPEC=AUTO
Currently does not work.

Kwd (syntax keyword)

318 ID Workbench: IBMIDDoc User’s Guide and Reference

CLASS
You can use this to affect whether that link will replace the content of a frame;
or whether the link will launch a new browser window.

NewWindow
This opens the link in a new, unnamed window. This is the same as
the HTML coding: target="_blank"

FullWindow
This opens the link into the full, original window, cancelling all frames.
This is the same as the HTML coding: target="_top"

SameWindow
This opens the link into the same window. This is the same as the
HTML coding: target="_self"

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 12, “All about linking” on page 129.

Contexts
Children: text (#pcdata), Address, APL, Bin, Char, Cit, Date, Dec, Formula, Hex, L,
MD, MV, Num, Oct, Ph, PK, PV, Q, RefKey, SynPh, Term, TM, XPh, XRef.

Parents: Address, AnnotBody, Attention, Bridge, Cap, Caution, CGraphic, CI, CLE,
CompCmt, Cond, Copyr, Danger, DBody, Defn, DefnHd, Desc, DIntro, DSum,
EdNotices, entry, Fig, FigSeg, Fn, L, LEDesc, LEDI, LI, Lines, LQ, MD, MkNote,
ModDesc, ModItem, ModName, MsgItem, MsgText, NItem, NoteBody, Notices, P,
PBlk, Ph, ProcEntry, ProcExit, ProcIntro, Q, Safety, Screen, Sem, STitle, SubTitle,
SynNote, Term, TermHd, TextAlt, Title, Warning, Xmp, XPh.

LDescs (link descriptions)

Purpose
Use LDescs to contain descriptions of links that need to be referenced from more
than one place the document.

Examples
<PROLOG>
<IBMBIBENTRY ID="BOOKMSG">
<DOCTITLE><TITLEBLK><TITLE>IBM BOOKMASTER USER’S GUIDE </TITLE>
</TITLEBLK>
</DOCTITLE>
<IBMDOCNUM>SC34-5107</IBMDOCNUM>
<DESC>DESCRIBE HOW TO USE BOOKMASTER</DESC>

</IBMBIBENTRY>
<LDESCS>
<NAMELOC ID="ABC1" OBJTYPE="BOOK">
<NMLIST></NMLIST>
</NAMELOC>
<NAMELOC ID="ABC0" OBJTYPE="HEAD">
<NMLIST DOCNAME="BOOKUG">SYMBS</NMLIST>
</NAMELOC>
</LDESCS>
<BIBENTRYDEFS>
<IBMBIBENTRY ID="BOOKUG">
<DOCTITLE><TITLEBLK><TITLE>TITLE</TITLE></TITLEBLK>

L (explicit link)

Chapter 25. IBMIDDoc Elements 319

</DOCTITLE>
<IBMDOCNUM>SN23-0059</IBMDOCNUM>
<DESC>BOOK DESCRIPTION</DESC>

</IBMBIBENTRY>
</BIBENTRYDEFS>
</PROLOG>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Using LDescs and Nameloc” on page 95.

Contexts
Children: AreaDef, nameloc, notloc.

Parents: DProlog, Prolog, SpecDProlog.

LE (language element)

Purpose
The LE element contains the description of a computer language element, such as a
command, within the context of a language element reference section. Use LE and
LERS to create reference information for computer languages such as command
sets, programming languages, and the like. The presentation of language elements
is as headed sections.

Examples
<LERS>
<LE>
<LEN>aname
</LEN>

<LEDI CLASS="PURPOSE">
<P>Use this command to request help information on the APPC NameServer

facility.
<LEDI CLASS="FORMAT">
<SYNTAX>
<GROUP>
<KWD OPTREQ="REQ">aname
<KWD OPTREQ="REQ"> -h
</GROUP>
</SYNTAX>
<LEDI CLASS="PARMS">
<PARML STYLE="BKM:(BREAK=’NONE’ TSIZE=’&bigt.’)">
<PARM>
<TERM>-h</TERM>
<DEFN>An explicit request for help information on the ANAME command.
</DEFN>

</PARML>
<LEDI CLASS="EXAMPLES">
<P>This example requests general help on the ANAME command.
<XMP>
aname -h
</XMP>
</LE>
</LERS>

LDescs (link descriptions)

320 ID Workbench: IBMIDDoc User’s Guide and Reference

Attributes
Toc=toc | notoc

Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 16, “Developing Programming Language Reference Materials” on
page 165.

Contexts
Children: LEDesc, LEDI, LEN, RetKey.

Parents: LERS.

LeDesc (language element description)
LeDesc can contain the description of the command. This is usually a short
abstract.

Purpose
The LEDI element’s Purpose class should be used to contain the main purpose of
the language element.

Examples
<le id="LeDesc">
<len>LeDesc (language element description)</len>
<ledesc>LeDesc can contain the description of the
command. This is usually a short abstract. </ledesc>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 16, “Developing Programming Language Reference Materials” on
page 165.

Contexts
Children: text (#pcdata), DL, Fig, L, MMObj, Note, NoteList, OL, P, PBlk, Ph, Table,
Term, TM, UL.

Parents: LE.

LE (language element)

Chapter 25. IBMIDDoc Elements 321

LEDI (language element description item)

Purpose
The LEDI element contains a description of one aspect of a language element
within a LERS section. Each language element can have several LEDI elements.

For each LEDI, the title text can be defined separately on a LERSDEF element.
Each LEDI class can have a different generated title or no title. The default
presentation style for language element descriptions is as normal divisions.

Examples
<LERS>
<LE>
<LEN>aname
</LEN>

<LEDI CLASS="PURPOSE">
<P>Use this command to request help information on the APPC NameServer

facility.
<LEDI CLASS="FORMAT">
<SYNTAX>
<GROUP>
<KWD OPTREQ="REQ">aname
<KWD OPTREQ="REQ"> -h
</GROUP>
</SYNTAX>
<LEDI CLASS="PARMS">
<PARML STYLE="BKM:(BREAK=’NONE’ TSIZE=’&bigt.’)">
<PARM>
<TERM>-h</TERM>
<DEFN>An explicit request for help information on the ANAME command.
</DEFN>

</PARML>
<LEDI CLASS="EXAMPLES">
<P>This example requests general help on the ANAME command.
<XMP>
aname -h
</XMP>
</LE>
</LERS>

Attributes
Class Values

Indicates the class of the LEDI. The class values define what type of
information each LEDI contains:

AUTH
Authorization level; for example, user or superuser.

COMMENTS
Comments about the language element.

CONTEXT
The context in which the language element is used.

DEFAULTS
The defaults for the language element.

ERRCOND
Error conditions.

LeDesc (language element description)

322 ID Workbench: IBMIDDoc User’s Guide and Reference

EXAMPLES
Examples of using the language element.

FLAGS
Control flags.

FORMAT
The format or syntax of the language element.

INTREP
Internal representation, such as control blocks or data structures.

MESSAGES
Any messages related to the language element.

OTHER
An open category.

PARMS
Parameters.

PROCESS
Processing related to the language element.

PURPOSE
The purpose of the language element.

RESTRICT
Restrictions on the use of the language element.

RESULTS
The results of using the language element.

RETCODES
Return codes.

SYSENV
The system environments to which the language element applies.

USAGE
How to use the language element.

VERSION
Any version information for the language element.

See “Using LDescs and Nameloc” on page 95.

Usage
See Chapter 16, “Developing Programming Language Reference Materials” on
page 165.

Contexts
Children: Annot, AsmList, Attention, BibList, Bridge, Caution, CGraphic, D,
Danger, DBlk, DL, Fig, FnList, GL, L, LERS, Lines, LitData, LQ, MarkList, MkNote,
MMObj, ModInfo, MsgList, Note, NoteList, OL, P, ParmL, PartAsm, PBlk, Proc,
Screen, Syntax, Table, UL, Xmp.

Parents: LE.

LEDI (language element description item)

Chapter 25. IBMIDDoc Elements 323

Legend

Purpose
The Legend element contains an explanation of any special notations used in the
document, such as within graphics, tables, figures, or other specialized
information.

Examples
<FRONTM>
<LEGEND>
<SPECDPROLOG>
<GENDTITLE>
</SPECDPROLOG>
<DBODY>
<P>The following symbols have special meaning in this document:

...
</DBODY>
</LEGEND>
</FRONTM>

Attributes
LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol

Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Special sections” on page 100.

Contexts
Children: DBody, DIntro, DSum, SpecDProlog.

Parents: FrontM.

LEDI (language element description item)

324 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|

|
|
|
|

|
|

|
|

LEN (language element name)

Purpose
Use LEN for the name of the language element, for example, the command name.

Examples
<le id="len">
<len>LEN (language element name)</len>
<ledi class="PURPOSE">
<p>Use LEN for the name of the language element, for
example, the command name.</p>
</ledi>
<ledi class="EXAMPLES">
<xmp></xmp>
</ledi>
<ledi class="PARMS">
<p conloc="commattr">
</ledi>
<ledi class="USAGE">
<p>See <xref refid="langref">.</p>
</ledi>
<ledi class="CONTEXT"><pblk conloc="context_len">
</ledi>
</le>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 16, “Developing Programming Language Reference Materials” on
page 165.

Contexts
Children: text (#pcdata), Ph, TM.

Parents: LE.

LERS (language element reference section)

Purpose
Use LERS to contain reference information for computer languages such as
programming languages, command sets, and the like. Use the more generic
ModInfo elements for other sorts of modular information. A LERS section contains
one or more language element descriptions (LE). The default presentation style for
LERS is as normal divisions.

Examples
<le id="len">
<len>LEN (language element name)</len>
<ledi class="PURPOSE">
<p>Use LEN for the name of the language element, for
example, the command name.</p>
</ledi>
<ledi class="EXAMPLES">
<xmp></xmp>

Legend

Chapter 25. IBMIDDoc Elements 325

</ledi>
<ledi class="PARMS">
<p conloc="commattr">
</ledi>
<ledi class="USAGE">
<p>See <xref refid="langref">.</p>
</ledi>
<ledi class="CONTEXT"><pblk conloc="context_len">
</ledi>
</le>

Attributes
DEF=definition-name

Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as
defaults for this tag. See Chapter 9, “Using definition tags” on page 105 for
more information.

CLASS=classname
Deprecated — use DEF attribute. References the CLASSNAME attribute on a
LersDef element.

COMPLANG=computer-language
Specifies the computer language described in this LERS section.

LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol
Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

RETKEY=None | First
Use the RetKey attribute to enable or disable automatic running headings for
this tag.

NONE
indicates that nothing is to be used.

FIRST
indicates that the first non-blank item on the page is to be used.

The values NODUP and FIRSTLAST are not supported at this time.

If you code any explicit RetKey elements, they are honored and will appear. If
you nest elements that can generate a running heading (for example, a MsgList
inside Lers), only the outer active generated heading is used. That is, if you
specified automated RetKey generation for LERS and MSGLIST, a Msgno
inside Lers will not be used in the RetKey area. But if you had an explicit
RetKey inside the Msg, then the RetKey is honored as an explicit override.

LERS (language element reference section)

326 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|

|
|

|
|

|
|
|
|

|
|

|
|

classname=title_text
For each LEDI class, you can define the generated title for the LEDI elements.

AUTH
Authorization level; for example, user or superuser.

COMMENTS
Comments about the language element.

CONTEXT
The context in which the language element is used.

DEFAULTS
The defaults for the language element.

ERRCOND
Error conditions.

EXAMPLES
Examples of using the language element.

FLAGS
Control flags.

FORMAT
The format or syntax of the language element.

INTREP
Internal representation, such as control blocks or data structures.

MESSAGES
Any messages related to the language element.

OTHER
An open category; define your own title.

PARMS
Parameters.

PROCESS
Processing related to the language element.

PURPOSE
The purpose of the language element.

RESTRICT
Restrictions on the use of the language element.

RESULTS
The results of using the language element.

RETCODES
Return codes.

SYSENV
The system environments to which the language element applies.

USAGE
How to use the language element.

VERSION
Any version information for the language element.

SEP= PAGE | NORMAL | LHPAGE | RHPAGE
allows you to specify how you want the language elements separated, where:

PAGE Starts the language element on the next page.

LERS (language element reference section)

Chapter 25. IBMIDDoc Elements 327

|
|

||

NORMAL
Specifies normal heading separation — usually white space.

LHPAGE
Starts the language element on the next left-hand page (even page).

RHPAGE
Starts the language element on the next right-hand page (odd page).

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 16, “Developing Programming Language Reference Materials” on
page 165.

Contexts
Children: LE, RetKey.

Parents: Appendix, Body, DBody, LEDI, ModItem, MsgItem.

LERSDef (LERS property definition)

Purpose
Use LERSDef to define the titles to be generated for different classes of LEDI
elements, and to define values for common properties.

Examples
<lersdef defname="taglers" comments="Usage" context="Contexts"
defaults="Style Values" examples="Examples" format="Syntax"
other="SGML Markup" parms="Attributes" results="More Information"
usage="Usage">
</lersdef>

Attributes
DEFNAME=definition-name

The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

RETKEY=None | First
Use the RetKey attribute to enable or disable automatic running headings for
this tag.

NONE
indicates that nothing is to be used.

FIRST
indicates that the first non-blank item on the page is to be used.

LERS (language element reference section)

328 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|

|
|

|

|
|

|

|
|

|

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

The values NODUP and FIRSTLAST are not supported at this time.

If you code any explicit RetKey elements, they are honored and will appear. If
you nest elements that can generate a running heading (for example, a MsgList
inside Lers), only the outer active generated heading is used. That is, if you
specified automated RetKey generation for LERS and MSGLIST, a Msgno
inside Lers will not be used in the RetKey area. But if you had an explicit
RetKey inside the Msg, then the RetKey is honored as an explicit override.

CLASSNAME = classname
Depreciated — use DEFNAME attribute. Defines the name of the class. This
name is the name referenced by the CLASS attribute on the Lers element.

COMPLANG=computer-language
Specifies the computer language described in this LERS section.

classname=title_text
For each LEDI class, you can define the generated title for the LEDI elements.

AUTH
Authorization level; for example, user or superuser.

COMMENTS
Comments about the language element.

CONTEXT
The context in which the language element is used.

DEFAULTS
The defaults for the language element.

ERRCOND
Error conditions.

EXAMPLES
Examples of using the language element.

FLAGS
Control flags.

FORMAT
The format or syntax of the language element.

INTREP
Internal representation, such as control blocks or data structures.

MESSAGES
Any messages related to the language element.

OTHER
An open category; define your own title.

PARMS
Parameters.

PROCESS
Processing related to the language element.

PURPOSE
The purpose of the language element.

RESTRICT
Restrictions on the use of the language element.

LERSDef (LERS property definition)

Chapter 25. IBMIDDoc Elements 329

|

|
|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

|
|

RESULTS
The results of using the language element.

RETCODES
Return codes.

SYSENV
The system environments to which the language element applies.

USAGE
How to use the language element.

VERSION
Any version information for the language element.

SEP= PAGE | NORMAL | LHPAGE | RHPAGE
allows you to specify how you want the language elements separated, where:

PAGE Starts the language element on the next page.

NORMAL
Specifies normal heading separation — usually white space.

LHPAGE
Starts the language element on the next left-hand page (even page).

RHPAGE
Starts the language element on the next right-hand page (odd page).

See “Common Element Attributes (large set)” on page 227.

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 16, “Developing Programming Language Reference Materials” on
page 165.

Contexts
Children: Desc.

Parents: PropDefs, PropGroup.

LI (list item)

Purpose
The LI element contains a single list item within a list. List items can be grouped
together with LiBlk..

Examples

This is an item in an unordered list. To separate
it from other items in the list, the formatter puts
a bullet beside it.
The paragraph that is contained in the LI element
is part of the list item which contains it. <p>This

LERSDef (LERS property definition)

330 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|

|
|

|
|

|
|

|
|

||

|
|

|
|

|
|

|

|

|

|

|
|

|

|

|

is the contained paragraph.</p>
This is a separate list item in our unordered
list.

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Unordered lists” on page 29.

Contexts
Children: text (#pcdata), Address, Annot, APL, Attention, Bin, Bridge, Caution,
CGraphic, Char, Cit, Danger, Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines,
LitData, LQ, MD, MkNote, MMObj, ModInfo, MV, Note, NoteList, Num, Oct, OL,
P, ParmL, PBlk, Ph, PK, PV, Q, RefKey, Screen, SynPh, Syntax, Table, Term, TM,
UL, Xmp, XPh, XRef.

Parents: LIBlk, NoteList, OL, StepNotes, UL.

LibEntry (document library definition)

Purpose
Use LibEntry to define the bibliographic information about a library or other
collection of documents. You can use the CLASS attribute and the ClassDef
element to define different classes of LibEntry to correspond to different classes of
collection. For example, you may have product libraries that are themselves
collected into larger libraries of libraries. You could define a class of "CollectionKit"
for libraries of libraries and then use LibEntry elements to define the contents of a
given collection kit.

LibEntry elements can also be specified in a BibEntryDefs section or object
container and used by reference from within a document, for example, from Cit
elements. When LibEntry elements are specified within Cit, the LibEntry elements
are collected for use in a generated bibliography.

Contained BibEntry elements and LibEntry elements are normally used within
re-used information in order to ensure that the re-used information is completely
self-contained. In other words, these elements should be used within the scope of
the information that is being re-used. For example, if a Division element is re-used,
the BibEntry and LibEntry elements should be contained within that same
division’s DProlog element. This allows these elements to be completely contained,
and thus completely re-usable, within the division that is being re-used.

It is intended that the public identifier of the library entity be used by the
presentation system to locate the actual system object, but specific presentation
systems may define application-specific data to be specified as the system identifier
of the library entity if they do not support the use of public identifiers. The public
identifier can be included in the LibEntry itself as a way of keeping a library’s
formal public identifier definition with the rest of its bibliographic information.
This could allow, for example, the automatic generation of entity declarations for
libraries described by LibEntry elements.

LI (list item)

Chapter 25. IBMIDDoc Elements 331

Examples
<bibentrydefs>
<ibmlibentry>
<library><titleblk><title>BS/300</title></titleblk>
</library>
<ibmbofnum>SBOF-1234-0</ibmbofnum>
<containeddocs bibids="booka bookb"></ibmlibentry>
<ibmbibentry id="booka"><doctitle><titleblk><title>
BS/300 Guide</title></titleblk></doctitle></ibmbibentry>
<ibmbibentry id="bookb"><doctitle><titleblk><title>
BS/300 Reference</title></titleblk></doctitle></ibmbibentry>
<libentry>
<library><titleblk><title>Back’n’Recovery</title>
</titleblk></library>
</libentry>
</bibentrydefs>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Defining library entries” on page 143.

Contexts
Children: BOFNum, ContainedDocs, Desc, ISBN, Library, OrderNum, ProdName,
PrtLoc, PublicId, Publisher.

Parents: BibEntryDefs, BibList, Cit.

LIBlk (list item block)

Purpose
The LIBlk element groups items within a list. The reasons for the grouping are
determined by the author. The grouping may be logical, and can be indicated by
including an optional title. LiBlk can also be used define blocks of list items to be
connected with a Bridge element.

If you want to have all the text in the LIBLK to be on the same page, use
style=″xpp:(keep)″. Be cautious when using this feature. If the text does not fit on a
page, remove the style=″xpp:(keep)″ or the pages will not format correctly.

Migration Note
The use of LIBlk, its title, or the use of Bridge, replaces the List Part (LP)
element from BookMaster.

Examples

<liblk>
1 GIG SCSI-2 Hard Disk
32 MB RAM
128-Bit 8MB VRAM Video
21-Inch Monitor
</liblk>
<liblk>

LibEntry (document library definition)

332 ID Workbench: IBMIDDoc User’s Guide and Reference

Great Word Processor
Best Multimedia App
Voice Mail
</liblk>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Grouping list items” on page 37.

Contexts
Children: Bridge, LI, Title.

Parents: NoteList, OL, StepNotes, UL.

Library

Purpose
The Library element contains the name of a library.

Examples
See these books for a good read and then a weird read: <cit>
<bibentry><doctitle><titleblk><title>Tom Sawyer</title>
</titleblk></doctitle></bibentry></cit> and <cit>
<ibmbibentry><doctitle>
<library><titleblk><title>System/36</title></titleblk>
</library>
<titleblk><title>Concepts and Programmer’s Guide</title>
</titleblk></doctitle></ibmbibentry></cit>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
For more information about the Library element, see “An example of using
BibEntry and BibEntryDefs” on page 144.

Contexts
Children: TitleBlk.

Parents: DocTitle, IBMLibEntry, LibEntry.

Lines (text with line boundaries)

Purpose
The Lines element contains text for which the input line (record) boundaries are
significant and must be preserved or indicated when presented.

LIBlk (list item block)

Chapter 25. IBMIDDoc Elements 333

Examples
<LINES>
a partridge in a pear tree
two turtledoves
three French hens
four calling birds
five golden rings
six geese a-laying
seven swans a-swimming
eight maids a-milking
nine ladies dancing
ten lords a-leaping
eleven pipers piping
twelve drummers drumming
</LINES>

Attributes
NOTATION=LINESPEC

Specifies that LINESPEC is the default value for the NOTATION attribute.

OBJ=entity_name
The name of the external data entity that contains the line-specific data. When
OBJ is specified, it is an error to specify any data or the Lines end tag.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Just plain lines” on page 53.

Contexts
Children: text (#pcdata), Address, APL, Bin, Char, Cit, Date, Dec, Formula, Hex, L,
MD, MV, Num, Oct, Ph, PK, PV, Q, RefKey, SynPh, Term, TM, XPh, XRef.

Parents: AnnotBody, Attention, BackCover, Bridge, Caution, Danger, DBody, Defn,
DIntro, DSum, entry, Fig, FigSeg, Fn, FrontCover, LEDI, LI, LQ, MkNote, ModDesc,
ModItem, MsgItem, MsgText, NoteBody, P, PBlk, ProcIntro, SynNote, Warning.

Litdata (literal data)

Purpose
The Litdata element contains or refers to literal data in a specific notation. Use
Litdata to contain or refer to data that is not to be parsed by the SGML parser and
that may need special processing in order to properly present the data, such as
character translation or use of special code pages.

When the OBJ attribute is used to refer to an external entity, the Litdata end tag
cannot be specified. Do not specify a notation when referring to an external entity
because the entity will have a notation defined on its entity declaration.

The typical use of Litdata is to contain or refer to samples of programming code.

The only SGML markup recognized within Litdata is the end tag open delimiter
(</). When literal data is included inline in the document, the end tag open
delimiter ends the Litdata element, regardless of the context.

Lines (text with line boundaries)

334 ID Workbench: IBMIDDoc User’s Guide and Reference

Examples
<!ENTITY testprg SYSTEM "testprg.c" ndata c>...
<FIG>
<CAP>A basic C++ program.
<LITDATA OBJ="TESTPRG">
</FIG>

Attributes
NOTATION=notation_name

The name of the notation that the data is in. The notations supported are
defined by the specific implementation of IBMIDDoc you are using, but typical
notations include:

LINESPEC
Specifies that the line ends are respected. This is the default.

C
Cpp

C and C++ program source.

The processing application uses the notation name to determine what special
processing is needed to present the literal data. For example, in the case of C
program code, the square bracket and curly bracket characters may need
special treatment.

OBJ=entity_name
Specifies the name of an external data entity that contains the literal data.
When OBJ is specified, the Litdata end tag cannot be specified.

CDATA
Is the literal data.

Usage
See “Literal text data” on page 54.

Contexts
Children: text (cdata).

Parents: AnnotBody, Attention, BackCover, Bridge, Caution, CGraphic, Danger,
DBody, Defn, DIntro, DSum, entry, Fig, FigSeg, Fn, FrontCover, LEDI, LI, LQ,
MkNote, ModDesc, ModItem, MsgItem, NoteBody, P, PBlk, ProcIntro, Screen,
SynNote, Warning, Xmp.

LQ (excerpt quotation)

Purpose
Use the LQ element to contain material excerpted from another source that can
stand alone without a defining context. This is usually the case when the quotation
is of considerable length. The LQ may be of considerable length and can contain
almost any element, including divisions.

Examples
<lq>The only thing we have to fear is fear itself.
</lq>

Litdata (literal data)

Chapter 25. IBMIDDoc Elements 335

Attributes
BibId=bibentry_id

The ID of the BibEntry element that defines the source of the quotation. You
must either specify BIBID or include a BibEntry element within the LQ
element.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Quotes and excerpts” on page 47.

Contexts
Children: text (#pcdata), Address, Annot, APL, Attention, Bin, Bridge, Caution,
CGraphic, Char, Cit, Danger, Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines,
LitData, MD, MkNote, MMObj, ModInfo, MV, Note, NoteList, Num, Oct, OL, P,
ParmL, PBlk, Ph, PK, PV, Q, RefKey, Screen, SynPh, Syntax, Table, Term, TM, UL,
Xmp, XPh, XRef.

Parents: AnnotBody, Attention, Bridge, Caution, Danger, DBody, Defn, DIntro,
DSum, entry, Fig, FigSeg, Fn, LEDI, LI, ModDesc, ModItem, MsgItem, NoteBody, P,
PBlk, ProcIntro, SynNote, Warning.

Maintainer (reader comment)

Purpose
The content of the Maintainer element is used for tracking control information. It is
also used in generating a Reader Comment Form. If this information is not
included, the Reader Comment Form cannot be generated by the output processor.

Usage
See “Using reader’s comment form (RCF)” on page 103.

Examples
<maintainer>
<corp>
<corpname>IBM Corporation</corpname>
<address>ATTN: Dept 542
3605 HWY 52 N
Rochester, MN
<postalcode>55901-9986</postalcode></address>
</corp>
</maintainer>

Contexts
Children: Corp, Person.

Parents: DProlog, Prolog, SpecDProlog.

LQ (excerpt quotation)

336 ID Workbench: IBMIDDoc User’s Guide and Reference

Mark (marked note definition)

Purpose
Use Mark to define a collection of marked notes. To use marked notes, you must
define at least one collection in a document. All marked notes must be associated
with a collection.

You can define different collections of notes to correspond to different releases of a
document or to different types of notes. Different collections may use the same
classes and actions. For example, if you use marked notes to track changes and
generate a summary of changes, you can define different collections for different
releases or drafts of a document. Or if you are tracking changes from different
sources, you can define a collection for each different source.

Examples
<mark id="mkv5r4" ident="use">
<desc>V5R4 marked changes</desc>
</mark>

Attributes
ID=collection_id

Defines the mark collection ID.

IDENT=USE | IGNORE
Determines whether to process the specified collection of marked notes as
follows:

USE
Process the collection of marked notes.

IGNORE
Ignore the collection of marked notes.

Conloc
The CONLOC attribute specifies that the content of another element of the
same type is to be used as the content of the referencing element. This enables
reuse of information. When the CONLOC attribute is specified, you cannot
specify the element’s end tag. The result of using CONLOC is exactly the same
as if the element being referred to had occurred at that point in the document.
See “Reusing elements from an object library” on page 191.

Attributes on the element are now passed to the element with the CONLOC;
this is a feature that began with IDWB release 3.4, patch IDWXF036.

Class
The Class attribute associates an element class with an element. This attribute
must contain an SGML name that has been defined as a class name in a
ClassDef element. This attribute only applies to elements specified on the
ClassDef’s ELETYPE attribute. Element classes are defined with ClassDef
elements within PropDefs. See Chapter 20, “Property and Class Definitions” on
page 201 for more information.

Rev
The REV attribute references the Rev element which describes the last revision
level of the information. See “Using Revisions” on page 109.

Status
ignored by processes

Maintainer (reader comment)

Chapter 25. IBMIDDoc Elements 337

InfoMast
A fixed attribute used to classify the element.

Usage
See “Creating Collections of Marked Notes” on page 111.

Contexts
Children: Desc.

Parents: RevDefs.

MarkList (marked note list)

Purpose
Use MarkList to include a list of marked notes. Only notes that are members of the
specified collections and that have the specified class and action values are
included in the list.

Examples
<marklist mkids="mkv5r4" classes="msg abend" actions="change del rep"
display="item action location desc" classhd="Msg"
actionhd="Reason" lochd="Loc" deschd="Desc">

Attributes
ID=marklist_id

Specifies the ID of this element.

DISPLAY=NAMES

CLASSES=class_name
Defines the mark class or classes to include in this list. Only notes with a
specified class will be included.

ACTIONS=action_name
Defines the action or actions to include in this list. Only notes with a specified
action will be included.

SPEC=AUTO | MAN
Specifies that the content of the element is generated.

Future Enhancement
At this time, MAN is not supported.

MKIDS=mark_id
Defines which collections to search for notes to present.

DISPLAY=CLASS | ACTION | LOC | ITEM | DESC
Specifies the type of information to display in the generated list. You can
choose one or more items from the group, but you can choose each item only
once. The items in the list are displayed in the order they are specified on the
Display attribute.

Mark (marked note definition)

338 ID Workbench: IBMIDDoc User’s Guide and Reference

CLASS
Specifies that the CLASS attribute values for the marked notes are to be
included.

ACTION
Specifies that the ACTION attribute values for the marked notes are to be
displayed.

ITEM
Specifies that the ITEM attribute values for the marked notes are to be
displayed.

LOC
Specifies that the locations of the marked notes, either page numbers or
online equivalents, are to be displayed.

DESC
Specifies that the contents of the marked notes are to be displayed.

CLASSHd=column_heading
ACTIONHd=column_heading
ITEMHd=column_heading
LOCHd=column_heading
DESCHd=column_heading

Defines the heading text associated with each type of information in the
generated list. These values override the default headings defined in the
document style.

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Creating Collections of Marked Notes” on page 111.

Contexts
Children: empty.

Parents: DBody, DIntro, DSum, LEDI, MsgItem, PBlk, ProcIntro.

MasterIndex (master index)

Purpose
The Master Index is a way to combine the indexes of several documents. Rather
than having to look in the index of several documents, the user can look in the
master index for the correct document and page number where the index entry is
located.

MarkList (marked note list)

Chapter 25. IBMIDDoc Elements 339

Examples
<backm>
<masterindex>
<specdprolog><gendtitle></specdprolog>
<masterindexobj obj="gsugidx">
<masterindexobj obj="planidx">
<masterindexobj obj="instidx">
</masterindex></backm>

Attributes
LAYOUT=Default-Layout | OneCol | TwoCol | ThreeCol

Specifies the column-style for this portion of the book.

Default-Layout
The section uses the default layout for the document style.

OneCol
The entries format across the entire page.

TwoCol
The entries format in two columns.

ThreeCol
The entries format in three columns.

See “Common Element Attributes (large set)” on page 227.

Contexts
Children: DIntro, DSum, MasterIndexObj, SpecDProlog.

Parents: BackM.

MasterIndexInfo (master index information)

Purpose
MasterIndexInfo is used in conjunction with MasterIndexPrefix. Use these tags
when preparing to merge the indexes of several documents into a master index.
These tags should be used in the content of each document containing an index
you wish to have merged into a master index.

Examples
<ibmbibentry><doctitle>
<library><titleblk>
<title>ID Workbench</title>
</titleblk></library>
<titleblk>
<title>Getting Started and User’s Guide</title>
</titleblk></doctitle>
<externalfilename>idfgsmst</externalfilename>
</ibmbibentry>
<masterindexinfo>
<masterindexprefix>GSUG</masterindexprefix>
</masterindexinfo>

Attributes
See “Common Element Attributes (large set)” on page 227.

MasterIndex (master index)

340 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|

|
|

|
|

|
|

Contexts
Children: MasterIndexPrefix.

Parents: DProlog, Prolog, SpecDProlog.

MasterIndexObj (master index object)

Purpose
MasterIndexObj is used with the MasterIndex tag. The MasterIndexObj tag
provides a reference to the index of a document to be included in the Master
Index. This is a separate document in itself. It is separate from the documents with
indexes you are merging.

Examples
<!ENTITY guide SYSTEM "rweguide.mdx" ndata mindex>
<!ENTITY ref SYSTEM "rweref.mdx" ndata mindex>
...
<masterindex>
<specdprolog><gendtitle></specdprolog>
<masterindexobj obj="guide">
<masterindexobj obj="ref">
</masterindex>

Attributes
OBJ

Specifies the name of the master index entity.

Class
The Class attribute associates an element class with an element. This attribute
must contain an SGML name that has been defined as a class name in a
ClassDef element. This attribute only applies to elements specified on the
ClassDef’s ELETYPE attribute. Element classes are defined with ClassDef
elements within PropDefs. See Chapter 20, “Property and Class Definitions” on
page 201 for more information.

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be
unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See “Property-Based
Retrieval” on page 195.

PropSrc
Points to an element whose properties are to be used as the properties of the
referencing element. See Chapter 20, “Property and Class Definitions” on
page 201.

Status
ignored by processes

Style
The Style attribute contains either a reference to a separate style specification

MasterIndexInfo (master index information)

Chapter 25. IBMIDDoc Elements 341

for an element or a set of element-specific presentation style definitions when
the processing system does not support separate styles for elements. Assigning
a value to the STYLE attribute modifies how an element is presented when it is
output.

Usage
See “Creating a master index” on page 125.

Contexts
Children: empty.

Parents: MasterIndex.

MasterIndexPrefix (master index prefix)

Purpose
MasterIndexPrefix is used in conjunction with MasterIndexInfo. Use these tags
when preparing to merge the indexes of several documents into a master index.
These tags should be used in the content of each document containing an index
you wish to have merged into a master index.

Examples
<masterindexinfo>
<masterindexprefix>GSUG</masterindexprefix>
</masterindexinfo>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Creating a master index” on page 125.

Contexts
Children: text (#pcdata).

Parents: MasterIndexInfo.

MD (marked deletion)

Purpose
The MD element identifies data that no longer applies. The REV attribute
associates the MD element with a specific revision.

MD can contain any other phrase-like elements. The MD element cannot be used
to mark data that contains paragraphs or division elements. In these cases, the
revision and status attributes provided for those elements must be used to indicate
the revision level and deletion status of the data.

MasterIndexObj (master index object)

342 ID Workbench: IBMIDDoc User’s Guide and Reference

Examples
The following data no longer applies:
<MD>This data no longer applies.</MD>,
as you can clearly see.

Attributes
Rev

The REV attribute references the Rev element which describes the last revision
level of the information. See “Using Revisions” on page 109.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Marking text for deletion” on page 111.

Contexts
Children: text (#pcdata), Address, APL, Bin, Char, Cit, Date, Dec, Formula, Hex, L,
MV, Num, Oct, Ph, PK, PV, Q, RefKey, SynPh, Term, TM, XPh, XRef.

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, L, LI, Lines, LQ, MkNote, ModDesc, ModItem, NoteBody, P, Ph, Q,
SynNote, Warning.

MetaData (information architecture)

Purpose
The MetaData tag identifies or classifies your information. It is passed through to
the XHTML output as metadata keywords. This helps search programs and other
programs find, filter, or select information.

Examples
<d id="feederinst">
<dprolog><titleblk>
<title>Installing your Fruit-Bat Feeder</title>
</titleblk>
<metadata type="task" job="installing"
audience="user" experiencelevel="general">
</dprolog>
...

Attributes
type

Indicates the information type. You can pick from: advisor, concept, definition,
example, reference, task, or wizard. For information on information types, refer
to UA Central: http://ua.raleigh.ibm.com/ua

job
Indicates the type of job being performed with the information. You can pick
from: administering, configuring, customizing, evaluating, installing, planning,
programming, troubleshooting, or using.

audience
Indicates the intended audience. You can pick from: administrator, executive,
programmer, or user.

MD (marked deletion)

Chapter 25. IBMIDDoc Elements 343

|

|
|

|

|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|

http://ua.raleigh.ibm.com/ua

experiencelevel
Indicates how experienced the reader is. You can pick from: expert, general, or
novice.

vrmoriginated
Indicates the version, release, and modification level that the information was
originated in.

vrmlastchanged
Indicates the version, release, and modification level that the information was
last updated.

classification
Indicates the classification of the information. You can pick classified or
unclassified.

Usage
See “Creating an information architecture” on page 27.

Contexts
Children: empty.

Parents: Dprolog, SpecDprolog.

MkAction (marked note action definition)

Purpose
Use MkAction to define actions that can be associated with marked notes. You can
define as many actions as you need. Any mark action can be used with any mark
class. These actions are used within a MKNote element to describe the action that
is associated with that note. The MarkList element uses the MKAction to determine
which marked notes are to be presented.

See “Creating Collections of Marked Notes” on page 111.

Examples
<propdefs>
<mkdesc>
<mkclass name="msg">Msg</mkclass>
<mkclass name="abend">Abend</mkclass>
<mkaction name="new">New</mkaction>
<mkaction name="changed">Changed</mkaction>
<mkaction name="deleted">Deleted</mkaction>
<mkaction name="replaced">Replaced</mkaction>
</mkdesc>
</propdefs>

Attributes
NAME=action_name

Specifies the short name of the action, which is the value specified in the
Action attribute of MkNote and the Actions attribute of MarkList.

Conloc
The CONLOC attribute specifies that the content of another element of the
same type is to be used as the content of the referencing element. This enables
reuse of information. When the CONLOC attribute is specified, you cannot

MetaData (information architecture)

344 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|

|
|
|

|
|
|

|
|
|

|

|

|

|

|

specify the element’s end tag. The result of using CONLOC is exactly the same
as if the element being referred to had occurred at that point in the document.
See “Reusing elements from an object library” on page 191.

Attributes on the element are now passed to the element with the CONLOC;
this is a feature that began with IDWB release 3.4, patch IDWXF036.

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be
unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

Rev
The REV attribute references the Rev element which describes the last revision
level of the information. See “Using Revisions” on page 109.

Status
ignored by processes

Style
The Style attribute contains either a reference to a separate style specification
for an element or a set of element-specific presentation style definitions when
the processing system does not support separate styles for elements. Assigning
a value to the STYLE attribute modifies how an element is presented when it is
output.

HyTime
ignored by processes

InfoMast
A fixed attribute used to classify the element.

Reftype
ignored by processes

Usage
See “Creating Collections of Marked Notes” on page 111.

Contexts
Children: text (#pcdata).

Parents: MkDesc.

MkClass (marked note class definition)

Purpose
The MkClass element defines a marked note class. These class codes are used in a
MarkNote element to specify the class of the note.

Examples
<propdefs>
<mkdesc>
<mkclass name="msg">Msg</mkclass>
<mkclass name="abend">Abend</mkclass>
<mkaction name="new">New</mkaction>
<mkaction name="changed">Changed</mkaction>

MkAction (marked note action definition)

Chapter 25. IBMIDDoc Elements 345

<mkaction name="deleted">Deleted</mkaction>
<mkaction name="replaced">Replaced</mkaction>
</mkdesc>
</propdefs>

Attributes
NAME=class_name

Specifies the short name of the class, which is the value specified in the Class
attribute of MkNote and the Classes attribute of MarkList.

Conloc
The CONLOC attribute specifies that the content of another element of the
same type is to be used as the content of the referencing element. This enables
reuse of information. When the CONLOC attribute is specified, you cannot
specify the element’s end tag. The result of using CONLOC is exactly the same
as if the element being referred to had occurred at that point in the document.
See “Reusing elements from an object library” on page 191.

Attributes on the element are now passed to the element with the CONLOC;
this is a feature that began with IDWB release 3.4, patch IDWXF036.

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be
unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

Rev
The REV attribute references the Rev element which describes the last revision
level of the information. See “Using Revisions” on page 109.

Status
ignored by processes

Style
The Style attribute contains either a reference to a separate style specification
for an element or a set of element-specific presentation style definitions when
the processing system does not support separate styles for elements. Assigning
a value to the STYLE attribute modifies how an element is presented when it is
output.

HyTime
ignored by processes

InfoMast
A fixed attribute used to classify the element.

Reftype
ignored by processes

Usage
See “Creating Collections of Marked Notes” on page 111.

Contexts
Children: text (#pcdata).

Parents: MkDesc.

MkClass (marked note class definition)

346 ID Workbench: IBMIDDoc User’s Guide and Reference

MkDesc (mark description)

Purpose
The MkDesc element describes the classes and actions that can be used with
marked notes.

Use MkDesc to define the classes and actions that are valid for marked notes. Any
mark action can be used with any mark class.

Examples
<propdefs>
<mkdesc>
<mkclass name="msg">Msg</mkclass>
<mkclass name="abend">Abend</mkclass>
<mkaction name="new">New</mkaction>
<mkaction name="changed">Changed</mkaction>
<mkaction name="deleted">Deleted</mkaction>
<mkaction name="replaced">Replaced</mkaction>
</mkdesc>
</propdefs>

Attributes
Conloc

The CONLOC attribute specifies that the content of another element of the
same type is to be used as the content of the referencing element. This enables
reuse of information. When the CONLOC attribute is specified, you cannot
specify the element’s end tag. The result of using CONLOC is exactly the same
as if the element being referred to had occurred at that point in the document.
See “Reusing elements from an object library” on page 191.

Attributes on the element are now passed to the element with the CONLOC;
this is a feature that began with IDWB release 3.4, patch IDWXF036.

ID=identifier
The ID attribute identifies an element within an SGML document. IDs must be
unique within a single document. Any element that has an ID can be
cross-referenced or linked to. IDs can be up to 64 characters long. IDs must
start with an alphabetic character and can contain letters, numbers, dashes (-),
or periods (.).

Rev
The REV attribute references the Rev element which describes the last revision
level of the information. See “Using Revisions” on page 109.

Status
ignored by processes

Style
The Style attribute contains either a reference to a separate style specification
for an element or a set of element-specific presentation style definitions when
the processing system does not support separate styles for elements. Assigning
a value to the STYLE attribute modifies how an element is presented when it is
output.

HyTime
ignored by processes

MkClass (marked note class definition)

Chapter 25. IBMIDDoc Elements 347

InfoMast
A fixed attribute used to classify the element.

Reftype
ignored by processes

Usage
See “Creating Collections of Marked Notes” on page 111.

Contexts
Children: MkAction, MkClass.

Parents: PropDefs, PropGroup.

MkNote (marked note)

Purpose
The MkNote element contains a marked note, which is a specialized annotation
element that can be associated with problem and change tracking information such
as change requests or problem numbers. Use marked notes to collect information
about the content of your document such as notes about changes, notes to yourself
as an author, or references to specific locations as navigation aides to readers.
Marked notes are presented in marked note lists as defined by the MarkList
element.

For example, you can automatically create a summary of changes by using marked
notes to record changes within your document and using a MarkList element to
generate a list of those notes.

Examples
<ibmiddoc docstyle="ibmxagd">
<prolog><ibmbibentry><doctitle><titleblk>
<title>My Marked Changes Document for Messages</title>
</titleblk></doctitle></ibmbibentry>
<propdefs>
<mkdesc>
<!--Define two classes for marked lists - notes and abends-->
<mkclass name="msg">Msg</mkclass>
<mkclass name="abend">Abend</mkclass>
<!--Define the actions for the changed info-->
<mkaction name="new">New</mkaction>
<mkaction name="change">Changed</mkaction>
<mkaction name="del">Deleted</mkaction>
<mkaction name="rep">Replaced</mkaction>
</mkdesc>
</propdefs>
<revdefs>
<rev id="revv4r5" ident="use">
<date></date>
<desc></desc>
</rev>
<mark id="mkv4r5" ident="use">
<desc>v4r5 marked message changes</desc>
</mark>
</revdefs>
</prolog>
<body>
<d>

MkDesc (mark description)

348 ID Workbench: IBMIDDoc User’s Guide and Reference

<dprolog><titleblk>
<title>List of changed items</title>
</titleblk></dprolog>
<dbody>
<marklist mkids="mkv4r5" classes="msg abend" actions="change del rep"
display="item action page desc" classhd="Msg" actionhd="Reason"
itemhd="Msg" lochd="Page" deschd="Message text"></dbody>
</d>
<msglist>
<msg rev="revv4r5">
<msgnum>IDW0012</msgnum>
<msgtext>Hi there!</msgtext>
<msgitem class="xpl">
<p>This is a friendly message.<mknote class="msg"
action="change" mkids="mkv4r5" item="IDW0012">Hi there!
</mknote></p>
</msgitem>
</msg>
<msg rev="revv4r5">
<msgnum>IDW0013</msgnum>
<msgtext>Farewell!</msgtext>
<msgitem class="xpl">
<p>This unlucky message was removed.<mknote class="msg"
action="del" mkids="mkv4r5" item="IDW0013">Farewell!
</mknote></p>
</msgitem>
</msg>
</msglist></body>
</ibmiddoc>

Attributes
CLASS=class_name

Defines one or more mark classes to which this marked note belongs.

ACTION=action_name
Defines one or more actions associated with this marked note.

MKIDS=mark_id
Contains the IDs of one or more Mark elements, which define collections of
marked notes.

ITEM=item_value
Defines an identifying label for the note, such as a message number, function
name, or error report. The Item attribute enables you to distinguish among
marks of the same class and action. You can also use the Item attribute to
closely associate a note with things in your document that have unique
identifiers such as message numbers.

DISPLAY=items-to-display
Specifies the items to display and the order to display them in. Values are:
item, action, loc or page, and desc.

CLASSHD=class-heading
Specifies the heading for the Class column.

ACTIONHD=action-heading
Specifies the heading for the Action column.

ITEMHD=item-heading
Specifies the heading for the Item column.

LOCHD=location-heading
Specifies the heading for the Location column.

MkNote (marked note)

Chapter 25. IBMIDDoc Elements 349

DESCHD=description-heading
Specifies the heading for the Description column.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Creating Collections of Marked Notes” on page 111.

Contexts
Children: text (#pcdata), Address, Annot, APL, Bin, Bridge, CGraphic, Char, Cit,
Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines, LitData, MD, MMObj, MV, Note,
NoteList, Num, Oct, OL, P, ParmL, PBlk, Ph, PK, PV, Q, RefKey, Screen, SynPh,
Syntax, Term, TM, UL, Xmp, XPh, XRef.

Parents: AnnotBody, Attention, Bridge, Caution, Danger, DBody, Defn, DIntro,
DSum, entry, Fig, FigSeg, LEDI, LI, LQ, ModDesc, ModItem, MsgItem, NoteBody,
P, PBlk, ProcIntro, Warning.

MMObj (multi-media object; artwork)

Purpose
The MMObj element refers to a non-text object such as an image, vector graphic, or
video clip. The types of objects supported depends on your processing and
presentation systems. For print, non-text objects are usually image or vector
graphics such as EPS graphics. For online information, they would be BMPs, GIFs,
or JPEGs. MMObj also contains a text description of the object, intended to provide
an alternative to the object itself.

Depending on the style definition, the object can be integrated with the text. It is
normally presented inline with the text. The online presentation of non-text objects
depends on the presentation system being used. When you need to refer to a
single non-text object, you can use the OBJ attribute of the MMObj element to
specify the entity that represents the object.

Migration Note
MMObj replaces the ARTWORK and ARTALT tags. Use MMObj as you
would ARTALT. The presentation attributes on the ARTWORK tag are now
notation attributes specified on the entity declaration used to declare the
artwork file.

Examples
Here’s the declaration and the markup for an illustration of a bike:
<!ENTITY bike system "bike.gif" ndata graphics>

...
<MMOBJ>
<OBJREF OBJ="bike">
<TEXTALT>This is a two-wheeled bicycle.</TEXTALT>
</MMOBJ>

MkNote (marked note)

350 ID Workbench: IBMIDDoc User’s Guide and Reference

3

1

2

Attributes
LABEL=position

Defines a text label to use for a graphic object when the object cannot be
presented, or to use as a link button.

Placement=position
Controls where the grapic appears on the page. Valid values include:
standalone, inline, and margin.

Standalone
Places artwork on a sparate line. This is the default value.

Inline
Places artwork in the current text stream without a preceding or following
line break. This replaces the previously used style override bkm:(runin)

Margin
Places artwork in the offset margin. In some Xyvision-formatted styles, the
placement does not work as expected.

Halign=alignment
Controls the horizontal alignment of the graphic witin the textline when
standalone is specified. Valid values include: left, center, right, and current.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Including artwork in documents” on page 55.

Contexts
Children: MMObjLink, ObjRef, TextAlt.

MMObj (multi-media object; artwork)

Chapter 25. IBMIDDoc Elements 351

|
|

Parents: AnnotBody, Attention, BackCover, Bridge, Caution, Cond, Copyr,
CoverDef, Danger, DBody, Defn, Desc, DIntro, DSum, EdNotices, entry, Fig, FigSeg,
Fn, FrontCover, LEDesc, LEDI, LI, LQ, MkNote, ModDesc, ModItem, MsgItem,
NItem, NoteBody, Notices, P, PartAsm, PartAsmSeg, PBlk, ProcEntry, ProcExit,
ProcIntro, Safety, Screen, Sem, SynNote, Term, Warning.

MMObjLink (multi-media object link)

Purpose
The MMObjLink element allows you to create a graphic hot spot under an image.

Examples
<mmobj><objref obj="part1">
<mmobjlink linkend="newdiv">
<areadef coords="1 100">
</areadef></mmobjlink>
<textalt></textalt>
</mmobj>

Attributes
LINKEND=text_target

Specifies the ID of the textual target of the link.

AREADEFS=ref-ID
Specifies the ID of the AreaDef element containing the graphic area
specification of the graphic hot spot. If AREADEFS is specified, MMObjLink
must be an empty element. To specify the area definition, see “AreaDef
(defines graphic hot spot area)” on page 236.

If you do not specify an area definition using an ID, use an inline AreaDefs
element to define the hotspot.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Creating graphic links” on page 56.

Contexts
Children: AreaDef.

Parents: MMObj.

Mod (information module)

Purpose
The Mod element contains a module of information within a collection of modules.
The modules usually have the same structure.

Use modular information to create reference information. You can define as many
different modular information classes as you want for information that is similarly
structured.

MMObj (multi-media object; artwork)

352 ID Workbench: IBMIDDoc User’s Guide and Reference

Examples
<modinfo class="cust" style="table">
<mod class="CUST">
<modname class="NAME">Fred Smith</modname>
<moditem class="CUSTID"><p><num base="10">1000</num></p></moditem>
<moditem class="INC"><num base="10">40000</num></moditem>
<moditem class="LPD"><p><date>12/25/93</date></p></moditem>
<moditem class="NOTES"><p>Big spender</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Suzanne Stanley</modname>
<moditem class="CUSTID"><p><num base="10">1001</num></p></moditem>
<moditem class="INC"><p><num base="10">50000</num></p></moditem>
<moditem class="LPD"><p><date>11/22/92</date></p></moditem>
<moditem class="NOTES"><p>Likes game software</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Jeff George</modname>
<moditem class="CUSTID"><p><num base="10">1002</num></p></moditem>
<moditem class="INC"><p><num base="10">60000</num></p></moditem>
<moditem class="LPD"><p><date>12/02/93</date></p></moditem>
<moditem class="NOTES"><p>Likes DVD movies</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Mike Gidento</modname>
<moditem class="CUSTID"><p><num base="10">1003</num></p></moditem>
<moditem class="INC"><p><num base="10">35000</num></p></moditem>
<moditem class="LPD"><p><date>12/12/92</date></p></moditem>
<moditem class="NOTES"><p>Likes 8-track tapes</p></moditem>
</mod>
</modinfo>

Attributes
CLASS=classname

Defines the class of this information module. Classes are defined with a
ModInfoDef element within the document or division prolog.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 17, “Defining Modular Information” on page 175.

Contexts
Children: ModDesc, ModItem, ModName, RetKey.

Parents: ModInfo.

ModDesc (modular content description)

Purpose
The ModDesc element contains a description of the content of the Mod element of
which it is a part.

Examples
<modinfo class="cust" style="table">
<mod class="CUST">
<modname class="NAME">Fred Smith</modname>

Mod (information module)

Chapter 25. IBMIDDoc Elements 353

<moddesc>Fred is a cool guy</moddesc>
<moditem class="CUSTID"><p><num base="10">1000</num></p></moditem>
<moditem class="INC"><num base="10">40000</num></moditem>
<moditem class="LPD"><p><date>12/25/93</date></p></moditem>
<moditem class="NOTES"><p>Big spender</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Suzanne Stanley</modname>
<moditem class="CUSTID"><p><num base="10">1001</num></p></moditem>
<moditem class="INC"><p><num base="10">50000</num></p></moditem>
<moditem class="LPD"><p><date>11/22/92</date></p></moditem>
<moditem class="NOTES"><p>Likes game software</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Jeff George</modname>
<moditem class="CUSTID"><p><num base="10">1002</num></p></moditem>
<moditem class="INC"><p><num base="10">60000</num></p></moditem>
<moditem class="LPD"><p><date>12/02/93</date></p></moditem>
<moditem class="NOTES"><p>Likes DVD movies</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Mike Gidento</modname>
<moditem class="CUSTID"><p><num base="10">1003</num></p></moditem>
<moditem class="INC"><p><num base="10">35000</num></p></moditem>
<moditem class="LPD"><p><date>12/12/92</date></p></moditem>
<moditem class="NOTES"><p>Likes 8-track tapes</p></moditem>
</mod>
</modinfo>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 17, “Defining Modular Information” on page 175.

Contexts
Children: text (#pcdata), Address, Annot, APL, Attention, Bin, Bridge, Caution,
CGraphic, Char, Cit, Danger, Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines,
LitData, LQ, MD, MkNote, MMObj, MV, Note, NoteList, Num, Oct, OL, P, ParmL,
PBlk, Ph, PK, PV, Q, RefKey, Screen, SynPh, Syntax, Term, TM, UL, Xmp, XPh,
XRef.

Parents: Mod.

ModInfo (modular information)

Purpose
The ModInfo element contains a set of information modules for a single class of
modular information.

Use a ModInfo element to contain a set of information modules that describe a
type of information that is specific to your document. For example, in a document
describing a complex program, you can define a class of information module for
describing data structures.

Note: If your information describes the elements of a computer language, use the
LERS element for your information.

ModDesc (modular content description)

354 ID Workbench: IBMIDDoc User’s Guide and Reference

Information modules can also be organized within object libraries and used by
reference from within a modular information section using the CONLOC attribute.

The default presentation style for modular information is as divisions, but other
presentation styles are defined. For example, you can present each module as a
row in a table for quick reference.

MODINFO with any style except STYLE=TABLE becomes a series of nested
divisions. When STYLE=TABLE is used, it is mapped to a table. The title of
MODINFO becomes CAP; DESC becomes DESC; MODINFOTITLE becomes
ENTRY; MOD becomes ROW; MODNAME becomes ENTRY, and the TITLE in
MODITEM is suppressed.

To use information modules, you must define an information module class using
the ModInfoDef element. To better facilitate reuse, you should consider containing
the ModInfoDef element within your modular information unit. You can specify
the modular information class on the ModInfo element, which applies to all
contained Mod elements, or you can specify a class on each Mod element.

For example, suppose you define several related classes of information module that
you want to group into a single ModInfo group for presentation. In that case, you
need to specify the class for each module rather than a global class for the
ModInfo element.

Examples
<modinfo class="cust" style="table">
<mod class="CUST">
<modname class="NAME">Fred Smith</modname>
<moditem class="CUSTID"><p><num base="10">1000</num></p></moditem>
<moditem class="INC"><num base="10">40000</num></moditem>
<moditem class="LPD"><p><date>12/25/93</date></p></moditem>
<moditem class="NOTES"><p>Big spender</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Suzanne Stanley</modname>
<moditem class="CUSTID"><p><num base="10">1001</num></p></moditem>
<moditem class="INC"><p><num base="10">50000</num></p></moditem>
<moditem class="LPD"><p><date>11/22/92</date></p></moditem>
<moditem class="NOTES"><p>Likes game software</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Jeff George</modname>
<moditem class="CUSTID"><p><num base="10">1002</num></p></moditem>
<moditem class="INC"><p><num base="10">60000</num></p></moditem>
<moditem class="LPD"><p><date>12/02/93</date></p></moditem>
<moditem class="NOTES"><p>Likes DVD movies</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Mike Gidento</modname>
<moditem class="CUSTID"><p><num base="10">1003</num></p></moditem>
<moditem class="INC"><p><num base="10">35000</num></p></moditem>
<moditem class="LPD"><p><date>12/12/92</date></p></moditem>
<moditem class="NOTES"><p>Likes 8-track tapes</p></moditem>
</mod>
</modinfo>

ModInfo (modular information)

Chapter 25. IBMIDDoc Elements 355

Attributes
style=table

Causes the modular information to be presented in a table format. The default
is as nested headings.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 17, “Defining Modular Information” on page 175.

Contexts
Children: Desc, Mod, ModInfoDef, RetKey, Title.

Parents: AnnotBody, Appendix, Attention, Body, Bridge, Caution, Danger, DBody,
Defn, DIntro, DSum, Fn, LEDI, LI, LQ, MsgItem, NoteBody, P, PBlk, ProcIntro,
SynNote, Warning.

ModInfoDef (modular information property definition)

Purpose
The ModInfoDef element defines a set of modular information properties.

Use ModInfoDef to define a class of modular information specific to your
information. You can apply specific presentation styles to a given class of modular
information using the STYLE attribute.

All classes referenced by a ModInfo element must be defined. These classes are
usually defined in a central location that is accessed by many documents. This
centralization allows control over the class definitions for modular information
used at a publishing site.

The scope of a definition is determined by the location of the definition.

Examples
<propdefs>
<modinfodef classname="CUST"><desc>Customer information
</desc>
<moditemdef classname="NAME"><title>Name</title><desc>
This is the first and last name of the customer</desc>
</moditemdef>
<moditemdef classname="CUSTID"><title>ID</title><desc>
This is their customer id number</desc></moditemdef>
<moditemdef classname="INC"><title>Income</title>
<desc>This is their annual estimated income</desc>
</moditemdef>
<moditemdef classname="LPD"><title>Last purchase date
</title><desc>This is their last purchase date</desc>
</moditemdef>
<moditemdef classname="NOTES"><title>Notes</title>
<desc>Personal notes</desc></moditemdef>
</modinfodef>
</propdefs>

ModInfo (modular information)

356 ID Workbench: IBMIDDoc User’s Guide and Reference

Attributes
CLASSNAME=classname

Specifies the class of modular information that is being defined.

Usage
See Chapter 17, “Defining Modular Information” on page 175.

Contexts
Children: Desc, ModItemDef.

Parents: ModInfo, PropDefs, PropGroup.

ModItemDef (item class definitions)

Purpose
The ModItemDef element defines the classes of module description items valid for
a class of modular information.

Examples
<propdefs>
<modinfodef classname="CUST"><desc>Customer information
</desc>
<moditemdef classname="NAME"><title>Name</title><desc>
This is the first and last name of the customer</desc>
</moditemdef>
<moditemdef classname="CUSTID"><title>ID</title><desc>
This is their customer id number</desc></moditemdef>
<moditemdef classname="INC"><title>Income</title>
<desc>This is their annual estimated income</desc>
</moditemdef>
<moditemdef classname="LPD"><title>Last purchase date
</title><desc>This is their last purchase date</desc>
</moditemdef>
<moditemdef classname="NOTES"><title>Notes</title>
<desc>Personal notes</desc></moditemdef>
</modinfodef>
</propdefs>

Attributes
CLASSNAME=classname

Defines the class of module description item that is valid for a class of
modular information.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 17, “Defining Modular Information” on page 175.

Contexts
Children: Desc, Title.

Parents: ModInfoDef, PropDefs, PropGroup.

ModInfoDef (modular information property definition)

Chapter 25. IBMIDDoc Elements 357

ModItem (module description item)

Purpose
The ModItem element contains one item in a module of information.

The ModItem elements within a Mod element contain the different kinds of
information that are applicable for a given class of information module. The classes
for the ModItem elements are defined in the ModItemDef element.

The style used to present ModItems is determined by the style specification of the
Mod element which contains it.

Examples
<modinfo class="cust" style="table">
<mod class="CUST">
<modname class="NAME">Fred Smith</modname>
<moditem class="CUSTID"><p><num base="10">1000</num></p></moditem>
<moditem class="INC"><num base="10">40000</num></moditem>
<moditem class="LPD"><p><date>12/25/93</date></p></moditem>
<moditem class="NOTES"><p>Big spender</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Suzanne Stanley</modname>
<moditem class="CUSTID"><p><num base="10">1001</num></p></moditem>
<moditem class="INC"><p><num base="10">50000</num></p></moditem>
<moditem class="LPD"><p><date>11/22/92</date></p></moditem>
<moditem class="NOTES"><p>Likes game software</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Jeff George</modname>
<moditem class="CUSTID"><p><num base="10">1002</num></p></moditem>
<moditem class="INC"><p><num base="10">60000</num></p></moditem>
<moditem class="LPD"><p><date>12/02/93</date></p></moditem>
<moditem class="NOTES"><p>Likes DVD movies</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Mike Gidento</modname>
<moditem class="CUSTID"><p><num base="10">1003</num></p></moditem>
<moditem class="INC"><p><num base="10">35000</num></p></moditem>
<moditem class="LPD"><p><date>12/12/92</date></p></moditem>
<moditem class="NOTES"><p>Likes 8-track tapes</p></moditem>
</mod>
</modinfo>

Attributes
CLASS=classname

Indicates which class of information the ModItem contains. The class values for
a modular information item are defined on the ModIntemDef element.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 17, “Defining Modular Information” on page 175.

Contexts
Children: text (#pcdata), Address, Annot, APL, Attention, Bin, Bridge, Caution,
CGraphic, Char, Cit, Danger, Date, Dec, DL, Fig, Formula, GL, Hex, L, LERS, Lines,

ModItemDef (item class definitions)

358 ID Workbench: IBMIDDoc User’s Guide and Reference

LitData, LQ, MD, MkNote, MMObj, MsgList, MV, Note, NoteList, Num, Oct, OL, P,
ParmL, PartAsm, PBlk, Ph, PK, Proc, PV, Q, RefKey, Screen, SynPh, Syntax, Term,
TM, UL, Xmp, XPh, XRef.

Parents: Mod.

ModLvl (modification level)

Purpose
The ModLvl element contains a program’s modification level.

Examples
<IBMPRODINFO>
<PRODNAME>Test Prod</PRODNAME>
<VERSION>2</VERSION>
<RELEASE>3</RELEASE>
<MODLVL>1</MODLVL>
<IBMPROGNUM>223-3330</IBMPROGNUM>
</IBMPRODINFO>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Other prolog elements” on page 90.

Contexts
Children: text (#pcdata), Ph.

Parents: IBMProdInfo.

ModName (modular information element name)

Purpose
The ModName element contains the name of the information contained by the
Mod element of which it is a part.

Examples
<modinfo class="cust" style="table">
<mod class="CUST">
<modname class="NAME">Fred Smith</modname>
<moditem class="CUSTID"><p><num base="10">1000</num></p></moditem>
<moditem class="INC"><num base="10">40000</num></moditem>
<moditem class="LPD"><p><date>12/25/93</date></p></moditem>
<moditem class="NOTES"><p>Big spender</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Suzanne Stanley</modname>
<moditem class="CUSTID"><p><num base="10">1001</num></p></moditem>
<moditem class="INC"><p><num base="10">50000</num></p></moditem>
<moditem class="LPD"><p><date>11/22/92</date></p></moditem>
<moditem class="NOTES"><p>Likes game software</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Jeff George</modname>

ModItem (module description item)

Chapter 25. IBMIDDoc Elements 359

<moditem class="CUSTID"><p><num base="10">1002</num></p></moditem>
<moditem class="INC"><p><num base="10">60000</num></p></moditem>
<moditem class="LPD"><p><date>12/02/93</date></p></moditem>
<moditem class="NOTES"><p>Likes DVD movies</p></moditem>
</mod>
<mod class="CUST">
<modname class="NAME">Mike Gidento</modname>
<moditem class="CUSTID"><p><num base="10">1003</num></p></moditem>
<moditem class="INC"><p><num base="10">35000</num></p></moditem>
<moditem class="LPD"><p><date>12/12/92</date></p></moditem>
<moditem class="NOTES"><p>Likes 8-track tapes</p></moditem>
</mod>
</modinfo>

Attributes
LINESPACE=SPACE | COMPACT

Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

Layout=Default-Layout | TwoCol | Page
This specifies how the message list should be formatted.

Default-Layout
Uses the layout based on the style. Most of the styles will have the default
as two columns, but some of the smaller styles have a default of
page-wide.

TwoCol
Composes the message list in two columns.

Page
Composes the message list page-wide.

RETKEY=None | NoDup
Use the RetKey attribute to enable or disable automatic running headings for
this tag.

NONE
indicates that nothing is to be used

NODUP
indicates that the first and last non-blank items on the page are to be used.
The two items are joined together, separated by a bullet or other character,
and the combined string is used as the retrieval subject for the page. Use
of NODUP provides the most dictionary-like retrieval of items. If the first
and last items on the page are the same, only one of the items appears.

If you code any explicit RetKey elements, they are honored and will appear. If
you nest elements that can generate a running heading (for example, a MsgList
inside Lers), only the outer active generated heading is used. That is, if you
specified automated RetKey generation for LERS and MSGLIST, a Msgno
inside Lers will not be used in the RetKey area. But if you had an explicit
RetKey inside the Msg, then the RetKey is honored as an explicit override.

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See “Property-Based
Retrieval” on page 195.

ScalePct=scale-percent
You can use the ScalePct attribute to scale the text up or down in the element.

ModName (modular information element name)

360 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|
|
|

|
|

|
|

|

|
|

The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:
scalepct="80"

See “Common Element Attributes (large set)” on page 227.

Usage
For more information about the ModName element, see “Examples of Using
Modular Information” on page 176.

Contexts
Children: text (#pcdata), L, Ph, Term, TM.

Parents: Mod.

Msg (message or code description)

Purpose
The Msg element contains a message or code and its description.

Examples
<msglist>
<msg>
<msgnum>DJI7832E</msgnum>
<msgtext>This message is issued when no data set of
the name <mv>file-name</mv> is found.</msgtext>
<msgitem class="xpl">
<p>The processor could not locate the data set named <mv>
file-name</mv>.</p>
</msgitem>
<msgitem class="severity">
<p>8</p>
</msgitem>
<msgitem class="probd">
<p>You would appear to have a problem.</p>
</msgitem>
<msgitem class="uresp">
<p>Search high and low for the data set.</p>
</msgitem>
</msg>
<msg>
<msgtext>This message has no number</msgtext>
<msgitem class="xpl">
<p>This message has no message number; only text.
These are really insidious because it makes finding
the message very hard.</p>
</msgitem>
</msg>
</msglist>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Message and code lists” on page 38.

ModName (modular information element name)

Chapter 25. IBMIDDoc Elements 361

|
|
|

|

Contexts
Children: Code, MsgItem, MsgNum, MsgText, Title.

Parents: MsgList.

MsgItem (message description item)

Purpose
The MsgItem element contains part of the description of a message or code.

Examples
<msglist>
<msg>
<msgnum>DJI7832E</msgnum>
<msgtext>This message is issued when no data set of
the name <mv>file-name</mv> is found.</msgtext>
<msgitem class="xpl">
<p>The processor could not locate the data set named <mv>
file-name</mv>.</p>
</msgitem>
<msgitem class="severity">
<p>8</p>
</msgitem>
<msgitem class="probd">
<p>You would appear to have a problem.</p>
</msgitem>
<msgitem class="uresp">
<p>Search high and low for the data set.</p>
</msgitem>
</msg>
<msg>
<msgtext>This message has no number</msgtext>
<msgitem class="xpl">
<p>This message has no message number; only text.
These are really insidious because it makes finding
the message very hard.</p>
</msgitem>
</msg>
</msglist>

Attributes
CLASS=author-defined_class | DEST | XPL | EXPLANATION | MODULE |
NUMBYTES | ORESP | PRESP | PROBD | SEVERITY | SPRESP | SYSACT |
URESP

Indicates the class of the MsgItem as follows:

author-defined_class
Specifies an author-defined class, which must be defined using a
MsgItemDef element.

DEST
Specifies the message destination.

XPL or EXPLANATION
Specifies the message explanation.

MODULE
Specifies the issuing module.

Msg (message or code description)

362 ID Workbench: IBMIDDoc User’s Guide and Reference

NUMBYTES
Specifies the number of error bytes.

ORESP
Specifies the operator response.

PRESP
Specifies the programmer response.

PROBD
Specifies problem-determination information.

SEVERITY
Specifies the message severity.

SPRESP
Specifies the system-programmer response.

SYSACT
Specifies the system action.

URESP
Specifies the user response.

Usage
See “Message and code lists” on page 38.

Contexts
Children: Annot, AsmList, Attention, BibList, Bridge, Caution, CGraphic, D,
Danger, DBlk, DL, Fig, FnList, GL, L, LERS, Lines, LitData, LQ, MarkList, MkNote,
MMObj, ModInfo, MsgList, Note, NoteList, OL, P, ParmL, PartAsm, PBlk, Proc,
Screen, Syntax, Table, UL, Xmp.

Parents: Msg.

MsgItemDef (definition of message description items)

Purpose
The MsgItemDef element defines the classes of message description items that are
valid for a message list.

Examples
<msglist>
<msgitemdef classname="xpl"><title>Why</title></msgitemdef>
<msgitemdef classname="uresp"><title>What to do</title>
</msgitemdef>
<msg>
<msgnum>A12</msgnum>
<msgtext>Closet full: Insufficient storage to proceed.
</msgtext>
<msgitem class="xpl">
<p>There are too many clothes in the closet.</p>
</msgitem>
<msgitem class="uresp">
<p>Remove some clothes from the closet and restart.
</p>
</msgitem>
</msg>
</msglist>

MsgItem (message description item)

Chapter 25. IBMIDDoc Elements 363

Attributes
CLASSNAME=author-defined_class | DEST | EXPLANATION | MODULE |
NUMBYTES | ORESP | PRESP | PROBD | SEVERITY | SPRESP | SYSACT |
URESP

Specifies the MsgItem class to which the definition applies as follows:

author-defined_class
Specifies an author-defined class, which must be defined using a
MsgItemDef element.

DEST
Specifies the message destination.

EXPLANATION
Specifies the message explanation.

MODULE
Specifies the issuing module.

NUMBYTES
Specifies the number of error bytes.

ORESP
Specifies the operator response.

PRESP
Specifies the programmer response.

PROBD
Specifies problem-determination information.

SEVERITY
Specifies the message severity.

SPRESP
Specifies the system-programmer response.

SYSACT
Specifies the system action.

URESP
Specifies the user response.

Usage
See “Message and code lists” on page 38.

Contexts
Children: Desc, Title.

Parents: MsgList, PropDefs, PropGroup.

MsgLDef (Message list definition)

Purpose
The MsgLDef element sets attribute defaults for message lists. MsgLDef goes
within the document prolog to set definitions for the entire document; or within a
division prolog to set definitions for just that division. The MsgLDef tag goes
inside a PropDefs tag.

MsgItemDef (definition of message description items)

364 ID Workbench: IBMIDDoc User’s Guide and Reference

|

|
|

|

|
|
|
|

Examples
<propdefs>
<msgldef defname="msginline" layout="default-layout" retkey="none">
</propdefs>

Attributes
DEFNAME=definition-name

The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

Layout=Default-Layout | TwoCol | Page
This specifies how the message list should be formatted.

Default-Layout
Uses the layout based on the style. Most of the styles will have the default
as two columns, but some of the smaller styles have a default of
page-wide.

TwoCol
Composes the message list in two columns.

Page
Composes the message list page-wide.

RETKEY=None | NoDup
Use the RetKey attribute to enable or disable automatic running headings for
this tag.

NONE
indicates that nothing is to be used

NODUP
indicates that the first and last non-blank items on the page are to be used.
The two items are joined together, separated by a bullet or other character,
and the combined string is used as the retrieval subject for the page. Use
of NODUP provides the most dictionary-like retrieval of items. If the first
and last items on the page are the same, only one of the items appears.

If you code any explicit RetKey elements, they are honored and will appear. If
you nest elements that can generate a running heading (for example, a MsgList
inside Lers), only the outer active generated heading is used. That is, if you
specified automated RetKey generation for LERS and MSGLIST, a Msgno
inside Lers will not be used in the RetKey area. But if you had an explicit
RetKey inside the Msg, then the RetKey is honored as an explicit override.

MsgLDef (Message list definition)

Chapter 25. IBMIDDoc Elements 365

|

|
|
|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|

|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See “Property-Based
Retrieval” on page 195.

ScalePct=scale-percent
You can use the ScalePct attribute to scale the text up or down in the element.
The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:
scalepct="80"

Usage
See Chapter 9, “Using definition tags” on page 105.

Contexts
Children: empty.

Parents: PropDefs, PropGroup.

MsgList (list of message or code descriptions)

Purpose
Use MsgList to contain descriptions of messages and codes. A MsgList contains
one or more Msg elements, which contain the message or code and any
explanatory text associated with it.

Examples
<msglist>
<msg>
<msgnum>DJI7832E</msgnum>
<msgtext>This message is issued when no data set of
the name <mv>file-name</mv> is found.</msgtext>
<msgitem class="xpl">
<p>The processor could not locate the data set named <mv>
file-name</mv>.</p>
</msgitem>
<msgitem class="severity">
<p>8</p>
</msgitem>
<msgitem class="probd">
<p>You would appear to have a problem.</p>
</msgitem>
<msgitem class="uresp">
<p>Search high and low for the data set.</p>
</msgitem>
</msg>
<msg>
<msgtext>This message has no number</msgtext>
<msgitem class="xpl">
<p>This message has no message number; only text.
These are really insidious because it makes finding
the message very hard.</p>
</msgitem>
</msg>
</msglist>

MsgLDef (Message list definition)

366 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|

|
|
|
|
|

|

|

|

|

|

|

Attributes
DEF=definition-name

Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as
defaults for this tag. See Chapter 9, “Using definition tags” on page 105 for
more information.

Layout=Default-Layout | TwoCol | Page
This specifies how the message list should be formatted.

Default-Layout
Uses the layout based on the style. Most of the styles will have the default
as two columns, but some of the smaller styles have a default of
page-wide.

TwoCol
Composes the message list in two columns.

Page
Composes the message list page-wide.

RETKEY=None | NoDup
Use the RetKey attribute to enable or disable automatic running headings for
this tag.

NONE
indicates that nothing is to be used

NODUP
indicates that the first and last non-blank items on the page are to be used.
The two items are joined together, separated by a bullet or other character,
and the combined string is used as the retrieval subject for the page. Use
of NODUP provides the most dictionary-like retrieval of items. If the first
and last items on the page are the same, only one of the items appears.

If you code any explicit RetKey elements, they are honored and will appear. If
you nest elements that can generate a running heading (for example, a MsgList
inside Lers), only the outer active generated heading is used. That is, if you
specified automated RetKey generation for LERS and MSGLIST, a Msgno
inside Lers will not be used in the RetKey area. But if you had an explicit
RetKey inside the Msg, then the RetKey is honored as an explicit override.

ScalePct=scale-percent
You can use the ScalePct attribute to scale the text up or down in the element.
The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:
scalepct="80"

See “Common Element Attributes (large set)” on page 227.

Usage
See “Message and code lists” on page 38.

Contexts
Children: Msg, MsgItemDef, RetKey.

Parents: Appendix, Body, DBody, LEDI, ModItem, MsgItem.

MsgList (list of message or code descriptions)

Chapter 25. IBMIDDoc Elements 367

|
|
|
|
|

|
|

|
|
|
|

|
|

|
|

|

|
|
|
|
|

|

MsgNum (message identifier)

Purpose
The MsgNum element contains the number of a message.

Examples
<msglist>
<msg>
<msgnum>DJI7832E</msgnum>
<msgtext>This message is issued when no data set of
the name <mv>file-name</mv> is found.</msgtext>
<msgitem class="xpl">
<p>The processor could not locate the data set named <mv>
file-name</mv>.</p>
</msgitem>
<msgitem class="severity">
<p>8</p>
</msgitem>
<msgitem class="probd">
<p>You would appear to have a problem.</p>
</msgitem>
<msgitem class="uresp">
<p>Search high and low for the data set.</p>
</msgitem>
</msg>
<msg>
<msgtext>This message has no number</msgtext>
<msgitem class="xpl">
<p>This message has no message number; only text.
These are really insidious because it makes finding
the message very hard.</p>
</msgitem>
</msg>
</msglist>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Message and code lists” on page 38.

Contexts
Children: text (#pcdata), Ph.

Parents: Msg.

MsgText (message text)

Purpose
The MsgText element contains the text of a message.

Examples
<msglist>
<msg>
<msgnum>DJI7832E</msgnum>
<msgtext>This message is issued when no data set of

MsgList (list of message or code descriptions)

368 ID Workbench: IBMIDDoc User’s Guide and Reference

the name <mv>file-name</mv> is found.</msgtext>
<msgitem class="xpl">
<p>The processor could not locate the data set named <mv>
file-name</mv>.</p>
</msgitem>
<msgitem class="severity">
<p>8</p>
</msgitem>
<msgitem class="probd">
<p>You would appear to have a problem.</p>
</msgitem>
<msgitem class="uresp">
<p>Search high and low for the data set.</p>
</msgitem>
</msg>
<msg>
<msgtext>This message has no number</msgtext>
<msgitem class="xpl">
<p>This message has no message number; only text.
These are really insidious because it makes finding
the message very hard.</p>
</msgitem>
</msg>
</msglist>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Message and code lists” on page 38.

Contexts
Children: text (#pcdata), APL, Bin, Char, Dec, Hex, L, Lines, MV, Num, Oct, Ph,
PK, PV, SynPh, Term, TM.

Parents: Msg.

MV (message variable)

Purpose
The MV element identifies data that is a placeholder for variable data in a
message. It can be used either in the message text itself or in an explanation of the
message.

Examples
<msglist>
<msg>
<msgnum>DJI7832E</msgnum>
<msgtext>This message is issued when no data set of
the name <mv>file-name</mv> is found.</msgtext>
<msgitem class="xpl">
<p>The processor could not locate the data set named <mv>
file-name</mv>.</p>
</msgitem>
<msgitem class="severity">
<p>8</p>
</msgitem>
<msgitem class="probd">
<p>You would appear to have a problem.</p>

MsgText (message text)

Chapter 25. IBMIDDoc Elements 369

</msgitem>
<msgitem class="uresp">
<p>Search high and low for the data set.</p>
</msgitem>
</msg>
<msg>
<msgtext>This message has no number</msgtext>
<msgitem class="xpl">
<p>This message has no message number; only text.
These are really insidious because it makes finding
the message very hard.</p>
</msgitem>
</msg>
</msglist>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Message and code lists” on page 38.

Contexts
Children: text (#pcdata).

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, MsgText, NoteBody,
P, Ph, Q, SynNote, Term, Warning, Xmp, XPh.

Name (person’s name)

Purpose
The Name element must always contains a person’s name. It should not contain
the name of a company (use the Company element for those).

Examples
<authors>
<author><person>
<name>Fred Mertz</name>
<address>
127 East Main Street,
East Overshoe, SD <postalcode>59134</postalcode>
</address>
</person></author>
</authors>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Author and Address” on page 89.

Contexts
Children: text (#pcdata), Ph.

Parents: Person.

MV (message variable)

370 ID Workbench: IBMIDDoc User’s Guide and Reference

NameLoc (named location)

Purpose
The NameLoc element associates a local ID (defined within the same document)
with other locations. These other locations may be IDs within the same document,
other documents, or other entities. These are referenced using named list (NMList)
elements.

NameLoc is the standard HyTime mechanism for creating indirect links. NameLoc
creates indirect links and can be used with all links. The indirection provided by
NameLoc:
v Associates a single ID with several objects (either other SGML elements or

entities).
v Associates a local ID with objects in another document or subdocument.

NameLoc is required for linking to multiple locations.

Usually NameLoc contains a single NMList element that creates a simple
cross-document or multiple-object link. However, NameLoc can contain several
NMList elements. For example, you can create a link to several targets in different
documents by using a new NMList for the targets in each different document.

Examples
The first example shows a simple NameLoc that creates a cross-document link to a
heading with an ID of nameloc. Note that the entity named on the DOCNAME
attribute must be declared as a data entity in the document’s SGML prolog.

...
<!ENTITY iddocref SYSTEM iddugref.idd NDATA SGMLDoc >...
<LDESCS>
<NAMELOC ID="nmlocref">
<NMLIST DOCNAME="iddocref">nameloc</NMLIST>
</NAMELOC>
</LDESCS>...
<P>The <L LINKEND="nmlocref">NameLoc</L> element is
the workhorse of the HyTime architecture.

In this example, the NameLoc element contains a single NMList element. The
NMList element associates the target ID (in this case the ID of the heading
reference entry for the NameLoc tag) with the document it is in (the document
represented by the entity named iddocref). The L element itself points to the
NameLoc element, which then serves to locate the actual target, the element with
the ID nameloc in the document iddocref.

Attributes
ID=nameloc_ID

Specifies the local ID of the NameLoc element, for the location referenced by
the NameLoc element.

OBJTYPE=target_type
Specifies the type of object being referenced.

This attribute must contain one of the following type names.

Name (person’s name)

Chapter 25. IBMIDDoc Elements 371

HEAD
A heading, division, or equivalent (such as a preface or a language element
name). If the OBJTYPE attribute is omitted, HEAD is assumed.

FIG | TABLE | QUES | ANS
A figure, table, question, or answer.

STEP | CI | LI | SPOT
A step, component item, list item, or spot.

PROGRAM | ANIMATION | VIDEO | AUDIO | GRAPHIC | IMAGE
Information that is not in a document. Access to these types of information
depend on the capabilities of the user’s installation.

NMList
Specifies an NMList element that contains the IDs or entity names of the
location being referred to by the NameLoc element.

Usage
See Chapter 12, “All about linking” on page 129.

Contexts
Children: nmlist.

Parents: LDescs.

NItem (notice item)

Purpose
The NItem element contains one or more elements that contain special notice
information.

Examples
...
<FRONTM>
<NOTICES>
<NITEM><PBLK STYLE=’LBLBOX’>
<TITLE>TAKE NOTE!</TITLE>
<P>BEFORE USING THIS INFORMATION AND THE PRODUCT IT

SUPPORTS, BE SURE TO READ THE GENERAL INFORMATION UNDER <XREF
REFID="NOTICES">.</P>

</NOTICES>
<EDNOTICES>FIFTH EDITION (AUGUST 1992)
<P>This edition applies to Release 4 of IBM ..
.</P>
<P>Order publications through your IBM ...</P>
<P>A form for reader’s comments is provided ...
</P>
</EDNOTICES>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Notices and Edition notices” on page 98.

NameLoc (named location)

372 ID Workbench: IBMIDDoc User’s Guide and Reference

Contexts
Children: DL, Fig, L, MMObj, Note, NoteList, OL, P, PBlk, Table, UL.

Parents: Notices.

NMList (named list of IDs or entities)

Purpose
The NMList element is used within a NameLoc element to associate the NameLoc
element’s ID with the IDs of other elements or the IDs of other elements in other
documents.

NMList also uses the DOCNAME attribute to specify the document or
subdocument where the IDs are located.

NMList is used within NameLoc to contain the names (IDs or entity names) of the
objects to be located, either SGML elements or entities. When the objects to be
located are in the same document as the NMList element, NMList contains a list of
their IDs or entity names. When the objects to be located are in another document
or subdocument, specify the DocName attribute to indicate the document that
defines or declares the target.

You can use several NMList elements within a single NameLoc. If objects are in the
same document as the NMList element and in other documents, you need to
specify a new NMList for each different document that defines or declares the
target.

Examples
The first example shows a simple NMList used to create a cross-document link.
Note that the entity named on the DOCNAME attribute has been declared as a
data entity in the document’s SGML prolog.

...
<!ENTITY iddocref PUBLIC

"+//ISBN 0-933186::IBM//NONSGML IBMIDDoc User’s Guide and
Reference//EN" NDATA SGMLDoc >...

<LDESCS>
<NAMELOC ID="nmlocref">
<NMLIST DOCNAME="iddocref">iddoc</NMLIST>
</NAMELOC>

</LDESCS>...
<P>The <L LINKEND="nmlocref">NameLoc</L> element is....

In this example, the NameLoc element, which is within an LDescs element,
contains a single NMList element. The NameLoc element associates the target ID
(in this case the ID of the reference entry for NMList) with the document it is in
(the document represented by the entity named "iddocref"). The L element itself
points to the NameLoc element, which then serves to locate the actual target, the
element with the ID "iddoc" in the document "iddocref".

Attributes
NAMETYPE=ELEMENT | ENTITY

Indicates the contents of the NMList as follows:

NItem (notice item)

Chapter 25. IBMIDDoc Elements 373

ENTITY
Indicates that the names listed in the content of the NMList element are
declared entity names.

ELEMENT
Indicates that the names listed in the content of the NMList element are
element IDs in a document.

DOCNAME=entity_name
Specifies the name of the document or subdocument entity that contains the
IDs or declares the entities listed in the content of the NMList element. The
entity named must be declared in the current document.

If DOCNAME is not specified, the IDs in the NMList element are valid in the
current document. If DOCNAME is specified, the IDs in the NMList element
are valid for the document named on the DOCNAME attribute.

Note: The DOCNAME attribute is the HyTime docorsub attribute.

element_id
Specifies one or more element IDs of the elements to be located. When the
unified name space option is in effect (either because the HyTime unmspace
attribute was specified as Unified on the document element or because the
Nametype attribute value is Unified), the IDs can also be the names of entities
to be located.

DTDORLPD
Names the DTD that defines the element types or entity names used in the list.
This should almost never be used. Used in conjunction with DOCNAME, it
identifies a parsing context for interpreting the names in the list. The defaults
will handle the vast majority of cases.

OBNAMES=OBNAMES | NOOBNAMES
OBNAMES means that referencing one location actually is an indirect reference
to another location.

NOOBNAMES means that the object pointed to is the actual content of the
NameLoc element that is the target.

element_id
Specifies one or more element IDs of the elements to be located.

Future Enhancement
When the unified name space option is in effect (either because the
HyTime unmspace attribute was specified as Unified on the document
element or because the NAMETYPE attribute value is Unified), the IDs
can also be the names of entities to be located.

CDATA
Contains character data.

Usage
See Chapter 12, “All about linking” on page 129.

Contexts
Children: text (#pcdata).

Parents: nameloc.

NMList (named list of IDs or entities)

374 ID Workbench: IBMIDDoc User’s Guide and Reference

Note

Purpose
The Note element contains a information that is differentiated from the main text.
Information contained in a note often further explains the meaning of the main
text. Use Note to create a note of one or more paragraphs.

Examples
<note><notebody>Thinking of a seashore, green meadow,
or cool mountain overlook can help you to relax and
be more patient.</notebody></note>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Notes” on page 45.

Contexts
Children: NoteBody, Title.

Parents: AnnotBody, Bridge, Cond, Copyr, DBody, Defn, Desc, DIntro, DSum,
EdNotices, entry, Fig, FigSeg, Fn, LEDesc, LEDI, LI, LQ, MkNote, ModDesc,
ModItem, MsgItem, NItem, Notices, P, PBlk, ProcEntry, ProcExit, ProcIntro, Safety,
Sem, SynNote, TextAlt.

NoteBody (note body)

Purpose
The NoteBody element contains the body of the Note information that is
differentiated from the main text.

Examples
<note><notebody>Thinking of a seashore, green meadow,
or cool mountain overlook can help you to relax and
be more patient.</notebody></note>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Notes” on page 45.

Contexts
Children: text (#pcdata), Address, Annot, APL, Bin, Bridge, CGraphic, Char, Cit,
Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines, LitData, LQ, MD, MkNote,
MMObj, ModInfo, MV, Num, Oct, OL, P, ParmL, PBlk, Ph, PK, PV, Q, RefKey,
Screen, SynPh, Syntax, Table, Term, TM, UL, Xmp, XPh, XRef.

Parents: Note.

NMList (named list of IDs or entities)

Chapter 25. IBMIDDoc Elements 375

NoteList (ordered note list)

Purpose
The NoteList element contains an ordered list of notes.

Examples
<notelist>
Make a To Do list
Prioritize sensibly
Avoid interruptions where possible
Check on your progress toward monthly goals
Plan for the next work week
Do something for the fun of it
Spend some quality time with your pet
</notelist>

Attributes
LINESPACE=SPACE | COMPACT

Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as
defaults for this tag. See Chapter 9, “Using definition tags” on page 105 for
more information.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Note lists” on page 46.

Contexts
Children: Bridge, LI, LIBlk, Title.

Parents: AnnotBody, Bridge, Cond, Copyr, DBody, Defn, Desc, DIntro, DSum,
EdNotices, entry, Fig, FigSeg, Fn, LEDesc, LEDI, LI, LQ, MkNote, ModDesc,
ModItem, MsgItem, NItem, Notices, P, PBlk, ProcEntry, ProcExit, ProcIntro, Safety,
Sem, SynNote.

Notices (contains notices)

Purpose
The Notices element contains one or more NItem elements that contain special
notice information.

Examples
<notices><pblk style="lblbox"><title>Note</title>
<p>Before using this information, be sure to read
the general information under <xref refid="notices">.
</p>
<p>This manual was produced using IBMIDDoc SGML, the

NoteBody (note body)

376 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|

Epic editor, and processed for print and online using
the ID Workbench.</p>
</pblk></notices>
<ednotices>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Notices and Edition notices” on page 98.

Contexts
Children: DL, Fig, L, MMObj, NItem, Note, NoteList, OL, P, PBlk, Table, UL.

Parents: FrontM.

Notloc (notation-specific location)

Purpose
The Notloc element contains a specification of an address that uses a specific
notation. It enables the use of definition of anchors in non-SGML objects using
specifications that are peculiar to those objects.

In the current level of IBMIDDoc, NotLoc is used to encode URLs.

The Notloc element is a HyTime element.

Use Notloc to define link anchors in non-SGML objects such as images and vector
graphics, or using query specifications in a specific notation. For example, it can
contain x and y pixel locations within a bitmap or the label of a graphic object in a
CAD drawing. A link anchor can be the start of a link or the target of a link or
both. How a Notloc-defined anchor is used and expressed depends on your online
presentation system and is not defined by IBMIDDoc.

Examples
<IBMIDDOC>
<PROLOG>

...
<LDESCS>
<NOTLOC ID="ibmwww" notation="url">
http://www.ibm.com
</NOTLOC>
</LDESCS>

...
<BODY>

...
<P PROPS="www">Be sure to check out the
<L LINKEND="ibmwww"> for the latest IBM product information.
</P>

Notices (contains notices)

Chapter 25. IBMIDDoc Elements 377

Attributes
ID=notloc_id

Contains the ID of this Notloc element.

NOTATION=notation_name
Specifies the notation of the address specification. It must be a declared SGML
notation.

Usage
See Chapter 12, “All about linking” on page 129.

Contexts
Children: text (#pcdata).

Parents: LDescs.

Num (number)

Purpose
Use the Num element to identify numbers in a base for which a more precise
element, such as Hex or Bin, does not exist. You must specify the Base attribute to
indicate the base of the number, for example, "36" for base 36 numbers.

Examples
<P>Nums in base 34 use the digits zero (0) to nine (9)
and the letters A to Z minus I and O (or L and O), for
example, <NUM BASE="34">Z</NUM> = <DEC>33</DEC>.

Attributes
BASE=basevalue

Contains an integer value specifying the base of the number.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Highlighting” on page 43.

Contexts
Children: text (#pcdata).

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, MsgText, NoteBody,
P, Ph, Q, SynNote, Term, Warning.

ObjLib (object library)

Purpose
The ObjLib element contains elements that are to be used elsewhere in the
document by reference. You can have as many different ObjLib elements as
desired. Use object libraries to collect elements for reuse. Elements in object

Notloc (notation-specific location)

378 ID Workbench: IBMIDDoc User’s Guide and Reference

libraries are not processed at the place they occur in the source document but are
processed only when referred to by another element of the same type using the
CONLOC or RETALTS attributes. The ObjLib needs to be specified in the
document’s Prolog.

Use the optional Desc element to describe the purpose of the library.

Migration Note
ObjLib replaces the function provided by DVCF side files for organizing
collections of text for re-use.

Examples
<OBJLIB>
<OBJLIBBODY>
<DLENTRY ID="FILEMENUITEM" "CLASS"="menuitem">
<TERM>File</TERM>
<DEFN>Work with files.</DEFN>
</DLENTRY>
<DLENTRY ID="Editmenuitem" CLASS="menuitem">
<TERM>Edit</TERM>
<DEFN>Perform edit functions.</DEFN>
</DLENTRY>
</OBJLIBBODY>
</OBJLIB>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Reusing elements from an object library” on page 191.

Contexts
Children: Desc, ObjLibBody.

Parents: DProlog, Prolog, SpecDProlog.

ObjLibBody (object library body)

Purpose
The ObjLibBody element contains the elements in an object library.

The OBJLibBody contains all of the elements in the object library.

Examples
<OBJLIB>
<OBJLIBBODY>
<DLENTRY ID="FILEMENUITEM" "CLASS"="menuitem">
<TERM>File</TERM>
<DEFN>Work with files.<DEFN>
</DLENTRY>
<DLENTRY ID="Editmenuitem" CLASS="menuitem">
<TERM>Edit</TERM>

ObjLib (object library)

Chapter 25. IBMIDDoc Elements 379

<DEFN>Perform edit functions.</DEFN>
</DLENTRY>
</OBJLIBBODY>
</OBJLIB>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Reusing elements from an object library” on page 191.

Contexts
Children: any element.

Parents: ObjLib.

ObjRef (object reference)

Purpose
The ObjRef element references a declared graphic entity. ObjRef has no content; it
only references the graphic entity using the entity’s declared name.

When using an SGML editor, such as ArborText’s Epic*Editor, that supports the
inline display of certain graphic types, the graphic entity will be displayed inline
with your text.

Examples
<!ENTITY bike system "bike.gif" ndata graphics>

...
<MMOBJ>
<OBJREF OBJ="bike">
<TEXTALT>This is a two-wheeled bicycle.</TEXTALT>
</MMOBJ>

Attributes
OBJ=entity_name

This attribute’s value is the name of the graphic entity containing the graphic
to be included.

EDITSCALE=scaling_value
The EDITSCALE attribute specifies the scaling factor for graphics in an SGML
editor capable of displaying graphics inline.

WIDTH and DEPTH
WIDTH and DEPTH attributes allow you to expand or contract a drawing.
They accept the following values:

x.yin
inches. For example: 4in or 5.5in.

x.ypt
points. For example: 48pt or 39.5pt.

x.ypi
picas. y is base 12. For example, 5.11pi is 5 picas, 11 points.

ObjLibBody (object library body)

380 ID Workbench: IBMIDDoc User’s Guide and Reference

x.ymm
millimeters. For example: 55mm or 47.6mm.

x.ycm
centimeters. For example: 12cm or 10.7cm.

ScaleBox=BestFit | DepthFirst | UseBoth | None
Defines how to use the width and depth values to scale an object.

BestFit
Scaled to fit specfied area without skewing the artwork. This is the default
value.

DepthFirst
The depth value will be chosen first it the composer must skew the object.

UseBoth
Sets to the depth and width values specified. If any one value is specified,
it will be used without without skewing.

None
No scaling.

Usage
See “Including artwork in documents” on page 55.

Contexts
Children: empty.

Parents: MMObj.

Oct (octal number)

Purpose
Use the Oct element to identify octal data, which is encoded in a base-8 numbering
system.

Examples
<BIN>11000001</BIN> = <DECIMAL>193</DECIMAL> = <OCT>301</OCT>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Highlighting” on page 43.

Contexts
Children: text (#pcdata).

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, MsgText, NoteBody,
P, Ph, Q, SynNote, Term, Warning.

ObjRef (object reference)

Chapter 25. IBMIDDoc Elements 381

OL (ordered list)

Purpose
The OL element contains a list of items where the order of the items has particular
significance, or where the ordinal number of each item is significant.

Examples

Cream butter and sugar together until fluffy.
Beat in egg yolks one at a time.
Add nutmeg, cinnamon, and vanilla, and mix thoroughly.
The batter should be smooth and glossy and stream
off the spoon in ribbons.
Fold in beaten egg whites.
<p>Do not overmix; the batter should be light and fluffy.</p>

Attributes
LINESPACE=SPACE | COMPACT

Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

OLType
This attribute specifies the list type. Allowed values are:

Normal
Causes a normal, ordered list.

Step Causes a list with the word ″Step″ to appear before the step item.

Checkoff
Causes a small check-off area to appear before the step item.

CheckoffStep
Causes both a small check-off area and the word ″Step″ to appear
before the step item.

DBScalePct=scale-percent
You can use the DBScalePct attribute to scale the dingbat (the thing in front of
the list) up or down for a list item. The scale-percent is one of the following
numbers: 50, 60, 70, 80, 90, 100, 110, 120, 140, 160, 180, 200, 240, or 300. 100 is
the normal size; 50 is 50% smaller; 200 is 200% larger. For example, this scales
the bullet or number to twice its size:
dbscalepct="200"

This works for hardcopy only.

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as
defaults for this tag. See Chapter 9, “Using definition tags” on page 105 for
more information.

Seq
Specifies that a sequence of ordered lists are to connect. That is, the list can
end, but when the list starts again, the numnbering continues from the
previous list’s last item. Use this for steps that need to cross divisions or table

Oct (octal number)

382 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|
|

|

|

|
|
|
|
|

cells. The value START indicates the beginning of the list; the value END
indicates the end of the list. The ID on the list must appear on the SEQID
attributes on the continuing lists.

SEQID
Indicates the list is part of a sequence. The SEQID points to the ID of the
beginning list.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Ordered lists” on page 30.

Contexts
Children: Bridge, LI, LIBlk.

Parents: AnnotBody, Attention, BackCover, Bridge, Caution, Cond, Copyr, Danger,
DBody, Defn, Desc, DIntro, DSum, EdNotices, entry, Fig, FigSeg, Fn, FrontCover,
LEDesc, LEDI, LI, LQ, MkNote, ModDesc, ModItem, MsgItem, NItem, NoteBody,
Notices, P, PBlk, ProcEntry, ProcExit, ProcIntro, Safety, Sem, SynNote, TextAlt,
Warning.

OLDef (Ordered list definition)

Purpose
The OLDef element sets attribute defaults for ordered lists and note lists. OLDef
goes within the document prolog to set definitions for the entire document; or
within a division prolog to set definitions for just that division. The OLDef tag
goes inside a PropDefs tag.

Examples
<propdefs>
<oldef defname="setup" linespace="space" oltype="checkoffstep" dbscalepct="140">
</propdefs>
...
<ol def="setup">
Open the box.
Jump out
Enjoy the out-of-the-box experience!

Attributes
DEFNAME=definition-name

The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

OL (ordered list)

Chapter 25. IBMIDDoc Elements 383

|

|
|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|

DBScalePct=scale-percent
You can use the DBScalePct attribute to scale the dingbat (the thing in front of
the list) up or down for a list item. The scale-percent is one of the following
numbers: 50, 60, 70, 80, 90, 100, 110, 120, 140, 160, 180, 200, 240, or 300. 100 is
the normal size; 50 is 50% smaller; 200 is 200% larger. For example, this scales
the bullet or number to twice its size:
dbscalepct="200"

This works for hardcopy only.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

OLType
This attribute specifies the list type. Allowed values are:

Normal
Causes a normal, ordered list.

Step Causes a list with the word ″Step″ to appear before the step item.

Checkoff
Causes a small check-off area to appear before the step item.

CheckoffStep
Causes both a small check-off area and the word ″Step″ to appear
before the step item.

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See “Property-Based
Retrieval” on page 195.

Usage
See Chapter 9, “Using definition tags” on page 105.

Contexts
Children: empty.

Parents: PropDefs, PropGroup.

Oper (syntax operator)

Purpose
Use Oper to define an operator within a syntax definition. Operators usually
connect two parts of a statement and imply an action such as assignment or
comparison. Operators can also be applied to a single parameter, such as the
negation operator. Typical operators are the equals sign (=) and the mathematical
operators such as add (+) and multiply (*).

Examples
<syntax>
<group>
<kwd>LANGUAGE</kwd>

OLDef (Ordered list definition)

384 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|
|

|

|

|
|
|
|

|
|

|
|

||

|
|

|
|
|

|
|
|
|

|

|

|

|

|

<oper>=</oper>
<var>language_name</var>
</group>
</syntax>

Attributes
OPTREQ= OPT|REQ|DEF

Indicates whether the operator is optional, required, or the default.

LINKEND=id
Contains an ID reference that enables a link to an arbitrary location in the
document.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 15, “Programming Syntax Diagrams” on page 147.

Contexts
Children: text (#pcdata).

Parents: Group, SynPh.

OrderNum (order number)

Purpose
The OrderNum element contains the order number assigned to a document. This
element is for use by non-IBM documents. IBM documents use the IBMDocNum
element (see “IBMDocNum (IBM document number)” on page 298).

Examples
<ORDERNUM>GC12-3456-00</ORDERNUM>

Attributes
#PCDATA

Contains the order number.

Contexts
Children: text (#pcdata), Ph.

Parents: BibEntry, LibEntry.

OrigIBMDocNum (original IBM document number)

Purpose
Use this when you have a new manual that superceeds a previous manual.

Contexts
Children: text (#pcdata), Ph.

Parents: IBMBibEntry.

Oper (syntax operator)

Chapter 25. IBMIDDoc Elements 385

Owners

Purpose
Contains the name of the owner or owners of the information.

Examples
<OWNERS>
<PERSON>
<NAME>John Smith</NAME>
<ADDRESS>XYZ Corp. RTP, NC 27709</ADDRESS>
</PERSON>
<PERSON>
<NAME>Susan Jones</NAME>
<ADDRESS>ABC Corp. RTP, NC</ADDRESS>
</PERSON>
</OWNERS>

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: Corp, Person.

Parents: DProlog, Prolog, SpecDProlog.

P (paragraph)

Purpose
The P element contains a paragraph; a block of text representing a single idea. Use
paragraphs to contain flowing text and other elements associated with the text,
such as lists, examples, figures, and tables.

Paragraphs with no content are not valid.

Examples
This example shows a simple paragraph:
<P>This is a simple paragraph.</P>

Use the paragraph end tag to control whether or not other elements are contained
within the paragraph. In this example, the unordered list is contained within the
paragraph:
<P>This paragraph contains a list:

List item
List item

</P>

To keep the list from being part of the paragraph, the paragraph must be ended
before the list begins, as in this example:
<P>This paragraph does not contain the list.</P>

List item

OrigIBMDocNum (original IBM document number)

386 ID Workbench: IBMIDDoc User’s Guide and Reference

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Creating paragraphs (P element)” on page 21.

Contexts
Children: text (#pcdata), Address, Annot, APL, Bin, Bridge, CGraphic, Char, Cit,
Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines, LitData, LQ, MD, MkNote,
MMObj, ModInfo, MV, Note, NoteList, Num, Oct, OL, ParmL, Ph, PK, PV, Q,
RefKey, Screen, SynPh, Syntax, Table, Term, TM, UL, Xmp, XPh, XRef.

Parents: AnnotBody, Attention, BackCover, Bridge, Caution, Cond, Copyr, Danger,
DBody, Defn, Desc, DIntro, DSum, EdNotices, entry, Fig, FigSeg, Fn, FrontCover,
LEDesc, LEDI, LI, LQ, MkNote, ModDesc, ModItem, MsgItem, NItem, NoteBody,
Notices, PBlk, ProcEntry, ProcExit, ProcIntro, Safety, Sem, SynNote, TextAlt,
Warning.

Parm (parameter list entry)

Purpose
The Parm element contains a single parameter and its definition within a
parameter list.

Examples
<parml>
<parm><term>KEYWORD = <pk optreq="DEF">DEFAULT</pk>|VALUE
</term>
<defn>This is the description of the parameter above.
It could go on for many pages, if necessary. (Of course,
that means we have a very complicated parameter to
describe.)</defn>
</parm>
<parm><term>KEYWORD2 = &lbrc;ABC|XYZ&rbrc;</term>
<term>&lbrk;KEYWORD3 = GGG&rbrk;</term>
<defn>This description applies to the two parameters
above. Often in examples of programming syntax, it
is necessary to use symbols for the brackets and braces.
</defn>
</parm>
<parm><term><synph><kwd>KEYWORD3</kwd></synph></term>
<defn>Here’s a term that uses the syntax phrase (SYNPH);
it allows you to use the same items as a syntax diagram.
</defn>
</parm>
</parml>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Parameter lists” on page 34.

P (paragraph)

Chapter 25. IBMIDDoc Elements 387

Contexts
Children: Defn, Term.

Parents: ParmBlk, ParmL.

ParmBlk (parameter list block)

Purpose
The ParmBlk element organizes parameter list entries into meaningful groupings.
For example, if you group parameters within the definition of a complex statement
or command, you can use ParmBlk in the parameter list to mirror the grouping in
the syntax definition.

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Grouping list items” on page 37.

Contexts
Children: Bridge, Parm, Title.

Parents: ParmL.

Examples
<parml>
<parmblk>
<parm><term>one term</term>
<defn>definition</defn>
</parm>
<parm><term>another term</term>
<defn>definition</defn>
</parm>
</parmblk>
<parm><term>yet another term</term>
<defn>definition</defn>
</parm>
</parml>

ParmL (parameter list)

Purpose
Use parameter lists to describe the parameters in a computer language statement.
Parameter lists are usually associated with syntax definitions. Entries can be
organized within parameter lists using ParmBlk elements. Bridge elements can also
be used to create connections between blocks of entries, including syntax
definitions.

Examples
<parml>
<parm><term>KEYWORD = <pk optreq="DEF">DEFAULT</pk>|VALUE
</term>
<defn>This is the description of the parameter above.

Parm (parameter list entry)

388 ID Workbench: IBMIDDoc User’s Guide and Reference

It could go on for many pages, if necessary. (Of course,
that means we have a very complicated parameter to
describe.)</defn>
</parm>
<parm><term>KEYWORD2 = &lbrc;ABC|XYZ&rbrc;</term>
<term>&lbrk;KEYWORD3 = GGG&rbrk;</term>
<defn>This description applies to the two parameters
above. Often in examples of programming syntax, it
is necessary to use symbols for the brackets and braces.
</defn>
</parm>
<parm><term><synph><kwd>KEYWORD3</kwd></synph></term>
<defn>Here’s a term that uses the syntax phrase (SYNPH);
it allows you to use the same items as a syntax diagram.
</defn>
</parm>
</parml>

Attributes
TERMWIDTH= SMALL | MEDIUM | LARGE | 1 | 2

You can use the TERMWIDTH attribute to determine the indentation size of
the definition list. The valid choices are: small (.25 inch, the default), medium
(.5 inch), and large (1 inch). The value “1” is for 1-character width; “2” is for a
2-character width.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as
defaults for this tag. See Chapter 9, “Using definition tags” on page 105 for
more information.

HeadStyle=base_h | italic_h | bold_h | monospaced_h | underlined_h |
bold_italic_h | italic_underlined_h | bold_underlined_h |
bold_italic_underlined_h

Specifies the highlighting to use for the list’s TermHd and DefnHd heading
tags. The default is bold.

All values work for Xyvision, XHTML, HTML, and BookMaster. For IPF or
RTF, there are some inconsistencies due to the limitations of those formats:
“monospaced” is ignored, and the default style (bold) is used for terms and
headings. “bold_italic_underlined” does not exist in IPF or RTF; this is treated
the same as bold_underlined. “base” works on everything but definition terms;
there is no plain style in IPF, so the default bold will not be over-ridden.

TermStyle=base | italic | bold | monospaced | underlined | bold_italic |
italic_underlined | bold_underlined | bold_italic_underlined

Specifies the highlighting to use for the list’s Term tags. The default is bold.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Parameter lists” on page 34.

ParmL (parameter list)

Chapter 25. IBMIDDoc Elements 389

|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

Contexts
Children: Bridge, DefnHd, Parm, ParmBlk, TermHd.

Parents: AnnotBody, Attention, Bridge, Caution, Danger, DBody, Defn, DIntro,
DSum, entry, Fig, FigSeg, Fn, LEDI, LI, LQ, MkNote, ModDesc, ModItem,
MsgItem, NoteBody, P, PBlk, ProcIntro, SynNote, Warning.

Part (major document part)

Purpose
Use Part to divide a document’s chapters into logical groupings. For example, in a
document that contains both guide and reference information, you can define two
parts, one containing the guide information and the other containing the reference
information.

The Part element does not change the logical hierarchy of the divisions it contains.
For example, if, in your document style, first-level divisions are considered to be
chapters, they are still chapters when contained within Part. Thus, the enumeration
of divisions contained within Parts is not affected by the presence or absence of
Part elements.

Examples
<ibmiddoc>
<body>
<part>
<dprolog><titleblk>
<title>Introduction</title>
</titleblk></dprolog>
<dbody>
<d>
<dprolog><titleblk>
<title>Salads of our neighborhood</title>
</titleblk></dprolog>
<dbody></dbody></d>
<d>
<dprolog><titleblk>
<title>Salads of the world</title>
</titleblk></dprolog>
<dbody></dbody></d>
</dbody></part>
<part>
<dprolog><titleblk>
<title>Recipies</title>
</titleblk></dprolog>
<dbody>
<d>
<dprolog><titleblk>
<title>Egg salad</title>
</titleblk></dprolog>
<dbody></dbody></d>
<d>
<dprolog><titleblk>
<title>Tuna fish salad</title>
</titleblk></dprolog>
<dbody></dbody></d>
</dbody></part></body>
</ibmiddoc>

ParmL (parameter list)

390 ID Workbench: IBMIDDoc User’s Guide and Reference

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Using parts to organize your chapters” on page 24.

Contexts
Children: Abstract, DBody, DIntro, DProlog, DSum.

Parents: Body.

PartAsm (part assembly)

Purpose
The PartAsm element contains the elements needed to construct a parts assemby
list.

Examples
<partasm id="bike" style="bkm:(layout=same)"><title>
Bicycle</title><mmobj><objref obj="bike">
<textalt>Bicycle</textalt>
</mmobj><compl>
<ci idxnum="1" partnum="4563423" upa="1">Bike</ci>
<compl>
<ci idxnum="1" partnum="1230987" upa="1">Frame</ci>
<ci idxnum="2" partnum="1238475" upa="1">Wheel assembly, front</ci>
<compcmt>For detailed breakdown, see <xref refid="wheelxmp">.</compcmt>
<ci idxnum="3" partnum="1234939" upa="1">Wheel assembly, rear</ci>
</compl>
</compl>
</partasm>

Attributes
Toc=toc | notoc

Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 23, “Creating parts catalog lists” on page 215.

Contexts
Children: CompL, MMObj, PartAsmSeg, RetKey, Title.

Parents: Appendix, Body, DBody, LEDI, ModItem, MsgItem.

Part (major document part)

Chapter 25. IBMIDDoc Elements 391

PartAsmSeg (part assembly segment)

Purpose
The PartAsmSeg element contains the component elements needed to contain the
parts assembly information that is a logical division of the assembly.

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: CompL, MMObj.

Parents: PartAsm.

PBlk (paragraph block)

Purpose
Use PBlk to group paragraphs and paragraph-like elements together. You can use a
Title element on the PBlk element to identify or introduce the topic that the
paragraphs in the PBlk address. PBlk can be used to define property values for the
set of contained elements. For example, if a number of paragraphs have changed,
you can put them within a PBlk element in order to define their revision status.

You can also use PBlk within an ObjLib to define groups of paragraphs for use by
reference. For example, if you have a figure with an introductory paragraph that
you want to use in several contexts, you can put the paragraph and the figure into
a PBlk. To use the content of that PBlk in several places, you can specify a PBlk
with a CONLOC attribute that refers to the PBlk you want to reuse.

PBlk also enables you to define a set of paragraphs as a single link anchor by
linking to the PBlk element.

To create a labeled box, use attribute style="lblbox" on the PBlk tag:
<pblk style="lblbox"><title>Getting There</title>
<p>To get to...
</p></pblk>

To create hidden text in IPF and Windows, use attribute style="hidden" on the
PBlk tag:

Attributes
style=hidden

A PBLK with style=hidden and formated for IPF or RTF becomes a hidden
division. Be sure to specify a title for the PBLK or you will get *** for the title
of the generated division.
<pblk style="hidden"><title>Getting There</title>
<p>To get to...
</p></pblk>

style=lblbox
This causes a labeled box to surround the content. Use a Title tag to specify the
title for the labeled box.

PartAsm (part assembly)

392 ID Workbench: IBMIDDoc User’s Guide and Reference

<pblk style="lblbox"><title>Getting There</title>
<p>To get to...
</p></pblk>

Contexts
Children: Annot, AsmList, Attention, BibList, Bridge, Caution, CGraphic, Danger,
DL, Fig, FnList, GL, L, Lines, LitData, LQ, MarkList, MkNote, MMObj, ModInfo,
Note, NoteList, OL, P, ParmL, PBlk, Screen, Syntax, Table, Title, UL, Xmp.

Parents: AnnotBody, Attention, Bridge, Caution, Cond, Copyr, Danger, DBody,
Defn, Desc, DIntro, DSum, EdNotices, entry, Fig, FigSeg, Fn, FrontCover, LEDesc,
LEDI, LI, LQ, MkNote, ModDesc, ModItem, MsgItem, NItem, NoteBody, Notices,
PBlk, ProcEntry, ProcExit, ProcIntro, Safety, Sem, SynNote, TextAlt, Warning.

Person (person’s name and address)

Purpose
The Person element contains name and address pairs for use in Author, Approvers,
and Owners where either a person or an enterprise can be meaningful.

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Author and Address” on page 89.

Contexts
Children: Address, Name.

Parents: Approvers, Author, Maintainer, Owners.

Examples
<owners><person><name>Mike Temple</name></person>
</owners>

Ph (Phrase)

Purpose
Use the Ph element to identify a phrase for some reason not already provided for
by the IBMIDDoc language. Phrases can define containment structures to associate
one element with another, such as associating a footnote with a specific sentence,
or they can use an author-defined element class to further specify the semantic
meaning of a phrase.

The Ph element can also be used to associate a specific property with a specific
phrase. For example, you can associate a revision or version level with a phrase.
You can also identify a word as a particular type of data for special processing.

You can precisely identify information that is unique to your document by defining
element classes with the ClassDef element and using those classes with the Ph
element. For example, in the documentation for a program that supports mining
operations, you may need to discuss different kinds of rocks and want to precisely

PBlk (paragraph block)

Chapter 25. IBMIDDoc Elements 393

identify references to different rocks to enhance the retrievability of your
information. You can define element classes for the different rock types and use Ph
elements with those classes to identify references to the types of rock.

Examples
Hey there! This is very important! Don’t go out in the rain without your galoshes!

Here’s its markup:
<ph style="Bold Italic">Hey there!</ph>
This is <ph style="Underlined Bold">very</ph>
<ph style="Bold">important</ph>! Don’t go out in the
<ph style="Italic">rain</ph> <ph style="Underlined Bold Italic">
without your galoshes</ph>!

Attributes
style=phrase-style

The style attribute values include:
v base
v bold

v italic

v bold italic

v underlined
v superscript

v subscript

v monospaced

v SMALLCAPS. Note that YOU need to do the uppercase conversion yourself. This
is because not all languages do proper uppercase conversion of lowercase
letters.

v underlined bold

v underlined italic

v underlined bold italic

v UNDERLINED SMALLCAPS

See “Common Element Attributes (large set)” on page 227.

Usage
See “Highlighting” on page 43.

When migrating a Bookmaster document, Bookmaster highlight phrases are
migrated to IBMIDDoc phrases.

HP0 <PH STYLE=″base″>

HP1 <PH STYLE=″italic″>

HP2 <PH STYLE=″bold″>

HP3 <PH STYLE=″bold italic″>

HP4 <PH STYLE=″smallcaps″>

HP5 <PH STYLE=″underlined″>

HP6 <PH STYLE=″underlined italic″>

Ph (Phrase)

394 ID Workbench: IBMIDDoc User’s Guide and Reference

HP7 <PH STYLE=″underlined bold″>

HP8 <PH STYLE=″underlined bold italic″>

HP9 <PH STYLE=″underlined smallcaps″>

Contexts
Children: text (#pcdata), Address, APL, Bin, Char, Cit, Date, Dec, Formula, Hex, L,
MD, MV, Num, Oct, Ph, PK, PV, Q, RefKey, SynPh, Term, TM, XPh, XRef.

Parents: Address, AnnotBody, Attention, BOFNum, Bridge, Cap, Caution,
CGraphic, CI, CLE, Code, CompCmt, Cond, Copyr, Danger, Defn, DefnHd, Desc,
entry, ExternalFileName, FileNum, Fn, IBMBOFNum, IBMDocNum, IBMFeatNum,
IBMPartNum, IBMPgmNum, IdxTerm, ISBN, L, LEDesc, LEN, LI, Lines, LQ, MD,
MkNote, ModDesc, ModItem, ModLvl, ModName, MsgNum, MsgText, Name,
NoteBody, OrderNum, OrigIBMDocNum, P, Ph, ProcEntry, ProcExit, PrtLoc,
PublicId, Q, Release, RetKey, Screen, Sem, STitle, SubTitle, SynNote, Term, TermHd,
TextAlt, Title, TM, Version, VolId, Warning, Xmp, XPh.

Phone (telephone number)

Purpose
The Phone element contains a telephone number.

Phone has the EQUIP attribute that is used to specify the type of phone equipment
being described.

If you want to specify a fax and a voice phone, use two Phone elements within the
Address element.

Examples
<phone equip="fax">1-800-555-1212</phone>

Attributes
EQUIP=FAX|VOICE|VOICEFAX

Specifes the type of telephone equipment being described.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Using reader’s comment form (RCF)” on page 103.

Contexts
Children: text (#pcdata).

Parents: Address.

PK (programming keyword)

Purpose
The PK element contains a programming keyword. A keyword is a literal string
that has special significance in the context in which it is being used.

Ph (Phrase)

Chapter 25. IBMIDDoc Elements 395

Examples
<P>Specify the user ID and password parameters when error messages
indicate that you must provide security information and specifying the
<PK>-n</PK> parameter does not solve the problem.
See <XREF REFID="SECURITY"> for an explanation of using security
parameters in the....</P>

Attributes
OPTREQ=OPT | REQ | DEF

Indicates if the keyword is optional, required, or the default. REQ (required) is
the default value for this attribute.

Usage
See “Highlighting” on page 43.

Contexts
Children: text (#pcdata).

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, MsgText, NoteBody,
P, Ph, Q, SynNote, Term, Warning, Xmp, XPh.

PNIndex (part number index)

Purpose
The PNIndex element is a specialized list element that contains an index of all
parts contained in CI (component item) elements.

Examples
...

<PNINDEX SPEC=AUTO>...

Attributes
Toc=toc | notoc

Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

LAYOUT=Default-Layout | OneCol | TwoCol | ThreeCol
Specifies the column-style for this portion of the book.

Default-Layout
The section uses the default layout for the document style.

OneCol
The entries format across the entire page.

TwoCol
The entries format in two columns.

PK (programming keyword)

396 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|

|
|

|
|

ThreeCol
The entries format in three columns.

SPEC=AUTO | MAN
This attribute has a fixed value of AUTO. The manual value currently does not
work.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Getting a part number index” on page 220.

Contexts
Children: GendTitle, RetKey, TitleBlk.

Parents: BackM.

PostalCode (postal or zip code)

Purpose
The PostalCode element contains a zip or postal code.

Examples
<authors>
<author><person>
<name>Fred Mertz</name>
<address>125 West Hollywood Blvd
Tinseltown, CA <postalcode>90210</postalcode></address>
</person></author>
</authors>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Using reader’s comment form (RCF)” on page 103.

Contexts
Children: text (#pcdata).

Parents: Address.

Preface

Purpose
The Preface element contains introductory information about a document, such as
the purpose of the document. If you wish to enter a unique title for the Preface,
use the TitleBlk element to contain the Title element and the title text.

PNIndex (part number index)

Chapter 25. IBMIDDoc Elements 397

|
|

Examples
<FRONTM>
<PREFACE><SPECDPROLOG><GENDTITLE></SPECDPROLOG>
<P>This information is...

...
</FRONTM>

Attributes
LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol

Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

See “Common Element Attributes (large set)” on page 227.

Usage
See “The preface” on page 100.

Contexts
Children: DBody, DIntro, DSum, SpecDProlog.

Parents: FrontM.

Proc (procedure)

Purpose
The Proc element structures information that describes a procedure or task. The
markup enables a wide variety of print and online presentation styles. It contains a
link element (RefKey) for connecting procedure descriptions to graphics and other
multimedia elements, such as animation or tutorials.

Use the procedure element to describe procedures such as user tasks. A procedure
consists of three basic parts: a procedure entry, one or more steps, and a procedure
exit. The procedure entry defines the entry criteria for a procedure, such as any

Preface

398 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|

|
|
|
|

|
|

|
|

prerequisite tasks or related tasks. Each procedure step defines the actions to take
and the expected results and can contain other procedures. The procedure exit
describes the expected result of performing the task and what to do next.

Examples
<proc id="babymap" style="BKM:(STYLE=BASE SEP=INLINE COMPACT)">
<titleblk><title>Baby Johnny is Crying</title></titleblk>
<procentry>Six-month old baby Johnny was sleeping
peacefully. Suddenly he began to cry.</procentry>
<procstep>
<proccmnd>
<desc>Check Johnny’s diaper.</desc>
</proccmnd>
<decisionpnt>
<cond>Is the diaper wet?</cond>
<then><procstep><proccmnd>
<desc>Change the diaper.</desc>
</proccmnd><procexit>Johnny was uncomfortable.</procexit>
</procstep>
</then>
<else>
<desc>Continue at <xref refid="hungry">.</desc>
</else>
</decisionpnt>
</procstep><procstep id="hungry">
<decisionpnt>
<cond>Is Johnny hungry?</cond>
<then><procstep><decisionpnt>
<cond>Does Johnny have teeth?</cond>
<then><procstep><stepnotes>Johnny can eat solid
food.
Continue at <xref refid="frozstk">
</stepnotes></procstep>
</then>
<else><procstep id="bottle"><proccmnd>
<desc>Warm a bottle.</desc>
</proccmnd><proccmnd>
<desc>Feed Johnny.</desc>
</proccmnd><procexit>Johnny needed a bottle.</procexit>
</procstep>
</else>
</decisionpnt></procstep>
</then>
<else><procstep><proccmnd>
<desc>Rock Johnny to sleep.</desc>
</proccmnd><procexit>Johnny was sleepy.</procexit>
</procstep>
</else>
</decisionpnt>
</procstep><procstep id="frozstk">
<proccmnd>
<desc>Thaw and broil a steak for Johnny. Include a
baked potato with butter and sour cream.</desc>
</proccmnd>
<procexit>Johnny was really hungry.</procexit>
</procstep></proc>

Attributes
procnum=procedure-number

Assigns a specific number to a procedure.

See “Common Element Attributes (large set)” on page 227.

Proc (procedure)

Chapter 25. IBMIDDoc Elements 399

Usage
See Chapter 22, “Creating maintenance analysis procedures” on page 207.

Contexts
Children: Desc, ProcEntry, ProcExit, ProcIntro, ProcStep, ProcSumm, RetKey,
TitleBlk.

Parents: Appendix, Body, DBody, Else, LEDI, ModItem, MsgItem, ProcCmnd, Then.

ProcCmnd (procedure command)

Purpose
The ProcCmnd element contains the command text for the procedure described in
the procedure’s Desc element.

Use ProcCmnd to direct the user to take a specific action. More than one
ProcCmnd element can be used on a ProcStep, but multiple ProcCmnd elements
should be very closely related. If they are not closely related , they should be
contained in separate ProcSteps.

Examples
<proccmnd>
<desc>Check Johnny’s diaper.</desc>
</proccmnd>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 22, “Creating maintenance analysis procedures” on page 207.

Contexts
Children: Desc, Proc, ProcStep.

Parents: ProcStep.

ProcEntry (procedure entry point)

Purpose
The ProcEntry element defines the entry criteria for a given procedure and
describes the procedure itself. The PREREQPROCS and RELPROCS attributes
reference prerequisite or related procedures.

Examples
<procentry>Six-month old baby Johnny was sleeping
peacefully. Suddenly he began to cry.</procentry>

Proc (procedure)

400 ID Workbench: IBMIDDoc User’s Guide and Reference

Attributes
PREREQPROCS

This attribute’s value references one or more prerequisite procedures. The
order the procedure IDs are specified indicates the order the prerequisite
procedures should be performed.

RELPROCS
The value of this attribute references a one or more related, but not
prerequisite, procedures.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 22, “Creating maintenance analysis procedures” on page 207.

Contexts
Children: text (#pcdata), Attention, Caution, Danger, DL, Fig, L, MMObj, Note,
NoteList, OL, P, PBlk, Ph, StepRef, Table, Term, TM, UL.

Parents: Proc, ProcSummItem.

ProcExit (procedure exit point)

Purpose
The ProcExit element describes the exit criteria for a procedure and optionally
contains information about what to do next and how to recover if something went
wrong.

Examples
<procexit>Johnny needed a bottle.</procexit>

Attributes
RECOVERYPROC

This attribute references a recovery procedure that describes what to do if the
procedure is not completed successfully.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 22, “Creating maintenance analysis procedures” on page 207.

Contexts
Children: text (#pcdata), DL, Fig, L, MMObj, Note, NoteList, OL, P, PBlk, Ph,
StepRef, Table, Term, TM, UL.

Parents: Proc, ProcStep, ProcSummItem.

ProcEntry (procedure entry point)

Chapter 25. IBMIDDoc Elements 401

ProcIntro (procedure introduction)

Purpose
The ProcIntro element contains the introduction to a procedure.

Examples
<procintro>
<p>A father’s quick guide to child care.</p>
</procintro>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 22, “Creating maintenance analysis procedures” on page 207.

Contexts
Children: Annot, AsmList, Attention, BibList, Bridge, Caution, CGraphic, D,
Danger, DL, Fig, FnList, GL, L, Lines, LitData, LQ, MarkList, MkNote, MMObj,
ModInfo, Note, NoteList, OL, P, ParmL, PBlk, Screen, Syntax, Table, UL, Xmp.

Parents: Proc.

ProcStep (procedure step)

Purpose
The ProcStep element describes a single step in a procedure. A procedure is made
up of one or more procedure steps. Each step contains a description of the step
followed by an optional decision point specification indicating what further action
to take. The default action is to proceed to the next step in the procedure. A step
can also contain a StepNotes element containing notes about the step.

A procedure step description can itself contain a procedure, allowing you to nest
procedures to any level desired (within the general element nesting limits imposed
by IBMIDDoc).

Migration Note
Bookmaster only supports three levels of nesting. For migration purposes,
nesting within procedure elements should be limited to three levels.

Examples
<procstep><proccmnd>
<desc>Change the diaper.</desc>
</proccmnd><procexit>Johnny was uncomfortable.</procexit>
</procstep>

Attributes
See “Common Element Attributes (large set)” on page 227.

ProcExit (procedure exit point)

402 ID Workbench: IBMIDDoc User’s Guide and Reference

Usage
See Chapter 22, “Creating maintenance analysis procedures” on page 207.

Contexts
Children: DecisionPnt, ProcCmnd, ProcExit, StepNotes, TitleBlk.

Parents: Else, Proc, ProcCmnd, Then.

ProcSumm (procedure summary)

Purpose
The ProcSumm element contains procedure summary items.

Examples
<procsumm>
<p>And that is how you care for a child.</p>
</procsumm>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 22, “Creating maintenance analysis procedures” on page 207.

Contexts
Children: ProcSummItem.

Parents: Proc.

ProcSummItem (procedure summary item)

Purpose
The ProcSummItem element specifies a procedure summary items.

Contexts
Children: ProcEntry, ProcExit.

Parents: ProcSumm.

ProdInfo (product information)

Purpose
The ProdInfo element contains the name and version number of the product that is
associated with the document.

ProcStep (procedure step)

Chapter 25. IBMIDDoc Elements 403

Examples
<PRODINFO>
<PRODNAME>Test Prod</PRODNAME>
<VERSION>2</VERSION>
</PRODINFO>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Other prolog elements” on page 90.

Contexts
Children: ProdName, Version.

Parents: DProlog, Prolog, SpecDProlog.

ProdName (product name)

Purpose
The ProdName element contains the name of the product with which the
document is associated.

Examples
<IBMPRODINFO>
<PRODNAME>Test Prod</PRODNAME>
<VERSION>2</VERSION>
<REL>3</REL>
<MOD>1</MOD>
</IBMPRODINFO>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Other prolog elements” on page 90.

Contexts
Children: text (#pcdata).

Parents: IBMLibEntry, IBMProdInfo, LibEntry, ProdInfo.

Prolog (document metainformation)

Purpose
The Prolog element contains metainformation about a document, which is
information that describes the document, such as the document title, the author,
and the document number. It also contains many different types of markup
definitions used to define classes and properties. It contains collectors which contain
information on reuse elsewhere in the document (using GLDefs and ObjLib).

ProdInfo (product information)

404 ID Workbench: IBMIDDoc User’s Guide and Reference

Examples
<prolog>
<?xpp:lers nopage>
<ibmbibentry><doctitle>
<library><titleblk>
<title>ID Workbench</title>
</titleblk></library>
<titleblk>
<title>IBMIDDoc User’s Guide and Reference</ph></title>
</titleblk></doctitle>
<ibmdocnum>SH21-0783-09</ibmdocnum>
<externalfilename>iddugref</externalfilename>
</ibmbibentry><masterindexinfo><masterindexprefix>
IDDOC</masterindexprefix></masterindexinfo>
...
</prolog>

Attributes
See “Common Element Attributes (small set)” on page 228.

Usage
See “The preface” on page 100.

Contexts
Children: Approvers, BibEntryDefs, CopyrDefs, CritDates, GlDefs, IBMBibEntry,
IBMProdInfo, IdxDefs, LDescs, Maintainer, MasterIndexInfo, ObjLib, Owners,
ProdInfo, PropDefs, QualifDefs, RevDefs.

Parents: IBMIDDoc.

PropDef (property set definition)

Purpose
The PropDef element defines values for properties that are common to a set of
elements. Any element can refer to a PropDef element using the common
PROPSRC attribute. When a set of properties applies only to a certain set of
element types, the ELETYPES attribute can be used to indicate which element
types can refer to a given PropDef element.

You can also use PropDef to contain PROPS definitions for property attributes that
are common to all elements, such Language and Proc. See “Defining Element
Properties” on page 201 for guideance on using property definitions..

Examples
<propdef eletypes="xmp" style="BKM:(keep=10)">
<desc>Allow examples in BookMaster output to flow,
keep the 1st 10 lines together.</desc>
</propdef>

Attributes
PROPNAME=name

Defines the name to be referenced by the PROPSRC attribute.

ELETYPES=element names
Defines those element types (generic identifiers) to which this PropDef applies.

Prolog (document metainformation)

Chapter 25. IBMIDDoc Elements 405

Use ELETYPES when a PropDef is only meaningful for a specific set of
element types, such as when the STYLE value is element-specific. When an
ELETYPES value is specified, the PropDef values will apply only to elements
of the specified type.

See “Common Element Attributes (small set)” on page 228.

Usage
See “Defining Element Properties” on page 201.

Contexts
Children: Desc.

Parents: PropDefs, PropGroup.

PropDefs (property definitions)

Purpose
The PropDefs element contains property definition elements. Properties apply to all
elements contained within the division with which the property definitions are
associated.

Examples
<propdefs>
<propdef eletypes="xmp" style="BKM:(keep=10)">
<desc>Allow examples in BookMaster output to flow,
keep the 1st 10 lines together.</desc>
</propdef>
...
</propdefs>

Attributes
See “Common Element Attributes (small set)” on page 228.

Usage
See Chapter 20, “Property and Class Definitions” on page 201.

Contexts
Children: ClassDef, DLDef, FigDef, GLDef, LERSDef, MkDesc, ModInfoDef,
ModItemDef, MsgItemDef, MsgLDef, OLDef, PropDef, PropDesc, PropGroup,
ScreenDef, SyntaxDef, ULDef, XMPDef.

Parents: DProlog, Prolog, SpecDProlog.

PropDesc (property description)

Purpose
The PropDesc element contains the definitions used in the values of the PROPS
attribute. It also contains a default value that is used if no PROPS value is assigned
by the author.

PropDef (property set definition)

406 ID Workbench: IBMIDDoc User’s Guide and Reference

Examples
<propdesc propname="ref" default="true">
<desc>Include the Reference part</desc>
</propdesc>

Attributes
PROPNAME=property-name

Contains the value that is being defined. This value can be used on the PROPS
attribute.

Default=true | false
Sets the default value of the property. You set the value to true or false. An
unset variable is set assumed to be false.

Usage
See “Setting the properties to true or false” on page 197.

Contexts
Children: Desc, Title.

Parents: PropDefs, PropGroup.

PropGroup (property group)

Purpose
The PropGroup element enables you to organize elements within a PropDefs
section. Because PropDef elements are used to define property values, the
processing system cannot use those same properties to determine whether or not a
given PropDef element should be processed. The PropGroup element provides a
way to use properties to use or ignore PropDef elements.

The typical case is one where you want one set of properties for one output and a
different set for another. You can use PropGroup elements with the PropDefs
element to contain the different PropDef elements.

You can nest PropGroup elements in order to take advantage of property
inheritance.

Examples
<PROLOG>...
<PROPDEFS>
<PROPDEF PROPNAME=’xpert" SEC="IUO" PROPS="expert">

<DESC>This property definition applies to all elements in the document
</PROPDEF>
<PROPGROUP PROPS="display">
<DESC>The following property definition only applies
when processing for online display.
</DESC>
</PROPGROUP>
<PROPGROUP PROC="print">
<DESC>The following property definition only applies
when processing for print.
</DESC>

<PROPDEF>

PropDesc (property description)

Chapter 25. IBMIDDoc Elements 407

...
</PROPGROUP>
</PROPDEFS>...
</PROLOG>

Attributes
See “Common Element Attributes (small set)” on page 228.

Contexts
Children: ClassDef, Desc, DLDef, FigDef, GLDef, LERSDef, MkDesc, ModInfoDef,
ModItemDef, MsgItemDef, MsgLDef, OLDef, PropDef, PropDesc, PropGroup,
ScreenDef, SyntaxDef, ULDef, XMPDef.

Parents: PropDefs, PropGroup.

PrtLoc (country where printed)

Purpose
The PrtLoc element contains the name of the country where a document or library
was printed.

Examples
<PRTLOC>Boise, Idaho</PRTLOC>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “An example of using BibEntry and BibEntryDefs” on page 144.

Contexts
Children: text (#pcdata), Ph.

Parents: BibEntry, IBMBibEntry, IBMLibEntry, LibEntry.

PublicID (public identifier)

Purpose
The PublicID element contains the SGML public identifier for a document. It is
intended that the public identifier of the document entity be used by presentation
systems to locate the actual document, but specific presentation systems may
define application-specific data to be specified as the system identifier of the
document entity if they do not support the use of public identifiers. The public
identifier can be included in the BibEntry itself as a way of keeping a document’s
formal public identifier definition with the rest of its bibliographic information.
This could allow, for example, the automatic generation of entity declarations for
documents described by BibEntry elements.

PropGroup (property group)

408 ID Workbench: IBMIDDoc User’s Guide and Reference

See Appendix B, “Proposed IBM Standard for Formal Public Identifiers” on
page 459 for a description of the formal public identifier standard defined by the
IBM Corporation for its internal and external use.

Examples
<BIBENTRY ID="iddocref">...
<PUBLICID>+//ISBN 0-933186::IBM//DOCUMENT IBMIDDoc Reference//EN...
</BIBENTRY>

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: text (#pcdata), Ph.

Parents: BibEntry, IBMBibEntry, IBMLibEntry, LibEntry.

Publisher (document publisher)

Purpose
The Publisher element contains the name and address of the publisher of the
document.

Examples
<PUBLISHER>IBM CORPORATION</PUBLISHER>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “About the prolog” on page 88.

Contexts
Children: Address, CorpName.

Parents: BibEntry, IBMBibEntry, IBMLibEntry, LibEntry.

PV (parameter variable)

Purpose
The PV element contains a parameter variable. The output style specification for a
PV element provides a visual cue to the user, denoting that the content of the PV
element has special meaning.

Examples
<P>This is a description of a
<PV>parameter variable</PV>
</P>

PublicID (public identifier)

Chapter 25. IBMIDDoc Elements 409

Attributes
OPTREQ=REQ | OPT | DEF

Indicates whether or not the variable is optional. REQ (required) is the default.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Highlighting” on page 43.

Contexts
Children: text (#pcdata).

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, MsgText, NoteBody,
P, Ph, Q, SynNote, Term, Warning, Xmp, XPh.

Q (quotation phrase)

Purpose
Use the Q element to contain material excerpted from another source and that is
used within the context of a paragraph or similar element. Use LQ for quotations
that contain more than one paragraph. In the default presentation style, the quoted
material is presented inline with the material around it. It is usually surrounded by
typographical quotes as well.

One of the purposes of Q is to identify a quotation, it can refer to a BibEntry
element using the BIBID attribute.

Examples
...
<P>New presidents often try to inspire the country to face new challenges
with words like:
<Q BIBID="jfk0161">Ask not what your country can do for you,

ask what you can do for your country</Q>...

Attributes
BibId=bibentry_id

The ID of the BibEntry element that defines the source of the quotation. This is
optional.

“Common Element Attributes (large set)” on page 227

Usage
See “Quotes and excerpts” on page 47.

Contexts
Children: text (#pcdata), Address, APL, Bin, Char, Cit, Date, Dec, Formula, Hex, L,
MD, MV, Num, Oct, Ph, PK, PV, Q, RefKey, SynPh, Term, TM, XPh, XRef.

PV (parameter variable)

410 ID Workbench: IBMIDDoc User’s Guide and Reference

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, NoteBody, P, Ph, Q,
SynNote, Warning.

Qualif (qualification)

Purpose
The Qualif element contains a qualification definition that is referenced by
elements to which the qualification applies.

A qualification is a limitation or restriction on the application of information. For
example, a qualification might be that information applies to ’OS/2 2.1 users only’.
The QUALIF attribute is used to reference the Qualif element from the element
that contains information of this type.

The Qualif element cannot be used to include or exclude information. It cannot be
used for conditional processing. The QUALIF attribute and element have no effect
on property-based retrieval.

For more information about the Qualif element, see “Other prolog elements” on
page 90.

Examples
<qualifdefs>
<qualif id="win99" ident="use">
<title>Windows/99</title>
<desc>Windows/99 information</desc>
</qualif>
<qualif id="os25" ident="use">
<title>OS/2.5</title>
<desc>OS/2.5 information</desc>
</qualif>
</qualifdefs>

Attributes
ID=revision_ID

The ID of this qualification. The ID attribute is required. The ID is referred to
with the QUALIF attribute from any element.

IDENT= USE | IGNORE
Indicates whether the qualification is a active.

“Common Element Attributes (small set)” on page 228

Usage
See “Qualifying information” on page 49.

Contexts
Children: Desc, Title.

Parents: QualifDefs.

Q (quotation phrase)

Chapter 25. IBMIDDoc Elements 411

QualifDefs (qualification definitions)

Purpose
The QualifDefs element contains a list of Qualif elements which are used in the
document or division in which it is found.

Examples
<qualifdefs>
<qualif id="win99" ident="use">
<title>Windows/99</title>
<desc>Windows/99 information</desc>
</qualif>
<qualif id="os25" ident="use">
<title>OS/2.5</title>
<desc>OS/2.5 information</desc>
</qualif>
</qualifdefs>

Attributes
“Common Element Attributes (small set)” on page 228

Usage
See “Other prolog elements” on page 90.

Contexts
Children: Qualif.

Parents: DProlog, Prolog, SpecDProlog.

RCF (reader comment form)

Purpose
The RCF element contains the elements necessary to produce a reader comment
form.

In order for the standard IBM RCF to be generated, the following IBMIDDoc
elements must be specified in the document prolog:
v DocTitle
v Library
v IBMDocNum
v Version
v Release
v Maintainer

When creating an RCF for hardcopy, be sure to include the <MAINTAINER>
section in your profile. This has the address information, fax number, etc. to be
included in the RCF. Also, you need to specify the <RCF> element in the back
matter.

Qualif (qualification)

412 ID Workbench: IBMIDDoc User’s Guide and Reference

Examples
For the RCF to be generated, you need to specify the MAINTAINTER element
information in the prolog of your document:
<maintainer>
<corp>
<corpname>IBM Corporation</corpname>
<address>ATTN: Dept 542
3605 HWY 52 N
Rochester, MN
<postalcode>55901-9986</postalcode>
<phone equip="fax">1-800-555-1212</phone></address>
</corp>
</maintainer>

In the back matter, you need to include the RCF element; for example:
<backm>
<rcf><gendtitle></rcf>
</backm>

Attributes
“Common Element Attributes (small set)” on page 228

Usage
See “Using reader’s comment form (RCF)” on page 103.

Contexts
Children: GendTitle, RetKey, TitleBlk.

Parents: BackM, FrontM.

RefKey (reference key)

Purpose
The RefKey element establishes a visual link that identifies a specific part of a
graphic.

Examples
See <refkey>1</refkey> for that part.

Attributes
“Common Element Attributes (large set)” on page 227

Usage
See “Highlighting” on page 43.

Contexts
Children: text (#pcdata).

Parents: AnnotBody, Attention, Bridge, Caution, CGraphic, CompCmt, Danger,
Defn, Desc, entry, Fig, FigSeg, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc,
ModItem, NoteBody, P, Ph, Q, Screen, SynNote, Term, Warning, Xmp.

RCF (reader comment form)

Chapter 25. IBMIDDoc Elements 413

Release (product release identifier)

Purpose
The Release element contains the product release number.

Examples
<VERSION>1</VERSION>
<RELEASE>1</RELEASE>
<MOD>1</MOD>

Attributes
“Common Element Attributes (large set)” on page 227

Usage
See “Using IBMProdInfo” on page 92.

Contexts
Children: text (#pcdata), Ph.

Parents: IBMProdInfo.

RepSep (syntax repeat separator)

Purpose
The RepSep element defines a repeat separator within a syntax definition. Repeat
separators must be defined at the beginning of the syntax definition.

Examples
<syntax>
<repsep id="rsep0003a"></repsep>
<group repid="rsep0003a">
<var>variable</var>
</group>
</syntax>

Attributes
OPTREQ=OPT | REQ

Indicates whether the contained group is required or optional.

CONVAR=CONSTANT|VAR
Indicates whether the content of the element is a constant or a variable in the
context where is it used.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 15, “Programming Syntax Diagrams” on page 147.

RefKey (reference key)

414 ID Workbench: IBMIDDoc User’s Guide and Reference

Contexts
Children: text (#pcdata).

Parents: SynBlk, Syntax.

RetKey (retrieval key)

Purpose
RetKey can be used to specify subject heading retrieval aid text and graphics for
those output types which support such graphics. This can also contains
information to be used by an information management system. Using this key, the
system could conduct queries without resorting to a full-text search of all of the
information. Use the RetKey element to contain a list of meaningful terms and
abbreviations that might be used as keywords during a database search.

Examples
<D>
<DPROLOG>
<TITLEBLK><TITLE>Configuring Your New Whantoozler
</TITLE></TITLEBLK>
<RETKEY>Whantoozler 5.0 Setup</RETKEY>
</DPROLOG>
...

Attributes
OBJ=graphic_entity

specifies the the name of the graphic to be used as a retrieval aid.

See “Common Element Attributes (large set)” on page 227.

Contexts
Children: text (#pcdata), Ph.

Parents: Appendix, DProlog, FigList, IBMBibEntry, IBMSafety, Index, LE, LERS,
Mod, ModInfo, MsgList, PartAsm, PNIndex, Proc, RCF, Safety, SpecDProlog, TList,
TOC.

Rev (revision)

Purpose
The Rev element defines a single revision for a document or division. The REV
attribute is used on revised elements to refer to the applicable Rev element. Use
the Desc element within Rev to describe the purpose of the revision.

Examples
<prolog>
...
<revdefs>
<rev id="v4r5" ident="use">
<date>9/9/99</date>
<desc>First draft for v4r5</desc>

RepSep (syntax repeat separator)

Chapter 25. IBMIDDoc Elements 415

</rev>
</revdefs>
...
</prolog>

Attributes
ID=revision_ID

The ID of this revision. The ID attribute is required. The ID is referred to with
the REV attribute from any element.

IDENT= USE | IGNORE
Indicates whether the revision is an active revision. Revisions that are active
(USE) will be indicated by whatever mechanism is defined in the presentation
style, typically by placing a vertical bar or other character in the margin.

Revisions for which IGNORE is specified are ignored when the document is
processed.

CODE=character
Associates a character with the revision. When no code is specified, you get a
vertical bar to the left of text containing the active REV attribute. This is what
you want to appear in the final edition. For internal drafts, you can use some
other character to indicate the revision level. For example, a plus sign, an
asterisk, or a number. Use only a single character.

REASON=reason_text
Contains the text explaining the reason for the revision.

See “Common Element Attributes (small set)” on page 228.

Usage
See “Using Revisions” on page 109.

Contexts
Children: Author, Date, Desc.

Parents: RevDefs.

RevDefs (revision tracking information)

Purpose
The RevDefs element contains Rev and Mark elements which define the revision
history of the document or division.

Examples
<prolog>
...
<revdefs>
<rev id="v4r5" ident="use">
<date>9/9/99</date>
<desc>First draft for v4r5</desc>
</rev>
</revdefs>
...
</prolog>

Rev (revision)

416 ID Workbench: IBMIDDoc User’s Guide and Reference

Attributes
See “Common Element Attributes (small set)” on page 228.

Usage
See “Using Revisions” on page 109.

Contexts
Children: Mark, Rev.

Parents: DProlog, Prolog, SpecDProlog.

Row (table row)

Purpose
The Row element contains the row information for a row in a TGroup.

Examples
<table pgwide="0" id="tablesample">
<cap>Sample table caption</cap>
<tgroup cols="1">
<colspec colname="col1">
<tbody>
<row>
<entry colname="col1">my little</entry>
</row>
<row>
<entry colname="col1">sample table</entry>
</row>
</tbody>
</tgroup>
</table>

Attributes
ROWSEP=0 | 1

This attribute’s value specifies that a row separator rule should be:
v displayed below each Entry element ending in a Row (1)
v not displayed at all (0)

Shade=NOShade | XLight | Light | Meduim | Dark | XDark
Use the Shade attribute to specify the shading. This table example shows the
shading values used in table cells:

Table 22. Cell entry shading. In the editor, use the modify attributes icon or Ctrl-A to set the
Shade attribute for the cell’s Entry tag.

noshade (0%) xlight (5%) light (26%) medium
(50%)

dark (74%) xdark (100%)

the quick brown fox jumps over the lazy dog

VALIGN=TOP | MIDDLE | BOTTOM
This attribute specifies the vertical alignment of the text contained in the Entry
elements.

TOP
specifies alignment of the text at the top of the Entry elements.

RevDefs (revision tracking information)

Chapter 25. IBMIDDoc Elements 417

|
|
|

||
|

||||
|
||

||||||

MIDDLE
specifies alignment of the text at the middle of the Entry elements.

BOTTOM
specifies alignment of the text at the bottom of the Entry elements (the
default).

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 7, “Creating IBMIDDoc Tables” on page 67.

Contexts
Children: entry.

Parents: tbody, tfoot, thead.

Safety (safety notices)

Purpose
Use Safety to contain or refer to any safety-related information such as cautions,
warnings, and FCC notices.

Examples
<safety><titleblk><title>Safety Notices</title></titleblk>
<caution>Watch out for splinters.</caution>
</safety>

Attributes
LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol

Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

SPEC=AUTO | MAN
Specifies whether the content of the element is generated. If SPEC=AUTO is
specified, the element’s content is generated. This attribute is not supported at
this time.

See “Common Element Attributes (large set)” on page 227.

Row (table row)

418 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|

|
|
|
|

|
|

|
|

Contexts
Children: Attention, Caution, Danger, DL, Fig, GendTitle, L, MMObj, Note,
NoteList, OL, P, PBlk, RetKey, Table, TitleBlk, UL, Warning.

Parents: FrontM.

Screen (display screen)

Purpose
The Screen element contains or refers to a representation of a computer screen or
user interface panel (window).

Examples
<screen>
cpyf CopyFile Command

From file ____________

To file ____________

F1=Help 3=Exit 12=Cancel
</screen>

Attributes
OBJ=data_entity_name

Refers to an SGML data entity that contains the screen representation. The data
entity can be in any supported notation and may in fact be a reference to a live
version of the panel if that is supported by your online presentation system.

When the OBJ attribute is specified, it is an error to specify any screen data or
the Screen end tag.

NOTATION=
Defines the notation of the contained data for inline screen data, as follows:

LINESPEC
Significant record ends are preserved in the output.

LINELENGTH=characters
This specifies the number of characters in widest line. If the number of
characters does not fit in the column or page width, the text size is reduced. If
possible, when LINELENGTH is specified, the width of the screen border is
shrunk to fit around the specified number of characters.

If no LINELENGTH is specified, the formatter uses the default size for screens
for that style (or the current document point size if it is smaller) and makes the
screen fit the indented area (or the page area if pgwide=1).

If LINELENGTH is specified, the formatter starts scaling down from the
current document point size. If number of characters fits, it makes the screen
just large enough to fit them and shrinks the screen to fit around them. If
number of characters doesn’t fit, it scales down the characters to fit and has the
screen fit around them.

PGWIDE=1 | 2
This specifies the width of the screen. 1 is for a page-wide screen; 2 indents to
the current indention in the column (2 is the default)

Safety (safety notices)

Chapter 25. IBMIDDoc Elements 419

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as
defaults for this tag. See Chapter 9, “Using definition tags” on page 105 for
more information.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Screens” on page 59.

Contexts
Children: text (#pcdata), L, LitData, MMObj, Ph, RefKey, Term.

Parents: AnnotBody, Attention, Bridge, Caution, Danger, DBody, Defn, DIntro,
DSum, entry, Fig, FigSeg, Fn, LEDI, LI, LQ, MkNote, ModDesc, ModItem,
MsgItem, NoteBody, P, PBlk, ProcIntro, SynNote, Warning.

ScreenDef (Screen definition)

Purpose
The ScreenDef element sets attribute defaults for screens. ScreenDef goes within
the document prolog to set definitions for the entire document; or within a
division prolog to set definitions for just that division. The ScreenDef tag goes
inside a PropDefs tag.

Examples
<screendef defname="widescreen" linelength="127" pgwide="1">

Attributes
DEFNAME=definition-name

The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

LINELENGTH=characters
This specifies the number of characters in widest line. If the number of
characters does not fit in the column or page width, the text size is reduced. If
possible, when LINELENGTH is specified, the width of the screen border is
shrunk to fit around the specified number of characters.

If no LINELENGTH is specified, the formatter uses the default size for screens
for that style (or the current document point size if it is smaller) and makes the
screen fit the indented area (or the page area if pgwide=1).

If LINELENGTH is specified, the formatter starts scaling down from the
current document point size. If number of characters fits, it makes the screen

Screen (display screen)

420 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|

|

|
|

|

|
|
|
|

|

|

|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|

just large enough to fit them and shrinks the screen to fit around them. If
number of characters doesn’t fit, it scales down the characters to fit and has the
screen fit around them.

PGWIDE=1 | 2
This specifies the width of the screen. 1 is for a page-wide screen; 2 indents to
the current indention in the column (2 is the default)

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See “Property-Based
Retrieval” on page 195.

Usage
See Chapter 9, “Using definition tags” on page 105.

Contexts
Children: empty.

Parents: PropDefs, PropGroup.

Sem (semantic meaning)

Purpose
The Sem element defines the meaning of a class. It should describe the type of
information for which the class should be used.

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: text (#pcdata), DL, Fig, L, MMObj, Note, NoteList, OL, P, PBlk, Ph, Table,
Term, TM, UL.

Parents: ClassDef.

Sep (syntactic separator)

Purpose
The Sep element contains a separator that is to separate keywords, variables,
operators, or groups.

Examples
<syntax>
<group>
<kwd>FRED</kwd>
<sep>,</sep>
<kwd>BARNEY</kwd>
</group>
</syntax>

ScreenDef (Screen definition)

Chapter 25. IBMIDDoc Elements 421

|
|
|

|
|
|

|
|
|
|

|

|

|

|

|

Attributes
OPTREQ = REQ | OPT

Indicates whether or not the separator is optional or required. REQ (required)
is the default. Any separator that is not optional is, by definition, required.

CONVAR=CONSTANT | VAR
Indicates whether the content of the element is a constant or a variable in the
context where is it used.

LINKEND=id
Contains an ID reference that enables a link to an arbitrary location in the
document.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 15, “Programming Syntax Diagrams” on page 147.

Contexts
Children: text (#pcdata).

Parents: Group, SynPh.

SOA (summary of amendments)

Purpose
The SOA element contains information summarizing any changes made to the
information since prior versions.

Examples
<soa>
<specdprolog><titleblk><title>What’s new and different
</title></titleblk></specdprolog>
<dbody>
<p>Changes since the last edition include...</p>
</dbody>
</soa>

Attributes
LAYOUT=Document-Layout | OneCol | TwoCol | OffsetCol

Specifies the column-style for this portion of the book.

Document-Layout
The section uses the default layout for the document style.

OffsetCol
Formats the text using an indented, one-column layout. The headings
format across the page, with the offset text, or indented from the
margin.

OneCol
The text formats across the entire page.

TwoCol
The text formats in two columns.

Sep (syntactic separator)

422 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|

|
|

|
|
|
|

|
|

|
|

Toc=toc | notoc
Specifies whether the heading should appear in the table of contents. The
default is for headings to appear in the table of contents; to a certain level
(such as heading level 3). This replaces the older style=hidden attribute. Use
this to prevent headings from appearing in the table of contents. It cannot be
used to add a heading to the table of contents that would not normally appear.
The levels of headings that appear in the table of contents are determined by
the MaxToc attribute of the IBMIDDoc tag.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Summary of changes” on page 100.

Contexts
Children: DBody, DIntro, DSum, SpecDProlog.

Parents: BackM, FrontM.

SpanSpec (span specification)

Purpose
In tables, this specifies how cells are to be combined.

Examples
<table frame="all" pgwide="0" id="complxt">
<cap>Complex table example</cap>
<tgroup cols="3" colsep="1" rowsep="1">
<colspec colname="col1" colwidth="25*">
<colspec colname="col2" colwidth="32*">
<colspec colname="col3" colwidth="38*">
<spanspec namest="col1" nameend="col2" spanname="1to2">
<tbody>
<row>
<entry spanname="1to2" valign="top">Row 1, Cell 1
</entry>
<entry colname="col3" morerows="1" valign="top">Row
1, Cell 2</entry>
</row>
<row>
<entry valign="top">Row 1, Cell 3</entry>
<entry valign="top">Row 1, Cell 4</entry>
</row>
</tbody>
</tgroup>
</table>

Attributes
namest=starting column

nameend=ending column

spanname=name

align= center | char | justify | left | right
How to align the content of the cell.

SOA (summary of amendments)

Chapter 25. IBMIDDoc Elements 423

charoff=distance
Offset from left edge of cell.

char
Character to align to

colsep= 1 | 0
Draw a line to the right of the cell (1); or not (0).

rowsep = 1 | 0
Draw a line under the bottom of the cell (1); or not (0).

Usage
See Chapter 7, “Creating IBMIDDoc Tables” on page 67.

Contexts
Children: empty.

Parents: tgroup.

SpecDProlog (special section division prolog)

Purpose
The SpecDProlog element contains prolog information specific to a division.

Examples
<SPECDPROLOG>
<GENDTITLE>
<AUTHORS>
<AUTHOR>
<PERSON>
<NAME>
Rick Dennis
</NAME>
</PERSON>
</AUTHOR>
</AUTHORS>

</SPECDPROLOG>

Attributes
See “Common Element Attributes (small set)” on page 228.

Contexts
Children: Approvers, Authors, BibEntryDefs, CopyrDefs, CritDates, GendTitle,
GlDefs, IBMProdInfo, IdxDefs, LDescs, Maintainer, MasterIndexInfo, MetaData,
ObjLib, Owners, ProdInfo, PropDefs, QualifDefs, RetKey, RevDefs, TitleBlk.

Parents: Abbrev, Abstract, Bibliog, Glossary, Legend, MasterIndex, Preface, SOA.

SpanSpec (span specification)

424 ID Workbench: IBMIDDoc User’s Guide and Reference

StepNotes (step notes)

Purpose
Use StepNotes to contain notes about a procedure step, such as special
considerations about the step. Do not use StepNotes to convey decision-making
information. Rather, use DecisionPnt to identify conditions and actions that may
change the path through the procedure.

Examples
<procstep>
<stepnotes>
Johnny can eat solid food.
Continue at <xref refid="frozstk">
</stepnotes></procstep>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 22, “Creating maintenance analysis procedures” on page 207.

Contexts
Children: Bridge, LI, LIBlk.

Parents: ProcStep.

StepRef (procedure step reference)

Purpose
The StepRef element cross-references to a step in a procedure (PROC).

Contexts
Children: empty.

Parents: Desc, ProcEntry, ProcExit.

STitle (shortened title)

Purpose
The STitle element contains a shortened title for an element or document. The
STitle is used in running footers by some output formatter styles.

For XHTML and HTML, you can use the STitle to override the text used in the
table of contents for use in Informaiton Centers. This also requires the use of the
/TOCSTITLE formatting option.

SpecDProlog (special section division prolog)

Chapter 25. IBMIDDoc Elements 425

Examples
<ibmbibentry>
<doctitle><titleblk>
<title>Document Title</title>
<stitle>Short title, used for running foot</stitle>
<subtitle>Subtitle, using on title page</subtitle>
</titleblk></doctitle></ibmbibentry>

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: text (#pcdata), L, Ph, Term, TM.

Parents: TitleBlk.

SubTitle (descriptive subtitle)

Purpose
The SubTitle element contains a descriptive subtitle that can be used on title pages
to further describe the document’s subject matter.

SubTitle is also allowed with in heading and division titles, but it should not be
used.

Examples
<ibmbibentry>
<doctitle><titleblk>
<title>Document Title</title>
<stitle>Short title, used for running foot</stitle>
<subtitle>Subtitle, using on title page</subtitle>
</titleblk></doctitle></ibmbibentry>

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: text (#pcdata), L, Ph, Term, TM.

Parents: TitleBlk.

SynBlk (syntax block)

Purpose
The SynBlk element organizes syntax definitions into titled subdivisions. Use
syntax blocks to organize the elements of a syntax definition into logical, optionally
titled groupings. For example, a single command may have several forms. Syntax
blocks allow you to define all the forms in a single syntax definition.

In hardcopy, syntax blocks also automatically scale the diagram portion they
contain to fit the column width.

STitle (shortened title)

426 ID Workbench: IBMIDDoc User’s Guide and Reference

Examples
<syntax>
<synblk>
<group>
<kwd>FORM</kwd>
<kwd>PROC</kwd>
</group>
<group>
<kwd>FILE</kwd>
<kwd>NAME</kwd>
</group>
</synblk>
</syntax>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 15, “Programming Syntax Diagrams” on page 147.

Contexts
Children: Fragment, FragRef, Group, RepSep, SynNote, Title.

Parents: Syntax.

SynNote (syntax note)

Purpose
The SynNote element contains a note within a syntax definition group or fragment.
Use SynNote to add notes to your syntax definition to explain aspects of the
syntax that cannot be expressed in the syntax markup itself. In the default
presentation, the syntax notes are associated with the syntax diagram using
numeric callouts and the syntax notes are themselves collected at the end of the
presented syntax diagram or syntax block.

Examples
<syntax>
<group>
<kwd>FRED</kwd>
<synnote>This is a rather common name.</synnote>
</group>
</syntax>

Attributes
refid=identifier

Refers the the ID of a corresponding SYNNOTE tag. This allows you to enter
the note text once in the diagram, and reuse the note for another item in the
diagram.

callout=character
This allows you to specify one character to use instead of a number for
indicating the note.

See “Common Element Attributes (large set)” on page 227.

SynBlk (syntax block)

Chapter 25. IBMIDDoc Elements 427

Usage
See “Syntax Notes” on page 156.

Contexts
Children: text (#pcdata), Address, Annot, APL, Bin, Bridge, CGraphic, Char, Cit,
Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines, LitData, LQ, MD, MMObj,
ModInfo, MV, Note, NoteList, Num, Oct, OL, P, ParmL, PBlk, Ph, PK, PV, Q,
RefKey, Screen, SynPh, Table, Term, TM, UL, Xmp, XPh, XRef.

Parents: Fragment, Group, SynBlk, Syntax.

SynPh (syntax phrase)

Purpose
The SynPh element contains syntax definition elements and is used in the context
of the information around it. Use SynPh to present syntax fragments outside the
context of a complete syntax definition.

Examples
<synph><kwd optreq="def">Filename</kwd></synph>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Syntax Phrases” on page 157.

Contexts
Children: text (#pcdata), Delim, Kwd, Oper, Sep, Var.

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, MsgText, NoteBody,
P, Ph, Q, SynNote, Term, Warning, Xmp.

Syntax (syntax diagram)

Purpose
The Syntax element contains the definition of the syntax of a statement in some
computer language; or a command, function call, programming language
statement, or other such construct. Use syntax definitions to define the rules for
creating statements in some computer language, for example commands in a
command language or programming language expressions. Syntax definitions can
also be used to model more abstract constructs, such as the structural relationships
between elements in a language.

The default presentation style is as “railroad tracks”, but their presentation is not
limited to that form. A given definition can be presented in a variety of ways.

SynNote (syntax note)

428 ID Workbench: IBMIDDoc User’s Guide and Reference

Examples
<syntax><title>Database Reference</title>
<repsep id="rsep0006"></repsep>
<group>
<kwd>CREATE TABLE</kwd>
</group>
<group>
<var>table_name</var>
</group>
<group repid="rsep0006">
<group style="bkm:(composite)">
<delim startend="START">(</delim>
<var>column_name</var>
</group>
<fragref><title>Data Type</title></fragref>
<kwd optreq="OPT">NOT NULL</kwd>
<delim optreq="req" startend="END">)</delim>
</group>
<fragment><title>Data Type</title>
<group choiceseq="CHOICE">
<kwd>INTEGER</kwd>
<group>
<group choiceseq="CHOICE">
<kwd>DECIMAL</kwd>
<kwd>DEC</kwd>
</group>
<group style="BKM:(COMPOSITE)">
<delim startend="START">(</delim>
<var>length</var>
<sep>&ssbl;+&ssbl;</sep>
<var>colwidth</var>
<delim startend="END">)</delim>
</group>
</group>
<group>
<group choiceseq="CHOICE">
<kwd>CHARACTER</kwd>
<kwd>CHAR</kwd>
</group>
<group optreq="OPT" style="BKM:(COMPOSITE)">
<delim startend="START">(</delim>
<var>length</var>
<delim startend="END">)</delim>
</group>
</group>
<group style="BKM:(COMPOSITE)">
<kwd>GRAPHIC</kwd>
<delim startend="START">(</delim>
<var>length</var>
<delim startend="END">)</delim>
</group>
</group>
</fragment>
</syntax>

Attributes
SYNSTYLE=SPACE | LBLBOX | BOX | RULE

Causes the figure to have a frame. The default is space — no frame.

LblBox
Causes a box to be placed around the diagram. The top line of the box
has text label that is taken from the diagram’s Title tag.

Box Causes a box to be placed around the diagram.

Syntax (syntax diagram)

Chapter 25. IBMIDDoc Elements 429

Rule Causes a line to be placed above and below the diagram; to visually
separate it from the surrounding text.

PGWIDE=1 | 2
This specifies the width of the syntax diagram. 1 creates a page-wide diagram;
2 indents to the current indention in the column (2 is the default).

ScalePct=scale-percent
You can use the ScalePct attribute to scale the text up or down in the element.
The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:
scalepct="80"

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as
defaults for this tag. See Chapter 9, “Using definition tags” on page 105 for
more information.

Complang
Specifies the computer language. This is optional.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 15, “Programming Syntax Diagrams” on page 147.

Contexts
Children: Fragment, FragRef, Group, RepSep, SynBlk, SynNote, Title.

Parents: AnnotBody, Attention, Bridge, Caution, Danger, DBody, Defn, DIntro,
DSum, entry, Fig, FigSeg, Fn, LEDI, LI, LQ, MkNote, ModDesc, ModItem,
MsgItem, NoteBody, P, PBlk, ProcIntro, Warning.

SyntaxDef (Syntax definition)

Purpose
The SyntaxDef element sets attribute defaults for syntax diagrams. SyntaxDef goes
within the document prolog to set definitions for the entire document; or within a
division prolog to set definitions for just that division. The SyntaxDef tag goes
inside a PropDefs tag.

Examples
<syntaxdef defname="widediag" synstyle="box" pgwide="1" scalepct="90">

Attributes
DEFNAME=definition-name

The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Syntax (syntax diagram)

430 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|

|
|
|
|
|

|

|
|
|
|
|

|

|
|

|

|
|
|
|

|

|

|

|
|
|
|
|
|

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

SYNSTYLE=SPACE | LBLBOX | BOX | RULE
Causes the figure to have a frame. The default is space — no frame.

LblBox
Causes a box to be placed around the diagram. The top line of the box
has text label that is taken from the diagram’s Title tag.

Box Causes a box to be placed around the diagram.

Rule Causes a line to be placed above and below the diagram; to visually
separate it from the surrounding text.

ScalePct=scale-percent
You can use the ScalePct attribute to scale the text up or down in the element.
The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:
scalepct="80"

PGWIDE=1 | 2
This specifies the width of the syntax diagram. 1 creates a page-wide diagram;
2 indents to the current indention in the column (2 is the default).

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See “Property-Based
Retrieval” on page 195.

Usage
See Chapter 9, “Using definition tags” on page 105.

Contexts
Children: empty.

Parents: PropDefs, PropGroup.

Table

Purpose
The Table element contains elements that make up a IBMIDDoc table.

Examples
<table frame="all" pgwide="0" id="complxt">
<cap>Complex table example</cap>
<tgroup cols="3" colsep="1" rowsep="1">
<colspec colname="col1" colwidth="25*">
<colspec colname="col2" colwidth="32*">
<colspec colname="col3" colwidth="38*">
<spanspec namest="col1" nameend="col2" spanname="1to2">
<tbody>
<row>
<entry spanname="1to2" valign="top">Row 1, Cell 1
</entry>

SyntaxDef (Syntax definition)

Chapter 25. IBMIDDoc Elements 431

|
|
|
|

|
|

|
|
|

||

||
|

|
|
|
|
|

|

|
|
|

|
|
|
|

|

|

|

|

|

<entry colname="col3" morerows="1" valign="top">Row
1, Cell 2</entry>
</row>
<row>
<entry valign="top">Row 1, Cell 3</entry>
<entry valign="top">Row 1, Cell 4</entry>
</row>
</tbody>
</tgroup>
</table>

Attributes
TOCENTRY= 0(NO) | 1(YES)

If YES, and if the Title element is included, the table title will be included in
the generated TList for the document.

FRAME=TOP | BOTTOM | TOPBOT | ALL | SIDES | NONE
This attribute’s value describes the frame around the table.

COLSEP=0(NO) | 1(YES)
This attribute’s value specifies that the internal column rules should be:
v drawn to the right of each cell’s content (1)
v not displayed at all (0)

ROWSEP 0(NO) | 1(YES)
This attribute’s value specifies that the internal row rules should be:
v drawn below each Entry element that ends a row (1)
v not displayed at all (0)

ORIENT=PORT | LAND
This attribute specifies whether the orientation of the table presentation is
portrait or landscape. The default is PORT for portrait.

PGWIDE= 0 | 1 | 2
This attribute’s value specifies that the table width should be:
v the full page width (1)
v column width (0)
v The width of the current textline (2). Use this to have a table inside a list

item format to the indentation of that list item.

RowHeader=FirstCol | NoRowHeader
This specifies whether the first column is a row header. If your table’s first
column is really a row-header, specify the RowHeader=FirstCol setting. In the
same way that a column header introduces a table column; the row header
introduces the table row. This is to help make tables, whose first column is a
row-header, to be more accessible when the output is for XHTML. The default
is NoRowHeader. Here’s an example of a table where the FirstCol attribute
should be used:

Switch Location Setting

Hallway On

Kitchen Off

Bedroom On

And the markup:
<table pgwide="2" rowheader="firstcol">
<tgroup cols="2">
<colspec colname="col1">

Table

432 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|
|
|
|
|

|||

||

||

||
|
|

|
|
|

<colspec colname="col2">
<thead>
<row>
<entry colname="col1" valign="top">Switch Setting
</entry>
<entry colname="col2" valign="top">Value</entry>
</row>
</thead>
<tbody>
<row>
<entry colname="col1">Hall switch</entry>
<entry colname="col2">On</entry>
</row>
<row>
<entry colname="col1">Kitchen switch</entry>
<entry colname="col2">Off</entry>
</row>
<row>
<entry colname="col1">Bedroom switch</entry>
<entry colname="col2">On</entry>
</row>
</tbody>
</tgroup>
</table>

Shade=NOShade | XLight | Light | Meduim | Dark | XDark
Use the Shade attribute to specify the shading. This table example shows the
shading values used in table cells:

Table 23. Cell entry shading. In the editor, use the modify attributes icon or Ctrl-A to set the
Shade attribute for the cell’s Entry tag.

noshade (0%) xlight (5%) light (26%) medium
(50%)

dark (74%) xdark (100%)

the quick brown fox jumps over the lazy dog

ScalePct=scale-percent
You can use the ScalePct attribute to scale the text up or down in the element.
The scale-percent is a positive, whole number. 100 is the normal size; 50 is 50%
smaller; 200 is 200% larger. For example, this scales the text to 80% of the body
text:
scalepct="80"

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 7, “Creating IBMIDDoc Tables” on page 67.

Contexts
Children: Cap, Desc, tgroup.

Parents: AnnotBody, Attention, BackCover, Bridge, Caution, Cond, Copyr, Danger,
DBody, Defn, DIntro, DSum, EdNotices, Fn, FrontCover, LEDesc, LEDI, LI, LQ,
MsgItem, NItem, NoteBody, Notices, P, PBlk, ProcEntry, ProcExit, ProcIntro, Safety,
Sem, SynNote, TextAlt, Warning.

Table

Chapter 25. IBMIDDoc Elements 433

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

||
|

||||
|
||

||||||

|
|
|
|
|

|

TBody (table body)

Purpose
The TBody element contains the body of a TGroup; the main part of a table..

Examples
<table frame="all" pgwide="0" id="complxt">
<cap>Complex table example</cap>
<tgroup cols="3" colsep="1" rowsep="1">
<colspec colname="col1" colwidth="25*">
<colspec colname="col2" colwidth="32*">
<colspec colname="col3" colwidth="38*">
<spanspec namest="col1" nameend="col2" spanname="1to2">
<tbody>
<row>
<entry spanname="1to2" valign="top">Row 1, Cell 1
</entry>
<entry colname="col3" morerows="1" valign="top">Row
1, Cell 2</entry>
</row>
<row>
<entry valign="top">Row 1, Cell 3</entry>
<entry valign="top">Row 1, Cell 4</entry>
</row>
</tbody>
</tgroup>
</table>

Attributes
VALIGN=TOP | MIDDLE | BOTTOM

This attribute specifies the vertical alignment of the text contained in the Entry
elements.

TOP
specifies alignment of the text at the top of the Entry elements.

MIDDLE
specifies alignment of the text at the middle of the Entry elements.

BOTTOM
specifies alignment of the text at the bottom of the Entry elements (the
default).

See “Common Element Attributes (large set)” on page 227.

Contexts
Children: row.

Parents: tgroup.

Term

Purpose
The Term element contains a term, usually within a glossary entry. When used
outside the context of GLEntry, Term identifies a term that has been defined
elsewhere.

Table

434 ID Workbench: IBMIDDoc User’s Guide and Reference

Examples
<GLENTRY>
<TERM>apple</TERM>
<DEFN>The fruit of the apple tree.</DEFN>
</GLENTRY>...
An <term>apple</term> a day keeps the doctor away.

Attributes
TERMDEF=defnid

Contains the ID of the correct definition for the term contained in the Term
element. This definition is found in the glossary or definition list markup.

See “Common Element Attributes (large set)” on page 227.

Contexts
Children: text (#pcdata), APL, Bin, Char, Dec, Formula, Hex, L, MMObj, MV, Num,
Oct, Ph, PK, PV, RefKey, SynPh, Term, TM, XPh.

Parents: Address, AnnotBody, Attention, Bridge, Cap, Caution, CGraphic, CI, CLE,
CompCmt, Cond, Copyr, Danger, Defn, DefnHd, Desc, DLEntry, entry, Fn,
GLEntry, L, LEDesc, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, ModName,
MsgText, NoteBody, P, Parm, Ph, ProcEntry, ProcExit, Q, Screen, Sem, STitle,
SubTitle, SynNote, Term, TermHd, TextAlt, Title, TM, Warning, Xmp, XPh.

TermHd (term heading)

Purpose
The TermHd element contains the heading for the term portion of a definition or
parameter list.

Examples
<DL>
<TERMHD>Term</TERMHD>
<DEFNHD>Definition</DEFNHD>
<DLENTRY>
<TERM>Red Otter</TERM>
<DEFN>The Red Otter lives in....
</DEFN>
</DLENTRY>
<DLENTRY>
<TERM>Blue Otter</TERM>
<DEFN>Blue Otters inhabit the....
</DEFN>
</DLENTRY>

</DL>

<PARML>
<TERMHD>Parameter</TERMHD>
<DEFNHD>Purpose</DEFNHD>
<PARM>
<TERM>D</TERM>
<DEFN>The D element contains a hierarchical division.</DEFN>
</PARM>
<PARM>

Term

Chapter 25. IBMIDDoc Elements 435

<TERM>P</TERM>
<DEFN>Contains a paragraph</DEFN>
</PARM>

</PARML>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Definition lists” on page 32.

Contexts
Children: text (#pcdata), L, Ph, Term, TM.

Parents: DL, ParmL.

TextAlt (text alternative)

Purpose
The TextAlt element contains a text description of a multimedia object for use in
non-graphic environments.

Examples
<MMOBJ><OBJREF OBJ="TESTGRAF">
<TEXTALT><P>This is a description of the object referred to.
</TEXTALT>
</MMOBJ>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Including artwork in documents” on page 55.

Contexts
Children: text (#pcdata), DL, L, Note, OL, P, PBlk, Ph, Table, Term, UL.

Parents: AreaDef, MMObj.

TFoot (table footer)

Purpose
The TFoot element contains the footer rows that occur after the TBody element.
TFoot cannot be created within the current version of the graphical table editor.
You can add the TFoot element to your table from the tag view, but the table
cannot be edited with the graphical table editor without removing the TFoot
element. For this reason, using TFoot is not recommended. Use the last row of the
table body to contain the table footing; typically to contain a list of table notes.

If you want to use the TFoot element, do not add it to your table markup until the
rest of the table markup and content is complete.

TermHd (term heading)

436 ID Workbench: IBMIDDoc User’s Guide and Reference

Attributes
VALIGN=TOP | MIDDLE | BOTTOM

This attribute specifies the vertical alignment of the text contained in the Entry
element.

TOP
specifies alignment of the text at the top of the Entry.

MIDDLE
specifies alignment of the text at the middle of the Entry.

BOTTOM
specifies alignment of the text at the bottom of the Entry (the default).

Usage
See “Adding footnotes to a table” on page 80.

Contexts
Children: row.

Parents: tgroup.

TGroup (table group)

Purpose
The TGroup element contains elements that make up a section of a table.

Examples
<TABLE FRAME="ALL">
<TGROUP COLS="5" COLSEP="1" ROWSEP="1" ORIENT="PORT" PGWIDE="0">

...

Attributes
COLS=number_of_cols

This value indicates the number of columns defined for the TGroup.

COLSEP=0(NO) | 1(YES)
This attribute’s value specifies that the internal column rules should be:
v drawn to the right of each cell’s content (1)
v not displayed at all (0)

ROWSEP 0(NO) | 1(YES)
This attribute’s value specifies that the internal row rules should be:
v drawn below each Entry element that ends a row (1)
v not displayed at all (0)

ALIGN=LEFT | RIGHT | CENTER | JUSTIFY | CHAR
This attribute specifies the horizontal positioning of the text:

LEFT
specifies left alignment (the default)

RIGHT
specifies right alignment

TFoot (table footer)

Chapter 25. IBMIDDoc Elements 437

CENTER
specifies center alignment

JUSTIFY
specifies justification of the text

CHAR
specifies alignment on a particular character

PGWIDE= 0 | 1 | 2
This attribute’s value specifies that the TGroup width should be:
v the full page width (1)
v column width (0)
v text-line width (2)

ColSpec
Contains the column specification for a column.

SpanSpec
Contains the specification for a table span.

THead
Contains the table header.

TFoot
Contains the table footer.

Tbody
Contains the body of a TGroup in a Table.

Usage
See Chapter 7, “Creating IBMIDDoc Tables” on page 67.

Contexts
Children: colspec, spanspec, tbody, tfoot, thead.

Parents: Table.

THead (table heading)

Purpose
The THead element contains the heading rows of a TGroup element.

Examples
<table frame="all" pgwide="0">
<cap>Another sample table</cap>
<tgroup cols="4" colsep="1" rowsep="1">
<colspec colname="col1" colwidth="1*">
<colspec colname="col2" colwidth="2*">
<colspec colname="col3" colwidth="3*">
<colspec colname="col4" colwidth="1*">
<thead>
<row>
<entry valign="top" rowsep="1">Col #1</entry>
<entry valign="top" rowsep="1">Col #2</entry>
<entry valign="top" rowsep="1">Col #3</entry>
<entry valign="top" rowsep="1">Col #4</entry>
</row>
</thead>

TGroup (table group)

438 ID Workbench: IBMIDDoc User’s Guide and Reference

<tbody>
<row>
<entry valign="top">Row 1, Cell 1</entry>
<entry valign="top">
Row 1
Cell 2
</entry>
<entry valign="top">Row 1, Cell 3; here’s a little
more text than the other cells have</entry>
<entry valign="top">Row 1, Cell 4</entry>
</row>
<row>
<entry valign="top">Row 2, Cell 1</entry>
<entry valign="top">Row 2, Cell 2</entry>
<entry valign="top"><ph style="italic">Row 2, Cell
3</ph></entry>
<entry valign="top">Row 2, Cell 4</entry>
</row>
</tbody>
</tgroup>
</table>

Attributes
VALIGN=TOP | MIDDLE | BOTTOM

This attribute specifies the vertical alignment of the text contained in the Entry
element.

TOP
specifies alignment of the text at the top of the Entry.

MIDDLE
specifies alignment of the text at the middle of the Entry.

BOTTOM
specifies alignment of the text at the bottom of the Entry (the default).

Usage
See “A Simple Table with a Table Header and IBMIDDoc Elements” on page 78.

Contexts
Children: row.

Parents: tgroup.

Then (procedure action to take)

Purpose
The Then element contains a description of the action to take as the result of a
condition that occurs at a decision point of a procedure.

Examples
<decisionpnt>
<cond>Is the diaper wet?</cond>
<then><procstep><proccmnd>
<desc>Change the diaper.</desc>
</proccmnd><procexit>Johnny was uncomfortable.</procexit>
</procstep>
</then>

THead (table heading)

Chapter 25. IBMIDDoc Elements 439

<else>
<desc>Continue at <xref refid="hungry">.</desc>
</else>
</decisionpnt>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 22, “Creating maintenance analysis procedures” on page 207.

Contexts
Children: Desc, Proc, ProcStep.

Parents: DecisionPnt.

Title

Purpose
The Title element contains a title for elements that can have titles. Note that the
meaning of the Title element is dependent upon the context in which it is used. For
example, when used within a Division, Title contains the chapter or topic heading.
When used in a PBlk element, it contains the title for the block of paragraphs.

Examples
<d>
<dprolog><titleblk>
<title>My Little Chapter</title>
</titleblk></dprolog>
<dbody>
<p>Here’s the beginning of my chapter.</p>
</dbody></d>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Creating divisions (D element)” on page 20.

Contexts
Children: text (#pcdata), L, Ph, Term, TM.

Parents: Annot, Author, Bridge, ClassDef, DLBlk, EdNotices, Fragment, FragRef,
GLBlk, Group, LIBlk, ModInfo, ModItemDef, Msg, MsgItemDef, Note, NoteList,
ParmBlk, PartAsm, PBlk, PropDesc, Qualif, SynBlk, Syntax, TitleBlk.

TitleBlk (title information)

Purpose
The TitleBlk element contains title information.

Then (procedure action to take)

440 ID Workbench: IBMIDDoc User’s Guide and Reference

Examples
<d>
<dprolog><titleblk>
<title>My Little Chapter</title>
</titleblk></dprolog>
<dbody>
<p>Here’s the beginning of my chapter.</p>
</dbody></d>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Creating divisions (D element)” on page 20.

Contexts
Children: STitle, SubTitle, Title.

Parents: DIntro, DocTitle, DProlog, DSum, FigList, IBMSafety, Index, Library,
PNIndex, Proc, ProcStep, RCF, Safety, SpecDProlog, TList, TOC.

TList (list of tables)

Purpose
The TList element either causes a table list to be generated, or contains an explicit
list of tables to be presented.

Examples
<tlist><gendtitle></tlist>

Attributes
SPEC=AUTO | MAN

Specifies whether the content of the element is generated. If SPEC=AUTO is
specified, the list is automatically generated.

LAYOUT=Default-Layout | OneCol | TwoCol
Specifies the column-style for the section.

Default-Layout
The section uses the default layout for the document style.

OneCol
The headings and text format across the entire page.

TwoCol
The text formats in two columns. Headings format across the page or
with the two-column text.

See “Common Element Attributes (large set)” on page 227.

Usage
See “List of tables” on page 100.

TitleBlk (title information)

Chapter 25. IBMIDDoc Elements 441

|
|

|
|

|
|

|
|
|

Contexts
Children: CLE, GendTitle, RetKey, TitleBlk.

Parents: FrontM.

TM (Trademark)

Purpose
The TM tag identifies the trademark terms in the document.

The TM tag identifies the trademark terms in your source by surrounding the
trademark term or phrase. This tag has attributes that are not translated; they
contain no “MRI”. The TM attributes contain information for the author an the
processing formatters. The TMType attribute creates the appropriate trademarking
character after the term or phrase. The files IDDIRTM.LST or IDTMSCAN.LST list
the trademarks and the attributes needed for the TM tag. Use these files to insert
the TM tag with proper attributes for the trademark term or phrase.

Examples
<tm trademark="OS/2" tmowner="IBM Corporation" tmtype="reg"
tmclass="ibm">OS/2</tm> requires a <TM trademark="Pentium"
tmowner="Intel Corproation" tmtype="reg" tmclass="special">Pentium</tm>
166MHz processer.

Attributes
trademark

This is the trademark term or phrase repeated in the tag. This attribute is
required.

tmowner
This identifies the trademark owner. For example, the trademark owner could
be “IBM Corporation”. This attribute is optional.

tmtype
This identifies the trademark type. One of the following must be chosen:

TM
Trademark™.

REG
Registered trademark®.

SERVICE
Service marksSM.

tmclass
This identifies the trademark classification. One of the following must be
chosen:

IBM
IBM Corporation.

IBMSUB
IBM subsdiary (such as Tivoli™ or Lotus).

SPECIAL
Requires special notation. These are for companies who have a special

TList (list of tables)

442 ID Workbench: IBMIDDoc User’s Guide and Reference

agreement with IBM. There is a legal obligation for IBM to mark these
trademarks in the document as well as in the Notices section.

OTHER
All other trademarks. These are not marked in the output.

Usage
See the ID Workbench Getting Started and User’s Guide for the tools to insert
trademarks into your document.

Contexts
Children: text (#pcdata), Ph, Term.

Parents: Address, AnnotBody, Attention, Bridge, Cap, Caution, CI, CLE, CompCmt,
Cond, Copyr, Danger, Defn, DefnHd, Desc, entry, Fn, L, LEDesc, LEN, LI, Lines,
LQ, MD, MkNote, ModDesc, ModItem, ModName, MsgText, NoteBody, P, Ph,
ProcEntry, ProcExit, Q, Sem, STitle, SubTitle, SynNote, Term, TermHd, Title,
Warning.

TOC (table of contents)

Purpose
The TOC element either causes a table of contents to be generated, or contains an
explicit list of CLE elements to be presented.

Examples
<toc><gendtitle></toc>

Attributes
SPEC=AUTO | MAN

Specifies whether the content of the element is generated. If SPEC=AUTO is
specified, then the element’s content is generated.

LAYOUT=Default-Layout | OneCol | TwoCol
Specifies the column-style for the section.

Default-Layout
The section uses the default layout for the document style.

OneCol
The headings and text format across the entire page.

TwoCol
The text formats in two columns. Headings format across the page or
with the two-column text.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Table of contents” on page 99.

TM (Trademark)

Chapter 25. IBMIDDoc Elements 443

|
|

|
|

|
|

|
|
|

Contexts
Children: CLE, GendTitle, RetKey, TitleBlk.

Parents: DIntro, FrontM.

UL (unordered list)

Purpose
The UL element contains a list of items whose order of appearance is not
important.

Migration Note
The simple list element from BookMaster has been included into the
unordered list element; the only difference is the type of bullet used for the
two lists.

Examples

This is an item in an unordered list. To separate
it from other items in the list, the formatter puts
a bullet beside it.
The paragraph that is contained in the LI element
is part of the list item which contains it. <p>This
is the contained paragraph.</p>
This is a separate list item in our unordered
list.

Attributes
ULTYPE= checkoff | normal | simple | simplecheckoff

Specifies the type of the list. Checkoff lists have an underscore before the
bullet. Simple lists have no bullet or dash before the list item. Simplecheckoff
lists have only the underscore in front of the list item.

style= simple
Deprecated. Use ULTYPE=SIMPLE. Specifies a simple list; no bullet is
produced.

DBScalePct=scale-percent
You can use the DBScalePct attribute to scale the dingbat (the thing in front of
the list) up or down for a list item. The scale-percent is one of the following
numbers: 50, 60, 70, 80, 90, 100, 110, 120, 140, 160, 180, 200, 240, or 300. 100 is
the normal size; 50 is 50% smaller; 200 is 200% larger. For example, this scales
the bullet or number to twice its size:
dbscalepct="200"

This works for hardcopy only.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

TOC (table of contents)

444 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|

|
|
|
|
|
|

|

|

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as
defaults for this tag. See Chapter 9, “Using definition tags” on page 105 for
more information.

Usage
See “Unordered lists” on page 29.

Contexts
Children: Bridge, LI, LIBlk.

Parents: AnnotBody, Attention, BackCover, Bridge, Caution, Cond, Copyr, Danger,
DBody, Defn, Desc, DIntro, DSum, EdNotices, entry, Fig, FigSeg, Fn, FrontCover,
LEDesc, LEDI, LI, LQ, MkNote, ModDesc, ModItem, MsgItem, NItem, NoteBody,
Notices, P, PBlk, ProcEntry, ProcExit, ProcIntro, Safety, Sem, SynNote, TextAlt,
Warning.

ULDef (Unordered list definition)

Purpose
The ULDef element sets attribute defaults for unordered lists. ULDef goes within
the document prolog to set definitions for the entire document; or within a
division prolog to set definitions for just that division. The ULDef tag goes inside a
PropDefs tag.

Examples
<propdefs><uldef defname="checklist" ultype="checkoff"
dbscalepct="140"></propdefs>
...
<ul def="checklist">
old horse
kitty-cat
peanut butter
engine

Attributes
DBScalePct=scale-percent

You can use the DBScalePct attribute to scale the dingbat (the thing in front of
the list) up or down for a list item. The scale-percent is one of the following
numbers: 50, 60, 70, 80, 90, 100, 110, 120, 140, 160, 180, 200, 240, or 300. 100 is
the normal size; 50 is 50% smaller; 200 is 200% larger. For example, this scales
the bullet or number to twice its size:
dbscalepct="200"

This works for hardcopy only.

DEFNAME=definition-name
The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

UL (unordered list)

Chapter 25. IBMIDDoc Elements 445

|
|
|
|
|

|

|
|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|

|

|
|
|
|
|
|

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire
document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

LINESPACE=SPACE | COMPACT
Specifies whether the items in the list should be compacted or have space
between the items. Nested lists automatically inherit the setting of the outer
list, but can override that default with their own setting.

ULTYPE= checkoff | normal | simple | simplecheckoff
Specifies the type of the list. Checkoff lists have an underscore before the
bullet. Simple lists have no bullet or dash before the list item. Simplecheckoff
lists have only the underscore in front of the list item.

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See “Property-Based
Retrieval” on page 195.

Usage
See Chapter 9, “Using definition tags” on page 105.

Contexts
Children: empty.

Parents: PropDefs, PropGroup.

Var (syntax variable)

Purpose
Use Var to define variables within a syntax definition.

Examples
<syntax>
<group>
<kwd>LANGUAGE</kwd>
<oper>=</oper>
<var>language_name</var>
</group>
</syntax>

Attributes
OPTREQ=OPT | REQ | DEF

Indicates whether or not the variable is optional.

LINKEND=id
Contains an ID reference that enables a link to an arbitrary location in the
document.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 15, “Programming Syntax Diagrams” on page 147.

ULDef (Unordered list definition)

446 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|

|

|

|

|

|

Contexts
Children: text (#pcdata).

Parents: Group, SynPh.

Version (product version number)

Purpose
The Version element contains the version number of the product that the document
describes.

Examples
<ibmprodinfo>
<prodname>ID Workbench</prodname>
<version>Version 37</version>
<release>Release 29</release>
</ibmprodinfo>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “Other prolog elements” on page 90.

Contexts
Children: text (#pcdata), Ph.

Parents: IBMProdInfo, ProdInfo.

VNet (IBM VNet mail address)

Purpose
The VNet element contains an IBM VNet email address.

Examples
<maintainer>
<corp>
<corpname>IBM Corporation</corpname>
<address>ATTN: Dept 542
3605 HWY 52 N
Rochester, MN
<postalcode>55901-9986</postalcode><phone equip="fax">
1-800-555-1212</phone><vnet>http://w3.rchland.ibm.com/projects/IDWB
</vnet></address>
</corp>
</maintainer>

Attributes
See “Common Element Attributes (large set)” on page 227.

Var (syntax variable)

Chapter 25. IBMIDDoc Elements 447

Contexts
Children: text (#pcdata).

Parents: Address.

Volid (volume identifier)

Purpose
Contains the identifier for one portion of a multivolume document.

Examples
<doctitle>
<library><titleblk>
<title>ID Workbench</title>
</titleblk></library>
<titleblk>
<title>IBMIDDoc User’s Guide <ph props="ref">and
Reference</ph></title>
</titleblk></doctitle><volid>Volume 1</volid><ibmdocnum>
SH21-0783-09</ibmdocnum><externalfilename>iddugref
</externalfilename>

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: text (#pcdata), Ph.

Parents: IBMBibEntry.

Warning (warning notice)

Purpose
Use Warning to contain a mandatory safety notice, consisting of one or more
paragraphs or other paragraph-level elements. For non-mandatory notices, use the
Attention element. See “Attention (safety notice)” on page 238 for information
about the Attention element.

Examples
<WARNING>Do not use this blow dryer while taking a shower.
</WARNING>

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See “The perils of processing: Attention, caution, and danger” on page 48.

Contexts
Children: text (#pcdata), Address, Annot, APL, Bin, Bridge, CGraphic, Char, Cit,
Date, Dec, DL, Fig, Formula, GL, Hex, L, Lines, LitData, LQ, MD, MkNote,

VNet (IBM VNet mail address)

448 ID Workbench: IBMIDDoc User’s Guide and Reference

MMObj, ModInfo, MV, Num, Oct, OL, P, ParmL, PBlk, Ph, PK, PV, Q, RefKey,
Screen, SynPh, Syntax, Table, Term, TM, UL, Xmp, XPh, XRef.

Parents: Safety.

WebPage

Purpose
Use WebPage to contain a web-page address. Use this to provide a location in your
book to allow others to “read more about it”. Webpage is used as part of an
address. It currently does not cause any automated linking from a PDF file. When
used in the document, it is printed as an address line. When used in the
Maintainer section, it is printed on non-US reader comment forms.

Examples
<maintainer>
<corp>
<corpname>IBM Corporation</corpname>
<address>ATTN: Dept 542
3605 HWY 52 N
Rochester, MN
<postalcode>55901-9986</postalcode><phone equip="fax">
1-800-555-1212</phone>
<webpage>http://w3.rchland.ibm.com/projects/IDWB</webpage>
</address>
</corp>
</maintainer>

Attributes
See “Common Element Attributes (large set)” on page 227.

Contexts
Children: text (#pcdata).

Parents: Address.

Xmp (example)

Purpose
Use Xmp to contain examples of computer input or output, such as code samples
or listings. In the default style, Xmp data is presented in a monospaced typeface.
Within Xmp, significant record ends are preserved and presented.

Examples
<XMP STYLE=’BKM:(KEEP="10")’>
10 LET A = B
20 IF A GT C THEN GO 40
30 LET A = C
40 PRINT A, C
</XMP>

Warning (warning notice)

Chapter 25. IBMIDDoc Elements 449

Attributes
OBJ=object-reference

Allows you to include a declared program entity.

NOTATION=LINESPEC
LINESPEC is the default value for the NOTATION attribute on Xmp.

LINELENGTH=characters
This specifies the number of characters in widest line. If the number of
characters does not fit in the column or page width, the text size is reduced.

PGWIDE=1 | 2
This specifies the width of the example. 1 is for a page-wide example; 2
indents to the current indention in the column (2 is the default).

DEF=definition-name
Specifies the definition to be used. This points to a DefName attribute on a
corresponding DEF tag. The settings defined on that DEF tag are used as
defaults for this tag. See Chapter 9, “Using definition tags” on page 105 for
more information.

See “Common Element Attributes (large set)” on page 227.

Usage
See “Examples of computer output” on page 54.

Contexts
Children: text (#pcdata), L, LitData, MV, Ph, PK, PV, RefKey, SynPh, Term.

Parents: AnnotBody, Attention, BackCover, Bridge, Caution, Danger, DBody, Defn,
DIntro, DSum, entry, Fig, FigSeg, Fn, FrontCover, LEDI, LI, LQ, MkNote, ModDesc,
ModItem, MsgItem, NoteBody, P, PBlk, ProcIntro, SynNote, Warning.

XmpDef (Example definition)

Purpose
The XmpDef element sets attribute defaults for exampless. XmpDef goes within the
document prolog to set definitions for the entire document; or within a division
prolog to set definitions for just that division. The XmpDef tag goes inside a
PropDefs tag.

Examples
<xmpdef defname="widexmp" linelength="132">

Attributes
DEFNAME=definition-name

The DefName attribute identifies a definition element. DefName values must
be unique within a single document. A element that has a DEF attribute can
point a corresponding tag with a DefName attribute. DefName values can be
up to 64 characters long. DefName values must start with an alphabetic
character and can contain letters, numbers, dashes (-), or periods (.).

Definition tags can be specified without a DefName attribute in the document’s
prolog. This allows you to change the initial settings of attributes for the entire

Xmp (example)

450 ID Workbench: IBMIDDoc User’s Guide and Reference

|
|
|

|
|
|

|
|
|
|
|

|

|
|

|

|
|
|
|

|

|

|

|
|
|
|
|
|

|
|

document when the DEF tag is in the document’s prolog. In a division’s
prolog, it changes the initial settings for that division.

PGWIDE=1 | 2
This specifies the width of the example. 1 is for a page-wide example; 2
indents to the current indention in the column (2 is the default).

LINELENGTH=characters
This specifies the number of characters in widest line. If the number of
characters does not fit in the column or page width, the text size is reduced.

Props=properties
The Props attribute is used to specify the condition under which the
information contained within the element appears. See “Property-Based
Retrieval” on page 195.

Usage
See Chapter 9, “Using definition tags” on page 105.

Contexts
Children: empty.

Parents: PropDefs, PropGroup.

XPh (example phrase)

Purpose
Use the XPh element for computer input or output phrase that occurs within text.
In the default style, XPh is presented in the same typeface as is used for Xmp
elements.

Examples
The system will respond with a <XPH>READY</XPH> message.

Attributes
See “Common Element Attributes (large set)” on page 227.

Usage
See Table 1 on page 44.

Contexts
Children: text (#pcdata), L, MV, Ph, PK, PV, Term.

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, NoteBody, P, Ph, Q,
SynNote, Term, Warning.

XRef (cross reference)

Purpose
The XRef element defines a reference to another element and generates the
reference text (or other link indicator) automatically. The element referred to can be

XmpDef (Example definition)

Chapter 25. IBMIDDoc Elements 451

|
|

|
|
|

|
|
|

|
|
|
|

|

|

|

|

|

in the same document or in another document. XRef can point to another element
indirectly by referring to a NameLoc element.

XRef defines a link to another element and automatically generates the link
indicator. The link indicator is normally the title of the element linked to along
with some locator, such as a page or panel reference, or, when the element does
not have a title, just a locator. When the element linked to has an XRefText
attribute specified, the XRefText value is used as the link indicator. For example, a
cross reference to a paragraph that does not have XRefText coded would generate
just a page number.

The style of the generated cross reference is determined by the active document
style.

You can create a cross reference indirectly by using a NameLoc element to define
the target of the cross reference. For example, you may have already defined a
NameLoc to something for use by the L element because it will be linked to many
times. You can use this same NameLoc for cross references to the element.

When XRef references a NameLoc element which references another document
using the DOCNAME attribute, a cross-document link is generated.

The name on the NameLoc’s DOCNAME attribute must match the name specified
on the DOCNAME attribute on an IBMBibEntry or BibEntry element. DOCNAME
values must be unique for each IBMBibEntry or BibEntry element.

Note: XREFTEXT is the only IBMIDDoc attribute that can take DBCS data.

Examples
Referring directly to another element:
<P>See <XREF REFID="AboutXRef"> for more information.
...
<D ID="AboutXref">XRef Explained

Here is an example referring to a title using Form=Full:
<title id=heading>Basic use of Elements</title>
...
<p>The best place for more information is in
<xref refid=heading form=full>.</p>

The example would read:
The best place for more information is in
"Chapter 3. Basic use of Elements" on page 20.

Here is an example referring to an ordered list using Form=Full:
<p>Here is a list of important items:

This is the first important item
This is the second important item
<li id=third>This is the third important item

</p>
<p>This information refers back to the important list item
<xref refid=third form=full>

Which generates this output:
This information refers back to the important list item 3 on
page 5.

XRef (cross reference)

452 ID Workbench: IBMIDDoc User’s Guide and Reference

Here is an example referring to a title using Form=Text:
<title id=Heading>Basic Use of Elements</title>...
<p>The best place for more information is in
<xref refid=heading form=text>.

The example shows:
The best place for more information is in Chapter 3. Basic Use of
Elements.

Attributes
REFID=element_id

The ID value of the element being linked to. The linked element may be any
element that takes an ID attribute.

OBJTYPE=target_type
Specifies the target type of the object being referenced.

FORM=formtype
There are three types of cross references that can be used with the Form
attribute: text, number, or location. Text elements are usually linked to titles.
The location is a page number for printed output. The number is for
enumerated elements only (for example, ordered list items). Be sure to check
out the examples section to see how some of the attributes are used. If you are
processing the document through a transform that generates a hard copy
version, you can control the form of the reference. If you are processing the
document through a transform that generates an online version, the xref form
attribute is currently ignored. Here are the specific choices listed under Form:

NORMAL
The active presentation style defines the output.

FULL
A full reference includes all variable information about the target element.
For example, if you were referring to a chapter heading, the xref would list
the chapter number, name of the chapter, and the page number where the
chapter can be found.

TEXT
This lists the text of the target element (typically the title). This will list the
chapter number and the name of the chapter. The page number is not
listed.

NUMBER
This lists only the number of the target. If this was used in reference to a
chapter title, only the chapter number would be listed. If this was used in
reference to an ordered list, the xref would only list the number of the
step--not the page where the list number is located.

LOCATION
The location of an element, such as its page number or panel ID. In some
presentations, there may not be a meaningful locator, in which case the
presentation style may do the best it can, such as presenting the title of the
nearest containing element.

These renamining attributes may be supported in the future; they currently
processes the same as Normal.

NUMLOC
The number of an enumerated element followed by its location.

XRef (cross reference)

Chapter 25. IBMIDDoc Elements 453

NUMTEXT
The number of an enumerated element followed by its text.

LOCTEXT
The location of an element followed by its text.

TEXTLOC
The text of an element followed by its location.

TEXTNUM
The text of an element followed by its number.

LOCNUM
The location of an element followed by its number.

See “Common Element Attributes (large set)” on page 227.

Usage
See Chapter 6, “Cross-referencing” on page 61.

Contexts
Children: empty.

Parents: AnnotBody, Attention, Bridge, Caution, CompCmt, Danger, Defn, Desc,
entry, Fn, Group, L, LI, Lines, LQ, MD, MkNote, ModDesc, ModItem, NoteBody, P,
Ph, Q, SynNote, Warning.

XRef (cross reference)

454 ID Workbench: IBMIDDoc User’s Guide and Reference

Part 4. Appendixes

© Copyright IBM Corp. 1992, 2001 455

456 ID Workbench: IBMIDDoc User’s Guide and Reference

Appendix A. IBMIDDoc Supported Notations

The following table lists the notations and their identifiers.

Table 24. Notation table

Notation name Notation identifier

SGMLDOC PUBLIC ″ISO 8879:1986//NOTATION STANDARD GENERALIZED MARKUP
LANGUAGE (SGML)//EN″

SMFF PUBLIC ″+//ISBN 0-933186::IBM//NOTATION SCRIPT MATHEMATICAL
FORMULA FORMATTER//EN″

PSEG PUBLIC ″+//ISBN 0-933186::IBM//NOTATION AFP PAGE SEGMENT//EN″

PSEG3820 PUBLIC ″+//ISBN 0-933186::IBM//NOTATION AFP PAGE SEGMENT::3820//EN″

PSEG38PP PUBLIC ″+//ISBN 0-933186::IBM//NOTATION AFP PAGE SEGMENT::38PP//EN″

PSEG4250 PUBLIC ″+//ISBN 0-933186::IBM//NOTATION AFP PAGE SEGMENT::4250//EN″

ANIMATION PUBLIC ″+//ISBN 0-933186::IBM//NOTATION GENERIC ANIMATION
META-NOTATION//EN″

VIDEO PUBLIC ″+//ISBN 0-933186::IBM//NOTATION GENERIC VIDEO
META-NOTATION//EN″

AUDIO PUBLIC ″+//ISBN 0-933186::IBM//NOTATION GENERIC AUDIO
META-NOTATION//EN″

GRAPHICS PUBLIC ″+//ISBN 0-933186::IBM//NOTATION GENERIC GRAPHICS
META-NOTATION//EN″

VECTOR PUBLIC ″+//ISBN 0-933186::IBM//NOTATION GENERIC VECTOR
META-NOTATION//EN″

IMAGE PUBLIC ″+//ISBN 0-933186::IBM//NOTATION GENERIC IMAGE
META-NOTATION//EN″

EPS PUBLIC ″-//ADOBE//NOTATION ENCAPULATED POSTSCRIPT//EN″

APL PUBLIC ″ISO 8485:1989//NOTATION PROGRAMMING LANGUAGES - APL//EN″

ASM PUBLIC ″+//ISBN 0-933186::IBM//NOTATION 80X86 ASSEMBLER
PROGRAMMING LANGUAGE//EN″

ASSEMBLE PUBLIC ″+//ISBN 0-933186::IBM//NOTATION 370 ASSEMBLER PROGRAMMING
LANGUAGE//EN″

BAT PUBLIC ″+//ISBN 0-933186::IBM//NOTATION DOS BAT PROGRAMMING
LANGUAGE//EN″

C PUBLIC ″ISO/IEC 9899:1990//NOTATION PROGRAMMING LANGUAGES -
C//EN″

COBOL PUBLIC ″ISO 1989:1985//NOTATION PROGRAMMING LANGUAGES -
COBOL//EN″

CPP PUBLIC ″+//ISBN 0-933186::IBM//NOTATION C++ PROGRAMMING
LANGUAGE//EN″

EXEC PUBLIC ″+//ISBN 0-933186::IBM//NOTATION EXEC PROGRAMMING
LANGUAGE//EN″

FORTRAN PUBLIC ″ISO/IEC 1539:1991//NOTATION INFORMATION TECHNOLOGY -
PROGRAMMING LANGUAGES - FORTRAN//EN″

PLI PUBLIC ″ISO 6160:1979//NOTATION PROGRAMMING LANGUAGES - PL/1//EN″

© Copyright IBM Corp. 1992, 2001 457

Table 24. Notation table (continued)

Notation name Notation identifier

REXX PUBLIC ″+//ISBN 0-933186::IBM//NOTATION REXX PROGRAMMING
LANGUAGE//EN″

CMNDLINE PUBLIC ″+//ISBN 0-933186::IBM//NOTATION COMMAND LINE ENTRY//EN″

HYQ PUBLIC ″ISO/IEC 10744:1992//NOTATION HYTIME QUERY NOTATION//EN″

HYLEX PUBLIC ″ISO/IEC 10744:1992//NOTATION HYTIME LEXICAL MODEL
NOTATION//EN″

SCRIPT PUBLIC ″+//ISBN 0-933186::IBM//NOTATION DOCUMENT COMPOSITION
FACILITY MARKUP//EN″

SCREEN PUBLIC ″+//ISBN 0-933186::IBM//NOTATION CHARACTER SCREEN
REPRESENTATION//EN″

LINESPEC PUBLIC ″+//ISBN 0-933186::IBM//NOTATION LINE SPECIFIC CONTENT//EN″

PROGRAM PUBLIC ″+//ISBN 0-933186::IBM//NOTATION GENERIC PROGRAM LAUNCH
META-NOTATION//EN″

BOOKMANAGERBOOK PUBLIC ″+//ISBN 0-933186::IBM//NOTATION BOOKMANAGER COMPILED
BOOK NOTATION//EN″

IPFINF PUBLIC ″+//ISBN 0-933186::IBM//NOTATION INFORMATION PRESENTATION
FACILITY BOOK NOTATION//EN″

URL PUBLIC ″-//IETF //NOTATION UNIVERSAL RESOURCE LOCATOR NOTATION::
IETF RFC 1738//EN″

458 ID Workbench: IBMIDDoc User’s Guide and Reference

Appendix B. Proposed IBM Standard for Formal Public
Identifiers

One of the SGML mechanisms on which IBMIDDoc depends is Formal Public
Identifiers (FPIs). This is a system-independent naming syntax that is defined in
the standards ISO 8879 and ISO 9070. There are several advantages to using them,
as opposed to using system identifiers directly. Resolution of references to these
entities are supported using a catalog lookup feature found in most SGML
products. This paper describes the conventions to be used within IBM when using
these formal public identifiers.

Here is the basic format of a formal public identifier:

FPI Format

\\ +
-

//owner identifier //public text class public text description \

\ //public text language \]

The following sections will describe each of these fields. In addition, these sections
describe a format to be used within IBM information development when creating
formal public identifiers. Identifiers which comply with this standard will be
unique and consistent across the corporation. This may become a the standard for
other parts of the corporation. Our customers may wish to use a definition like this
in their own work.

Notice that when processed, FPIs are transformed or normalized using the same
normalization rules as those used for tokenizing attribute value literals:
1. Ignore RS
2. Replace RE and SEPCHAR with SPACE
3. Replace a sequence of SPACE characters with a single SPACE and
4. Ignore leading and trailing SPACE characters.

This means that record ends or multiple spaces may be freely inserted anywhere a
space is allowed.

Owner Identifier
The first part described here is a structure called an owner identifier. There are two
forms of interest: registered (preceded with a "+") and unregistered (preceded with
a "-"). The ISO 9070 standard describes a registration process and an authority. It
also defines a syntax for using a registered identifier based on an ISBN number.
Either the 9070 registration or the ISBN registration may be used in registered
owner identifiers. Since the registration authority has not yet been named, the
ISBN number syntax must be used.

© Copyright IBM Corp. 1992, 2001 459

IBM has an ISBN publisher prefix, 0-933186. This will be used for all formal public
identifiers for IBM-owned objects. This yields a registered owner identifier of
+//ISBN 0-933186::IBM.

Public Text Class and Public Text Description
Following the owner identifier, there are two fields called the public text class and
public text description. The public text class defines the type or class of entity
being named. The public text description gives more information about the entity
described.

Here is an example of a formal public identifier which conforms to this standard.
+//ISBN 0-933186::IBM//DOCUMENT PUB SC31-1234-00//EN

The "+//ISBN ..." is the registered owner identifier, in this case indicating that the
owner is IBM using the ISBN registration. Notice that 0-933186 represents the ISBN
registration identifier that has been assigned.

The keyword DOCUMENT defines the public text class for the entity. The list of
possible values for this field are defined in ISO 8879. It is also reiterated in the list
below. The keyword DOCUMENT indicates that the entity identified is a complete
SGML document.

The keyword PUB is the start of the public text description. The keyword PUB in
this context indicates an IBM publication and is followed by the standard IBM
publication number. The "EN" preceded by the "//" is the public text language
identifier, in this case, English.

The following list defines the public text description field format. Notice that its
value is keyed on the public text class. Unless otherwise noted, the data in the
field identifies the entity itself; in some cases it may refer to either a containing
context or another entity to which the defined information is related. As used in
these definitions, the term “context” means the document library or collection to
which the entity applies or which owns the entity.

Public Text Class
Public Text Description

CAPACITY

The following field identifies the DTD to which this capacity set entity
applies.

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

A corporate standard will be written for all IBM internal DTDs
which are distributed throughout the company. The CAPACITY file
may be used to maintain the CAPACITY used by these DTDs and
is referenced from SGML declaration files which apply to the DTD.

Local Definition
LCL owner descriptor [::descriptor]

CHARSET
[CP nnnnn[-n]]

where

460 ID Workbench: IBMIDDoc User’s Guide and Reference

nnnnn[-n]
indicates a standard IBM codepage, if specified. If not specified, the
character set is assumed to not be an IBM-defined codepage.

Notice that if another standard is used for character encoding, such as an
ANSI or ISO standard, the FPI for their standards, as they define them,
should be used.

DOCUMENT
The following field applies to the document being described, not an
owning context.

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

IBM publication
PUB zznn-nnnn[-nn]

IBM collection
LIB zznn-nnnn[-nn]

ISBN notation
ISBN n-nn-nnnnnn-n

Local Definition
LCL owner descriptor [::descriptor]

DTD

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

A corporate standard will be written for all IBM internal DTDs
which are distributed throughout the company.

Local Definition
LCL owner descriptor [::descriptor]

Notice that if a standard DTD is used from another institution, like ANSI
or ISO, the FPI for their standards, as they define them, should be used.

ELEMENTS
If the declared elements are intended for general use throughout IBM, the
entity would be identified by the corporate standard identifier of the DTD
to which the declarations are related.

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n][::descriptor]

If elements are defined for a particular document, library or other
collection, the identifier identifies the owning context.

IBM publication
PUB zznn-nnnn[-nn][::descriptor]

IBM collection
LIB zznn-nnnn[-nn][::descriptor]

ISBN notation
ISBN n-nn-nnnnnn-n[::descriptor]

Local Definition
LCL owner descriptor [::descriptor]

Appendix B. Proposed IBM Standard for Formal Public Identifiers 461

ENTITIES
When an entity set is distributed throughout the company, a corporate
standard will be written for it and it will be identified using this field:

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

When an entity set is used to hold the entity declarations for a particular
document, library or collection, the identifier for that context should be
used to identify the entity:

IBM publication
PUB zznn-nnnn[-nn][::descriptor]

IBM collection
LIB zznn-nnnn[-nn][::descriptor]

ISBN notation
ISBN n-nn-nnnnnn-n[::descriptor]

Local Definition
LCL owner descriptor [::descriptor]

Notice that if a standard entity set is used from another institution, like
American Mathematical Society or ISO, the FPI for their standards, as they
define them should be used.

LPD

When a link process declaration set is distributed throughout the company,
a corporate standard will be written for it and it should be identified using
this field:

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

When an LPD is used to hold the declarations for a particular document,
library or collection, the identifier for that context should be used to
identify the entity:

IBM publication
PUB zznn-nnnn[-nn][::descriptor]

IBM collection
LIB zznn-nnnn[-nn][::descriptor]

ISBN notation
ISBN n-nn-nnnnnn-n[::descriptor]

Local Definition
LCL owner descriptor [::descriptor]

Note: The LINK features are not currently used within IBM but this
specification is included for completeness and in anticipation of
when these features will be used.

NONSGML

The following fields identify the owning context for the non-SGML entity.

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n][::descriptor]

462 ID Workbench: IBMIDDoc User’s Guide and Reference

IBM publication
PUB zznn-nnnn[-nn][::descriptor]

IBM collection
LIB zznn-nnnn[-nn][::descriptor]

ISBN notation
ISBN n-nn-nnnnnn-n[::descriptor]

Local Definition
LCL owner descriptor [::descriptor]

NOTATION

The following field identifies the document which defines the notation
referred to by this notation identifier.

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

Local Definition
LCL owner descriptor [::descriptor]

Notice that if a notation is defined by a standards body, like ANSI or ISO,
the FPI for their standards, as they define them should be used.

SHORTREF

When a short reference declaration set is distributed throughout the
company, a corporate standard will be written for it and it should be
identified using this field:

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

When a short reference set is used to hold the declarations for a particular
document, library or collection, the identifier for that context should be
used to identify the entity:

IBM publication
PUB zznn-nnnn[-nn]

IBM collection
LIB zznn-nnnn[-nn]

ISBN notation
ISBN n-nn-nnnnnn-n

Local Definition
LCL owner descriptor [::descriptor]

Note: The short reference capabilities of SGML are not currently used by
IBMIDDoc. This section is included for completeness. There are no
plans to use short references with IBMIDDoc within IBM.

SUBDOC
The following field applies to the document being described, not an
owning context.

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

IBM publication
PUB zznn-nnnn[-nn]

Appendix B. Proposed IBM Standard for Formal Public Identifiers 463

ISBN notation
ISBN n-nn-nnnnnn-n

Local Definition
LCL owner descriptor [::descriptor]

SYNTAX

The following field identifies the DTD to which this syntax definition
entity applies.

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n]

A corporate standard will be written for all IBM internal DTDs
which are distributed throughout the company. The SYNTAX file
may be used to maintain the SYNTAX used by these DTDs and is
referenced from SGML declaration files which apply to the DTD.

When an syntax definition only applies to a particular document, library or
collection, the identifier for that context should be used to identify the
entity:

IBM publication
PUB zznn-nnnn[-nn]

IBM collection
LIB zznn-nnnn[-nn]

ISBN notation
ISBN n-nn-nnnnnn-n

Local Definition
LCL owner descriptor [::descriptor]

TEXT

The following fields identify the owning context for the SGML text entity.

Corporate Standard
STD ppp n-nnnn-nnn [nnnn-n][::text descriptor]

IBM publication
PUB zznn-nnnn[-nn][::text descriptor]

IBM collection
LIB zznn-nnnn[-nn][::text descriptor]

ISBN notation
ISBN n-nn-nnnnnn-n[::text descriptor]

Local Definition
LCL owner descriptor [::descriptor]

Where

author name
This is a name which uniquely defines the author. It may be an RSCS address,
an Internet address, an employee serial number. The key is that it must be
unique across the corporation.

descriptor
is a unique identifier within the scope of the owning context that identifies that
content.

464 ID Workbench: IBMIDDoc User’s Guide and Reference

owner descriptor
identifies the owner of the data. This need not be unique; it could be the name
of the author, the owning department or site.

nnnnn[-n]
This is the identifier for the IBM codepage being specified.

ISBN n-nn-nnnnnn-n
This is an ISBN number.

STD ppp n-nnnn-nnn [nnnn-n]
This is the identifier defined for the specific IBM corporate standard in
question.

text descriptor
is a unique identifier within the scope of the owning context. It has the
following format:
descriptor[/author name[/owner descriptor]]

PUB or LIB zznn-nnnn[-nn]
This is the identifier of a document or library.

Public Text Language
The public text language field indicates the language used within the entity
identified by the formal public identifier. The language codes which are valid for
this field are defined in ISO 639.

Appendix B. Proposed IBM Standard for Formal Public Identifiers 465

466 ID Workbench: IBMIDDoc User’s Guide and Reference

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
500 Columbus Avenue
Thornwood, NY 10594
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1992, 2001 467

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator
3605 Highway 52 N
Rochester, MN 55901-7829
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,

468 ID Workbench: IBMIDDoc User’s Guide and Reference

modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, other countries, or both:

AIX
BookManager
BookMaster
IBM
OS/2

Tivoli is a trademark of Tivoli Systems Inc. in the United States, other countries, or
both.

Windows is a trademark of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix C. Notices 469

470 ID Workbench: IBMIDDoc User’s Guide and Reference

Part Number Index

Part
Number

Asm–
Index Page

1230987 1–1 216
1234939 1–3 216
1238475 1–2 216
33-5234 2–1 219
4563423 1–1 216
56-2345 2– 219
56-3476 2–5 219
56-3489 2–3 219
56-4352 2–2 219
56-6534 2–4 219
56-8393 2–6 219
56-9845 2–7 219
56-9874 2–8 219

© Copyright IBM Corp. 1992, 2001 471

472 ID Workbench: IBMIDDoc User’s Guide and Reference

Index

Special Characters
_blank, linking 318
_self, linking 318
_top, linking 318

Numerics
1st-level headings 22
2nd-level headings 22

A
abbrev 101
Abbrev (abbreviations) 231
abbreviations 101
abbreviations, Abbrev 231
about this book 100
abstract 101
Abstract (abstract) 232
abstract, Abstract 232
accessibility

skip links for screen readers 134
accessible tables 76
Acrobat PDF bookmarks 87
action definition, MkAction marked

note 344
address 89, 233
address, IBMMail, email 307
address, Internet, e-mail 312
address, Person person’s name and 393
address, VNet IBM VNet mail 447
Adobe Acrobat PDF bookmarks 87
affecting how a table appears 72
alignment, table row 417
alphabetizing, index, changing 123
alternative index sorting 123
alternative, TextAlt text 436
alternatives, retrieval 198
amendments, SOA summary of 422
analysis procedures, creating

maintenance 207
and address, Person person’s name 393
Annot (annotation) 233
annot element 49
annotation body, AnnotBody 234
annotation, Annot 233
annotations 49
AnnotBody (annotation body) 234
another document, linking to 131
APL 44, 235
appears, affecting how a table 72
Appendix 235
appendix heading prefix 300
appendix titles, controlling generated 86
appendixes 101
Approvers (document approvers) 236
architected online information and

information centers (vs books) 27
architecture, creating an information 27
architecture, information, metadata 343

AreaDef (defines graphic hot spot
area) 236

articles, HTML 300
artwork in documents, including 55
artwork links, making 134
artwork, MMObj multi-media object 350
artwork, multimedia, examples, 53
artwork, object reference 380
AsmList (list of parts assemblies) 237
assemblies, list of parts 237
assembly lists 219
assembly segment, PartAsmSeg part 392
assembly, PartAsm part 391
Attention (safety notice) 238
attention notices 48
Attribute Descriptions, Element and 225
attribute, Using Props to set text

conditions 195
attributes 8

ID
on INDEX tag 123

language 87, 302
qualif 49
REFID

on IREF tag 118
retkey 167, 291, 293, 326, 328, 360,

365, 367
rev 110
toc 231, 232, 242, 262, 295, 311, 321,

324, 339, 391, 396, 398, 423
attributes in the CONLOC reference,

reusing 193
Attributes, Common Element (large

set) 227
Attributes, Common Element (small

set) 228
Attributes, Table Tag 72
author 89
Author 238
author’s note 49
Authors 239
automatically scaling text for

examples 205

B
back cover page 98
back cover, adding 91
back cover, BackCover 239
back matter 101
back matter, BackM 240
BackCover (back cover) 239
BackM (back matter) 240
basic indexing 116
BibEntry (bibliographic entry) 241
BibEntryDefs (contains bibliographic

entries) 241
bibiographies 102
bibliog 101
Bibliog (bibliography) 242
bibliographic entries 241

bibliographic entry, BibEntry 241
bibliographic entry, IBMBibEntry,

IBM 297
Bibliographies and citations 141
bibliography 101
bibliography definitions 96
bibliography entry list, BibList 243
bibliography, Bibliog 242
BibList (bibliography entry list) 243
bigger or smaller, making some

things 205
bill of forms number, BOFNum 245
bill of forms number, IBMBOFNum 298
bin 44
Bin (binary data) 244
binary 44
binary data, Bin 244
blanks

keeping blanks inside of 304
removing blanks inside of 304

block, GLBlk, glossary list 292
block, LIBlk, list item 332
block, ParmBlk parameter list 388
block, PBlk paragraph 392
block, SynBlk syntax 426
blocking list items 37
Body (document body) 244
body element, using 20
body, NoteBody note 375
body, ObjLibBody object library 379
body, TBody table 434
bodyhd1 300
BOFNum (bill of forms number) 245
bold 43
bold-italic 43
book, multiple-language safety 305
BookManager

DWIDTH for tables 71
BookManager linking 133
Bookmarks for PDF tables of

contents 87
books vs architected online information

and information centers 27
books, identifying 141
books, Improving the searching of

PDF 90
boolean properties 197
box frames 57
boxed tables 72
boxes, Labeled 48
branding 305
breaks, Page 7
Bridge (bridge between concepts) 245
bridge between concepts, Bridge 245
Bridge element, using 38
bridging lists 38
broken lines 53
bulleted lists 29

© Copyright IBM Corp. 1992, 2001 473

C
Cap (caption) 246
caption, Cap 246
captions, table 69
catalog lists, creating parts 215
Caution (caution notice) 247
caution notice, Caution 247
caution notices 48
cells, table, combining 423
centers (vs books), architected online

information and information 27
central index entries, IdxDefs 310
central indexing 120
CGraphic (character graphic) 247
cgraphics 59
change bars 109
change bars, defining 415
changes, SOA summary of 422
changing column layouts 26
changing index sorting 123
chaper heading prefix 300
chapter number control 25
chapter titles, controlling generated 86
CHAPTERNUM, controlling chapter

numbers 25
char 44
Char (character data) 248
character 44
character data, Char 248
character encodings, IBMIDDoc 12
character entities 5, 179
character for a revision level 110
character graphic, CGraphic 247
character graphics 59
character graphics, automatically scaling

text for 205
characters, revision bars 416
characters, special 180
checkoff lists 31
choosing the proper element 21
CI (component item) 248
Cit (document citation) 249
CIT, using 142
citation link to another document 131
citations, Bibliographies and 141
citations, simple title 45
citations, title 142
class definition 201
Class Definition 9
class definition, MkClass marked

note 345
class definitions, ModItemDef item 357
ClassDef (element class definition) 250
classes with XHTML style sheets,

document 51
classes, LEDI 168
classification, document 88, 300
classification, security 85
CLE (content list entry) 251
Code (message code number) 253
code description), Msg message 361
code descriptions, MsgList 366
code lists 38
code number, Code 253
code, PostalCode postal or zip 397
Codepages, IBMIDDoc Input 12
collections of marked notes 111

ColSpec (column specification) 253
column headers 76
column layouts, changing 26
column separators in a table, turning

off 72
column specification, ColSpec 253
column widths

table 69
column-wide figures 57
column-wide tables 71
columns, spanning 79
combining table cells 423
command, ProcCmnd procedure 400
comment form, RCF reader 412
comment form, reader 103
comment, Maintainer, reader 336
Common Element Attributes (large

set) 227
Common Element Attributes (small

set) 228
compact lists 36
CompCmt (component comment) 254
CompL (component list) 255
component assembly lists 219
component comment, CompCmt 254
component item, CI 248
component list, CompL 255
component lists 215

cross-referencing 218
composite syntax diagrams 151
computer output, examples 54
concat=no for tables 76
concepts, IBMIDDoc 4
concepts, table 67
Cond (procedure result) 255
conditional processing 94
Conditional Processing 195
conditional text, translation

considerations for 196
conditional, Referring to something 196
conditions, Using the Props attribute to

set text 195
confidential, setting 85
CONLOC and cross-referencing 193
CONLOC reference, Reusing attributes in

the 193
conloc, object library 378
CONLOC, reusing information 191
Considerations and Rules, Markup 10
considerations for conditional text,

translation 196
ContainedDocs (documents in

IBMLibEntry and LibEntry) 257
containment 5, 21
contains bibliographic entries,

BibEntryDefs 241
Content and Style, Separation of 9
content description, ModDesc

modular 353
content list entry, CLE 251
contents maximum heading level, table

of 303
contents, Bookmarks for PDF tables

of 87
contents, controlling the heading levels in

the table of 99

contents, controlling which headings
appear in the table of 99

contents, partial table 24
contents, table of

controlling which headings
appear 99

hiding headings from 99
contents, Table of 99
contents, TOC table of 443
continuing lists 32
controlling chapter numbers 25
controlling generated chapter, part, and

appendix titles 86
controlling index sorting 123
controlling page separation, LERS 166
controlling SGML delimiter

recognition 200
controlling the form of cross

references 65
controlling the heading levels in the table

of contents 99
controlling which headings appear in the

table of contents 99
controlling, starting page number 25
conventions

file names 4, 179
CopyR (copyrights) 257
CopyRDefs (copyright definitions) 258
copyright 301
copyright definition 91
copyright definitions, CopyRDefs 258
copyright, IBM 302
copyright, other company 91
copyright, setting 85
copyrights, CopyR 257
Corp (enterprise name and address) 259
CorpName (corporation name) 259
corporation name, CorpName 259
country where printed, PrtLoc 408
cover art or text 91
cover definition, CoverDef 260
cover page 98
cover spine 98
cover, front 289
coverdef 91
CoverDef (cover definition) 260
Creating

graphic links 56
information architecture 27

creating a document 20
creating a master index document 125
creating links 129
creating maintenance analysis

procedures 207
creating paragraphs 21
creating parts catalog lists 215
creating simple documents 19
creating simple tables 67
CritDate (critical date for a

document) 260
CritDates (set of critical dates) 261
critical date for a document,

CritDate 260
cross reference, XRef 451
cross references

controlling the form of 65
cross-indexing 120

474 ID Workbench: IBMIDDoc User’s Guide and Reference

cross-referencing 61
anything 64
component lists 218
figures 62
list items 63
tables 63

Cross-referencing items that use
CONLOC 193

cross-referencing, PDF 280
CSS (cascading style sheets), using

document classes with XHTML 51
customer checkoff lists 31
customer setup lists 31

D
D (division) elements, using 20
D (hierarchical division) 261
Danger (danger notice) 263
danger notice, Danger 263
danger notices 48
dash level, specifying 89
data, Litdata, literal 334
data, literal text 54
date 90
Date 264
date for a document, CritDate 260
dates, copyright 85
dates, CritDates 261
DBCS Languages, Line Justification

for 88
DBlk (Division block) 265
DBody (division body) 266
dbscale (scaling dingbats) 36
dec 44
Dec (decimal number) 266
decimal 44
decimal number, Dec 266
decision point, DecisionPnt 267
DecisionPnt (decision point) 267
DEF tags

DLDEF, definition list definition 274
FigDef (Figure definition) 282
GLDef (Glossary list definition) 293
MsgLDef (Message list

definition) 364
OLDef (Ordered list definition) 383
ScreenDef (Screen definition) 420
SyntaxDef (Syntax definition) 430
ULDef (Unordered list

definition) 445
XmpDef (Example definition) 450

default title specification, GendTitle 290
defines graphic hot spot area,

AreaDef 236
defining glossary terms 138
defining rows and entrys 76
defining the syntax diagram 147
definition , MkClass marked note

class 345
definition description heading,

DefnHd 269
definition list

headings 33
definition list block, DLBlk 273
definition list entry, DLEntry 275
definition list, DL 272

definition list, DL (continued)
definition 274

definition lists 32
term-width 33

definition of a term, Defn 268
definition of message description items,

MsgItemDef 363
definition, IBMLibEntry, IBM document

library 306
definition, LERSDef, LERS property 328
definition, LibEntry, document

library 331
definition, Mark 337
definition, MkAction marked note

action 344
definition, ModInfoDef modular

information property 356
definition, PropDef property set 405
definition, property and class 201
Definitions

Property and Class 9
definitions, GlDefs, glossary 294
definitions, ModItemDef item class 357
definitions, PropDefs property 406
definitions, QualifDefs qualification 412
Defn (definition of a term) 268
DefnHd (definition description

heading) 269
deletion, marking text 111
deletion, MD marked 342
Delim (syntax delimiter) 269
DELIM element 154
delimiter recognition, controlling

SGML 200
delimiter syntax element 154
delimiter, Delim, syntax 269
Desc (element description) 270
description heading, DefnHd 269
description item, LEDI, language

element 322
description item, ModItem module 358
description item, MsgItem (message 362
description items, MsgItemDef definition

of message 363
description, Desc 270
description, LeDesc, language

element 321
description, MkDesc mark 347
description, ModDesc modular

content 353
description, Msg message or code 361
description, PropDesc property 406
Descriptions, Element and Attribute 225
descriptions, LDescs, link 319
descriptions, MsgList 366
descriptions, tables 69
descriptive subtitle, SubTitle 426
diagram, defining the syntax 147
diagram, Syntax syntax 428

SyntaxDEF tag for 430
Diagrams, Programming Syntax 147
dictionary-like retrieval 167, 291, 293,

326, 328, 360, 365, 367, 415
dingbats, controlling the size of 36
dintro (division introduction) 24
DIntro (division introduction) 271
display screen, Screen 419

display screen, Screen (continued)
ScreenDEF tag for 420

display width for tables 71
dividing lists 32
division (D) elements, using 20
Division block, DBlk 265
division body, DBody 266
division introduction 24
division introduction, DIntro 271
division prolog, DProlog 276
division prolog, SpecDProlog special

section 424
division summary, DSum 277
division, D 261
divisions

division introduction 24
nesting 22
organizing with parts 24
prologs 23

DL (definition list) 272
DLDEF tag for 274

DL element, using 32
DLBlk (definition list block) 273
DLDef (definition list definition) 274
DLEntry (definition list entry) 275
DocTitle (document title) 276
document approvers, Approvers 236
document body, Body 244
document citation, Cit 249
document classes with XHTML style

sheets 51
document classification 88, 300
document ISBN number, ISBN 313
document language 87, 302
document library definition,

IBMLibEntry 306
document library definition,

LibEntry 331
document metainformation, Prolog 404
document number 89
document number, IBMDocNum 298
document number, OrigIBMDocNum,

original IBM 385
document part, Part major 390
document prolog 88
document publisher, Publisher 409
document structure 19, 83

prolog 120
document style 83
document styles 83, 301
document title 88
document title, DocTitle 276
document, linking to another 131
documentation, IBMIDDoc 299
documents

creating 20
documents in IBMLibEntry and LibEntry,

ContainedDocs 257
documents, including artwork in 55
documents, simple, creating 19
dprolog (division prolog) 23
DProlog (division prolog) 276
draft title page 98
DSum (division summary) 277
DVCF (document version control

facility) 195

Index 475

DWIDTH (display width), BookManager,
for tables 71

E
e-mail address, Internet 312
edition notices 98
edition notices, EdNotices 278
EdNotices (edition notices) 278
ejects, page 7
element 120
Element and Attribute Descriptions 225
Element Attributes, Common (large

set) 227
Element Attributes, Common (small

set) 228
element class definition, ClassDef 250
element description item, LEDI,

language 322
element description, Desc 270
element description, LeDesc,

language 321
element name , ModName modular

information 359
element name, LEN, language 325
element reference section, LERS,

language 325
element, LE, language 320
elements

body, using 20
DELIM 154
division (D), using 20
group 150
IBMIDDoc 83
KWD 152
OPER 153
RepSep 154
SEP 153
syntax 149
VAR 153
Xref 61

elements and tags 4
elements from an object library,

reusing 191
Elements, Omitted Tags and Implied 11
Else (other procedure path to

follow) 278
email address, IBMMail 307
enabling revisions 110
enterprise name and address, Corp 259
entities 5

file 179
text 179

entities, file, text, and character 179
entities, NMList, named list of 373
entity reference 5
entries, IdxDefs, central index 310
entries, index

basic 117
entries, index, helping online reviewers

see your 124
Entry (table entry) 279
entry point, ProcEntry procedure 400
entry reference, IRef, index 313
entry, GlEntry, glossary list 294
entry, I1, primary index 314
entry, I2, secondary index 315

entry, I3, tertiary index 316
entry, IBMBibEntry, IBM

bibliographic 297
entry, Parm, parameter list 387
entrys, defining 76
EPS graphics 55
eServer branding 305
example phrase 44
example phrase, XPh 451
example screens 59
example width 54
example, Xmp 449

definition 450
examples of computer output 54
examples, artwork, multimedia 53
examples, automatically scaling text

for 205
excerpt, long quote 335
excerpts, long quotes 47
exit point, ProcExit(procedure 401
Explanation, Reference 225
explicit link, L 318
external entity 5
ExternalFileName 280

F
false, setting the properties to true

or 197
FBC (folio-by-chapter) page

numbering 85
feature number, IBMFeatNum 299
Fig (figure) 281

FIGDEF tag for 282
FIG tag, description 57
FigDef (Figure definition) 282
FigList (list of figures) 283
FigSeg (figure segment) 284
figure

referencing 62
segments 58

figure list 100
figure segment, FigSeg 284
figure text, scaling up or down 205
figure, Fig 281

definition 282
figures 57

frames 57
Multipart 58
width 57

figures, FigList, (list of 283
file entities 5, 179
file name, external 280
file names 4, 179
file number, FileNum 284
FileNum (file number) 284
first-level headings 22
Fn (footnote) 285
FNList (footnote list) 285
folio-by-chapter page numbering 85
fonts

Seehighlighting
footer, TFoot table 436
footnote list, FNList 285
footnote, Fn 285
footnotes 46
footnotes in a table 80

form of cross references, controlling 65
form, RCF reader comment 412
forms number, bill of 245
forms number, IBMBOFNum, bill of 298
Formula (math formula) 286
formulas, math 60
Fragment (syntax fragment) 287
fragment reference, FragRef, syntax 288
fragment, Fragment, syntax 287
fragments, syntax 155
FragRef (syntax fragment reference) 288
frame-based articles 300
front cover, adding 91
front matter 98
front matter, FrontM 289
FrontCover 289
FrontM (front matter) 289
full window, linking 318

G
GendTitle (default title specification) 290
generated titles, controlling 86
generating the index 123
GIF graphics 55
GIF links, making 134
GL (glossary list) 290

GLDEF tag for 293
GLBlk (glossary list block) 292
GLDef (Glossary list definition) 293
GlDefs (glossary definitions) 294
GlEntry (glossary list entry) 294
glossaries 101, 137
glossary

separation letters 138
Glossary 295
glossary definitions 96
glossary definitions, GlDefs 294
glossary list block, GLBlk 292
glossary list entry, GlEntry 294
glossary list, GL 290

definition 293
glossary, defining terms 138
graphic entities 5
graphic hot spot area, defines 236
graphic links, Creating 56
graphic links, making 134
graphics, character 59
green-screens 59
Group 296
group element 150
group, PropGroup property 407
group, TGroup table 437
grouping list items 37

H
H1, H2 headings 22
header row 76
heading hierarchy 22
heading in a PDF document, linking

to 133
heading level, table of contents

maximum 303
heading levels in the table of contents,

controlling 99

476 ID Workbench: IBMIDDoc User’s Guide and Reference

heading prefix, appendix 300
heading prefix, chaper 300
heading prefix, part 304
heading, D 261
heading, DefnHd 269
heading, TermHd term 435
heading, THead table 438
headings appear in the table of contents,

controlling which 99
headings from the table of contents,

hiding 99
headings, definition lists 33
headings, nesting 22
headings, using 20
helping online reviewers see your index

entries 124
hex 44
Hex (hexadecimal) 296
hexadecimal 44
hexadecimal, Hex 296
hiding headings from the table of

contents 99
hierarchical division, D 261
hierarchy, heading 22
highlighting 43
highlighting, citing, noting, and

quoting 43
hot spot area, defines graphic 236
how a table appears, affecting 72
HTML

indexing metadata 124
HTML articles 300
HTML document, linking to 132
HTML linking 133
hypertext linking 129

I
I1 (primary index entry) 314
I2 (secondary index entry) 315
I3 (tertiary index entry) 316
IBM bibliographic entry,

IBMBibEntry 297
IBM copyright 302
IBM copyright, setting 85
IBM document library definition,

IBMLibEntry 306
IBM document number,

IBMDocNum 298
IBM document number,

OrigIBMDocNum original 385
IBM feature number, IBMFeatNum 299
IBM home page reader 76
IBM part number, IBMPartNum 308
IBM product information 92
IBM product information,

IBMProdInfo 309
IBM program number,

IBMPgmNum 308
IBM registered logo 98
IBM safety 101
IBM safety notices, IBMSafety 309
IBM VNet mail address, VNet 447
IBM-specific product documentation,

IBMIDDoc 299
IBMBibEntry (IBM bibliographic

entry) 297

IBMBOFNum (bill of forms
number) 298

IBMDocNum (IBM document
number) 298

IBMFeatNum (assigned IBM feature
number) 299

IBMIDDoc
creating documents 20
document structure 19
introduction 3
Markup Considerations and Rules 10
Markup Rules 11
terms 4

IBMIDDoc (IBM-specific product
documentation) 299

IBMIDDoc element 83
IBMIDDoc Input Codepages 12
IBMLibEntry (IBM document library

definition) 306
IBMLibEntry, ContainedDocs 257
IBMMail (IBMMail email address) 307
IBMMail email address, IBMMail 307
IBMPartNum (IBM part number) 308
IBMPgmNum (IBM program

number) 308
IBMProdInfo (IBM product

information) 309
IBMSafety (IBM safety notices) 309
ID attribute

on INDEX tag 123
identifier, MsgNum message 368
identifier, PublicID, public 408
identifier, Release product release 414
identifier, VolId volume 448
Identifying attributes 8
identifying books 141
IDs or entities, NMList, named list

of 373
IdxDefs (central index entries) 310
IdxTerm (index term) 311
imbedding examples 54
Implied Elements, Omitted Tags and 11
Improving the searching of PDF

books 90
including artwork in documents 55
index 102

master, creating 125
Index 311
index entries

positioning 117
index entries, helping online reviewers

see your 124
index entries, IdxDefs 310
index entry

placement 119
index entry reference, IRef 313
index entry, I1, primary 314
index entry, I2, secondary 315
index entry, I3, tertiary 316
index information, MasterIndexInfo,

master 340
index object, MasterIndexObj master 341
index prefix, MasterIndexPrefix

master 342
index sorting, controlling 123
INDEX tag 123
index term, IdxTerm 311

index, MasterIndex, master 339
index, part number 102
index, PNIndex Part number 396
indexes

part number 220
indexing 115

basic entries 117
central 120
cross-indexing 120
meta data 124
placement in back matter 123
primary entries 117
secondary entries 117
see and see-also 121
tertiary entries 117

indexing tags
placing 117

indexing tips 116
INDEXSHOW, helping online reviewers

see your index entries 124
information and information centers (vs

books), architected online 27
information architecture, creating 27
information architecture, MetaData

tag 343
Information centers 300
information centers (vs books),

architected online information and 27
information element name, ModName

modular 359
information module, Mod 352
information property definition,

ModInfoDef modular 356
information, conditioning 195
information, IBMProdInfo, IBM

product 309
information, MasterIndexInfo, master

index 340
information, ModInfo modular 354
information, modular 175
information, ProdInfo(product 403
information, qualifying 49
information, RevDefs revision

tracking 416
information, TitleBlk title 440
Input Codepages, IBMIDDoc 12
internal entity 5
Internet (internet e-mail address) 312
internet e-mail address, Internet 312
introduction, DIntro, (division 271
introduction, IBMIDDoc 3
introduction, ProcIntro procedure 402
IPF document linking 134
IRef (index entry reference) 313
ISBN (document ISBN number) 313
iSeries branding 305
italic 43
item , ModItem module description 358
item block, LIBlk, list 332
item class definitions, ModItemDef 357
item, LI, list 330
item, MsgItem (message description 362
item, NItem notice 372
item, ProcSummItem procedure

summary 403
items that use CONLOC,

cross-referencing 193

Index 477

items, MsgItemDef definition of message
description 363

J
JPG links, making 134
Justification for DBCS Languages,

Line 88

K
keepblanks 304
keeping blanks in phrases 304
keeping list items together 38
key, RefKey reference 413
key, RetKey retrieval 415
keyword syntax elements 152
keyword, Kwd, syntax 317
keyword, PK programming 395
Kwd (syntax keyword) 317
KWD element 152

L
L (explicit link) 318
labeled boxes 48
language 87, 302
language element description item,

LEDI 322
language element description,

LeDesc 321
language element name, LEN 325
language element reference section,

LERS 325
language element, describing 168
language element, LE 320
language reference materials 165
languages 87, 302
large figures, fixing 58
large table rows, restriction 72
layout, document 83
layouts, changing column 26
LDescs (link descriptions) 319
LE (language element) 320
LeDesc (language element

description) 321
LEDI (language element description

item) 322
LEDI classes 168
legend 101
Legend 324
LEN (language element name) 325
LEN, suppressing new pages 166
LERS

compacting 166
controlling page separation 166
dictionary-like retrieval 166

LERS (language element reference
section) 325

LERS (language element reference) 165
LERS property definition, LERSDef 328
LERSDef (LERS property definition) 328
letter groupings, glossary 138
level, ModLvl modification 359
level, table of contents maximum

heading 303

levels, heading, in the table of contents,
controlling 99

LI (list item) 330
LibEntry (document library

definition) 331
LibEntry, ContainedDocs 257
LIBlk (list item block) 332
LiBlk element, using 37
libraries

object 8
Library 333
library body, ObjLibBody object 379
library definition, IBMLibEntry 306
library definition, LibEntry,

document 331
library entries 143
library, ObjLib object 378
library, reusing elements from an

object 191
Licensed material 88, 301
line boundaries, Lines 333
Line Justification for DBCS

Languages 88
line-spacing, lists 36
line-wide tables 71
LINELENGTH, automatically scaling text

down to fit 205
lines 53
Lines (text with line boundaries) 333
Link attributes 8
link descriptions 95
link descriptions, LDescs 319
link, L, explicit 318
link, MMObjLink multi-media

object 352
linking 129

BookManager documents 133
HTML documents 133
IPF document 134
PDF document 132

headings 133
web document 132

linking to another document 131
linking to new windows 318
linking to web pages 95
linking, cross-referencing 61
links

creating 129
skip, for screen readers 134

links, Creating graphic 56
links, graphic 134
list block, DLBlk, definition 273
list block, GLBlk, glossary 292
list block, ParmBlk parameter 388
list entry, DLEntry, definition 275
list entry, GlEntry, glossary 294
list entry, Parm, parameter 387
list item block 37
list item block, LIBlk 332
list item, LI 330
list items

referencing 63
list items, scaling 36
list of figures, FigList 283
list of IDs or entities, NMList

named 373
list of parts assemblies, AsmList 237

list of tables, TList 441
list subheadings, overriding the

message 40
list, FNList, footnote 285
list, MarkList, marked note 338
listings, computer 54
listings, showing 449
lists 29

bridging items 38
checkoff 31
code 38
compacting 36
continuing 32
customer setup 31
definition 32
DL, definition 272
DLDEF, definition list definition 274
GL, glossary 290
GLDef (Glossary list definition) 293
grouping items 37
message 38

overriding the message list
subheadings 40

message or code descriptions,
MsgList 364, 366

NoteList, ordered note 376
OL ordered 382
OLDEF, note list definition 383
OLDEF, ordered list definition 383
ordered 30
parameter 34
ParmL parameter 388
scaling list items 36
separating items 38
simple 30
UL unordered 444
ULDEF, unordered list definition 445
unordered 29

lists and paragraphs 21
lists, creating parts catalog 215
Litdata (literal data) 334
literal data, Litdata 334
literal text data 54
location, NameLoc named 371
location, Notloc notation-specific 377
logo, IBM registered 98
long quotes 47
looping, syntax diagrams 414
LQ (stand-alone quotation) 335

M
mail address, VNet IBM VNet 447
Maintainer (reader comment) 336
maintenance analysis procedures,

creating 207
major document part, Part 390
making some things bigger or

smaller 205
making things page-wide 205
Making your tables accessible 76
MAPS 207
Mark (marked note definition) 337
mark description, MkDesc 347
marked deletion 44
marked deletion, MD 342

478 ID Workbench: IBMIDDoc User’s Guide and Reference

marked note action definition,
MkAction 344

marked note class definition,
MkClass 345

marked note definition, Mark 337
marked note list, MarkList 338
marked note, MkNote 348
marked notes 109
marked notes, collections of 111
marked sections 199
marking text for deletion 111
MarkList (marked note list) 338
Markup Considerations and Rules 10
markup declaration 5
Markup Rules 11
master index document, creating a 125
master index information,

MasterIndexInfo 340
master index object, MasterIndexObj 341
master index prefix,

MasterIndexPrefix 342
master index, MasterIndex 339
MasterIndex (master index) 339
MasterIndexInfo (master index

information) 340
MasterIndexObj (master index

object) 341
MasterIndexPrefix (master index

prefix) 342
material, Licensed 88, 301
material, Restricted 88, 301
materials, language reference 165
math formula, Formula 286
math formulas 60
matter, FrontM, front 289
maximum heading level, table of

contents 303
md 44
MD (marked deletion) 342
meaning, Sem semantic 421
message code number, Code 253
message description item, MsgItem 362
message description items, MsgItemDef

definition of 363
message descriptions, MsgList 366
message identifier, MsgNum 368
message list subheadings, overriding

the 40
message list, MsgL

definition 364
message lists 38
message or code description, Msg 361
message text, MsgText 368
message variable 44
message variable, MV 369
MetaData tag information

architecture 343
metadata, and indexing 124
metadata, creating an information

architecture 27
metainformation, Prolog document 404
MkAction (marked note action

definition) 344
MkClass (marked note class

definition) 345
MkDesc (mark description) 347
MkNote (marked note) 348

MMObj (multi-media object;
artwork) 350

MMObjLink (multi-media object
link) 352

mocha conditions 195
Mod (information module) 352
ModDesc (modular content

description) 353
modification level, ModLvl 359
ModInfo (modular information) 354
modinfo element 175
ModInfoDef (modular information

property definition) 356
ModItem (module description item) 358
ModItemDef (item class definitions) 357
ModLvl (modification level) 359
ModName (modular information element

name) 359
modular content description,

ModDesc 353
modular information 175
modular information element name,

ModName 359
modular information property definition,

ModInfoDef 356
modular information, ModInfo 354
module description item, ModItem 358
module, Mod information 352
monospaced 43
MOREROWS, spanning of rows 79
Msg (message or code description) 361
MsgItem (message description item) 362
MsgItemDef (definition of message

description items) 363
Msgl element, using 38
MsgLDef (Message list definition) 364

MsgLDef (Glossary list
definition) 364

MsgList (list of message or code
descriptions) 366

MsgLDEF tag for 364
MsgNum (message identifier) 368
MsgText (message text) 368
multi-media object link,

MMObjLink 352
multi-media object; artwork,

MMObj 350
multimedia, examples, artwork 53
Multipart figures 58
multiple volume books 86
multiple volumes 303
multiple-language safety book 305
mv 44
MV (message variable) 369

N
Name (person’s name) 370
name and address, Person person’s 393
name, LEN, language element 325
name, ModName modular information

element 359
name, Name person’s 370
name, ProdName product 404
named list of IDs or entities,

NMList 373
named location, NameLoc 371

NameLoc (named location) 371
NAMEST and NAMEEND, spanning

columns 79
naming files 4, 179
nesting divisions 22
new pages, LEN, suppressing 166
new window, linking 318
NItem (notice item) 372
NMList (named list of IDs or

entities) 373
no-recycle logo 98
non-boxed tables 72
nopage, LERS 166
notation-specific location, Notloc 377
Note 375
note action definition, MkAction

marked 344
note body, NoteBody 375
note class definition, MkClass

marked 345
note definition, Mark 337
note list, MarkList, marked 338
note list, NoteList

definition 383
note list, NoteList, ordered 376
note, MkNote marked 348
note, SynNote syntax 427
NoteBody (note body) 375
NoteList (ordered list)

OLDEF tag for 383
NoteList (ordered note list) 376
notes

footnote 46
lists 46
single 45
syntax 156

notes in a table 80
notes, marked 109
notes, StepNotes step 425
notice item, NItem 372
notice, Warning warning 448
notices 48, 98
Notices (contains notices) 376
notices, edition 98
notices, EdNotices, edition 278
notices, IBMSafety, safety 309
notices, Safety safety 418
Notloc (notation-specific location) 377
num 44
Num (number) 378
number control, chapter 25
number control, starting page 25
number index, PNIndex Part 396
number with specified base 44
number, Dec 266
number, document 89
number, FileNum, file 284
number, IBMBOFNum, bill of forms 298
number, IBMDocNum, IBM

document 298
number, IBMFeatNum, IBM feature 299
number, IBMPartNum, part 308
number, IBMPgmNum, IBM

program 308
number, ISBN, document 313
number, Num 378
number, Oct octal 381

Index 479

number, OrderNum order 385
number, OrigIBMDocNum, original IBM

document 385
number, Phone telephone 395
number, Version product version 447
numbered lists 30

O
object libraries 8
object library body, ObjLibBody 379
object library, ObjLib 378
object library, reusing elements from

an 191
object link, MMObjLink

multi-media 352
object reference, ObjRef 380
object, MasterIndexObj master index 341
object; artwork, MMObj

multi-media 350
ObjLib (object library) 378
ObjLibBody (object library body) 379
ObjRef (object reference) 380
oct 44
Oct (octal number) 381
octal 44
octal number, Oct 381
of message description items,

MsgItemDef definition 363
offset layout 83
OL (ordered list) 382

OLDEF tag for 383
OL element, using 30
OLDef (Ordered list definition) 383
oltype=checkoff 31
oltype=step 31
Omitted Tags and Implied Elements 11
one-column layout 83
online information and information

centers (vs books), architected 27
online reviewers see your index entries,

helping 124
Oper (syntax operator) 384
OPER element 153
operator syntax element 153
operator, Oper syntax 384
or smaller, making some things

bigger 205
or zip code, PostalCode postal 397
order number, OrderNum 385
ordered

checkoff lists 31
lists 30

continuing 32
setup lists 31

ordered list, OL 382
definition 383

ordered note list, NoteList 376
OrderNum (order number) 385
OrigIBMDocNum (original IBM

document number) 385
original IBM document number,

OrigIBMDocNum 385
output, examples of computer 54
overriding column layouts 26
overriding the message list

subheadings 40

Owners 386

P
P (paragraph) 386
P element, creating paragraphs 21
Page breaks 7
page number control, starting 25
page numbering 85
page prefix, MasterIndexPrefix master

index 342
page-wide figures 57
page-wide tables 71
page-wide, making things 205
page, web 449
paragraph block, PBlk 392
paragraph-like elements 12
paragraph, P 386
paragraphs and lists 21
paragraphs, creating 21
parameter list block, ParmBlk 388
parameter list entry, Parm 387
parameter list, ParmL 388

definition 274
parameter lists 34

term-width 35
parameter variable, PV 409
Parm (parameter list entry) 387
ParmBlk (parameter list block) 388
ParmL (parameter list) 388

DLDEF tag for 274
Parml element, using 34
Part (major document part) 390
part assembly segment, PartAsmSeg 392
part assembly, PartAsm 391
part heading prefix 304
part number index 102
Part number index, PNIndex 396
part number indexes 220
part number, IBMPartNum 308
part titles, controlling generated 86
part, Part major document 390
PartAsm (part assembly) 391
PartAsmSeg (part assembly

segment) 392
partial table of contents 24
parts assemblies, list of 237
parts catalog lists, creating 215
parts, organizing divisions 24
PBlk (paragraph block) 392
PDF bookmarks 304
PDF books, Improving the searching

of 90
PDF document, linking to 132
PDF external file name 280
PDF heading, linking to 133
PDF tables of contents, Bookmarks

for 87
perils of processing 48
Person (person’s name and address) 393
person’s name and address, Person 393
person’s name, Name 370
PGWIDE (page wide) 205
Ph (Phrase) 393
Phone (telephone number) 395
phrase-like elements 12
Phrase, Ph 393

phrase, Q quotation 410
phrase, SynPh syntax 428
phrase, XPh example 451
phrases

keeping blanks inside of 304
removing blanks inside of 304
syntax 157

phrases, conditioning 196
pictures, including in documents 55
pk 44
PK (programming keyword) 395
placing index tags 117
PNIndex (Part number index) 396
point, ProcEntry procedure entry 400
point, ProcExit procedure exit 401
positioning index entries 117
postal or zip code, PostalCode 397
PostalCode (postal or zip code) 397
preface 100
Preface 397
prefix, appendix heading 300
prefix, chaper heading 300
prefix, MasterIndexPrefix master

index 342
prefix, part heading 304
preformatted listings 54
preformatted text 53
primary index entry, I1 314
printed, PrtLoc, country where 408
Proc (procedure) 398
ProcCmnd (procedure command) 400
procedure action to take, Then 439
procedure command, ProcCmnd 400
procedure entry point, ProcEntry 400
procedure exit point, ProcExit 401
procedure introduction, ProcIntro 402
procedure result, Cond 255
procedure step reference, StepRef 425
procedure step, ProcStep 402
procedure summary item,

ProcSummItem 403
procedure summary, ProcSumm 403
procedure, Proc 398
procedures, creating maintenance

analysis 207
ProcEntry (procedure entry point) 400
Processing, Conditional 195
processing, perils 48
ProcExit (procedure exit point) 401
ProcIntro (procedure introduction) 402
ProcStep (procedure step) 402
ProcSumm (procedure summary) 403
ProcSummItem (procedure summary

item) 403
ProdInfo (product information) 403
ProdName (product name) 404
product branding 305
product documentation), IBMIDDoc 299
product information, IBM 92
product information, IBMProdInfo 309
product information, ProdInfo 403
product name, ProdName 404
product release identifier, Release 414
product version number, Version 447
program number, IBMPgmNum 308
programming keyword 44
programming keyword default 44

480 ID Workbench: IBMIDDoc User’s Guide and Reference

programming keyword, PK 395
Programming Syntax Diagrams 147
programming variable 44
Prolog (document metainformation) 404
prolog, document 88
prolog, DProlog, division 276
prolog, SpecDProlog special section

division 424
prologs, division 23
PropDef (property set definition) 405
PropDefs (property definitions) 406
PropDesc (property description) 406
properties boolean 197
properties to true or false, setting

the 197
properties, conditional text 195
Property attributes 8
property definition 201
Property Definition 9
property definition, LERSDef, LERS 328
property definition, ModInfoDef modular

information 356
property definitions 92
property definitions, PropDefs 406
property description, PropDesc 406
property group, PropGroup 407
property set definition, PropDef 405
property-based retrieval 195
PropGroup (property group) 407
Props attribute to set text conditions,

Using the 195
props, conditioning phrases 196
PrtLoc (country where printed) 408
pSeries branding 305
PTOC (partial table of contents) 24
public identifier, PublicID 408
PublicID (public identifier) 408
Publisher (document publisher) 409
publisher, Publisher document 409
pv 44
PV (parameter variable) 409

Q
Q (quotation phrase) 410
Qualif (qualification) 411
qualif atttribute 49
QualifDefs (qualification definitions) 412
qualification definitions, QualifDefs 412
qualification, Qualif 411
qualifying information 49
quotation phrase, Q 410
quotation, LQ, stand-alone 335
quotes 47

R
railroad track syntax diagrams 147
RCF (reader comment form) 412
reader comment form 103
reader comment form, RCF 412
reader comment, Maintainer 336
reader, screen 76
recognition, controlling SGML

delimiter 200
recycle logo, omitting 98

Reference Explanation 225
reference key 44
reference key, RefKey 413
reference materials, language 165
reference section, LERS, language

element 325
reference, FragRef, syntax fragment 288
reference, IRef, index entry 313
reference, ObjRef object 380
reference, StepRef procedure step 425
reference, XRef cross 451
references

controlling the form of 65
referencing

anything 64
component lists 218
figures 62
list items 63
reusing attributes in the

CONLOC 193
tables 63

referencing, cross 61
Referring to something that is

conditional 196
REFID attribute

cross-indexing primaries
description 118

on IREF tag 118
refkey 44
RefKey (reference key) 413
registered IBM logo 98
Release (product release identifier) 414
release identifier, Release product 414
removeblanks 304
removing blanks in phrases 304
repeat separator syntax element 154
repeat separator, RepSep syntax 414
RepSep (syntax repeat separator) 414
RepSep element 154
Restricted material 88, 301
restrictions

deep table rows 72
index sorting, Xyvision 315, 316
Xyvision PDF link ″see″ entry 123

RetKey (retrieval key) 415
retkey attribute 167, 291, 293, 326, 328,

360, 365, 367
retrieval alternatives 198
retrieval key, RetKey 415
retrieval subject, LERS 166
retrieval, dictionary-like 167, 291, 293,

326, 328, 360, 365, 367, 415
retrieval, property-based 195
reusing attributes in the CONLOC

reference 193
reusing elements from an object

library 191
Rev (revision) 415
REV attribute 110
RevDefs (revision tracking

information) 416
reverse key, RefKey 413
reviewers see your index entries, helping

online 124
revision

character 110
revision characters 416

revision elements 109
revision level, specifying 89
revision tracking information,

RevDefs 416
revision, Rev 415
revisions 109

defining 109
enabling 110
indicating 110

Row (table row) 417
row alignment, table 417
row headers 76
row separators in a table, turning off 73
row, Row(table 417
rows, defining 76
rows, spanning 79
rules frames 57
Rules, Markup 11
Rules, Markup Considerations 10
running foot short title 20
running head 415

S
Safety (safety notices) 418
safety book, multiple-language 305
safety notice, Attention 238
safety notices, IBMSafety 309
safety notices, Safety 418
safety, IBM 101
sample code, displaying 449
SCALEPCT, scaling text up or down 205
scaling 205
scaling examples 54
scaling figure and table text up or

down 205
scaling list items 36
scaling text for examples,

automatically 205
Screen (display screen) 419

ScreenDEF tag for 420
screen examples 59
screen reader 76
screen reader skip links 134
screen, Screen display 419

ScreenDEF tag for 420
ScreenDef (Screen definition) 420
screens, automatically scaling text

for 205
searching of PDF books, Improving

the 90
second-level headings 22
secondary index entry, I2 315
section division prolog, SpecDProlog

special 424
sections, marked 199
security 302
security classification 85
see-also index entries 121
seeing your index entries, helping online

reviewers 124
segment, FigSeg, figure 284
segment, PartAsmSeg part assembly 392
segments, figure 58
Sem (semantic meaning) 421
semantic meaning, Sem 421
Sep (syntactic separator) 421

Index 481

SEP element 153
separating list items 38
Separation of Content and Style 9
separator, RepSep syntax repeat 414
separator, Sep syntactic 421
separators, table rows 417
seperator syntax element 153
sequential page numbering 85
set definition, PropDef property 405
set of critical dates, CritDates 261
set text conditions, Using the Props

attribute to 195
setting the properties to true or

false 197
setup lists, customer 31
SGML delimiter recognition,

controlling 200
sheets, style, using document classes with

XHTML 51
short title 20
shortened title, STitle 425
simple lists 30
simple title citations 45
sizing 205
skip links, screen reader 134
small caps 43
smaller, making some things bigger

or 205
SOA (summary of amendments) 422
SOA (summary of changes) 100
some things bigger or smaller,

making 205
sorting, controlling index 123
span specification, SpanSpec 423
spanning rows and columns 79
SpanSpec (span specification) 423
SpecDProlog (special section division

prolog) 424
special characters 180
special section division prolog,

SpecDProlog 424
specification, SpanSpec span 423
specifying table column widths 69
spine 98
splitting tables between pages 71
spot area, defines graphic hot 236
stand-alone quotation, LQ 335
starting page number control 25
STARTPAGE, controlling starting

pages 25
step lists 31
step notes, StepNotes 425
step reference, StepRef procedure 425
step, ProcStep procedure 402
StepNotes (step notes) 425
StepRef (procedure step reference) 425
Stitle 20
STitle (shortened title) 425
structure, document 19, 83
Style and Content, Separation of 9
Style attributes 8
style overrides, IBMIDDoc tag 304
style sheets, using document classes with

XHTML 51
style, document 83
style=simple 30

styles
syntax 149

styles, document 83, 301
subheadings, overriding the message

list 40
subscripts 43
SubTitle (descriptive subtitle) 426
subtitle, SubTitle descriptive 426
summary item, ProcSummItem

procedure 403
summary of amendments 100
summary of amendments) SOA 422
summary of changes xi, 100
summary, DSum, division 277
summary, ProcSumm procedure 403
superscript 43
symbols 180
SynBlk (syntax block) 426
SynNote (syntax note) 427
SynPh (syntax phrase) 428
syntactic separator, Sep 421
syntax

examples 158
phrases 157

Syntax (syntax diagram) 428
SyntaxDEF tag for 430

syntax block, SynBlk 426
syntax delimiter, Delim 269
syntax diagram, defining the 147
syntax diagram, Syntax 428

SyntaxDEF tag for 430
Syntax Diagrams, Programming 147
syntax element 149
syntax fragment reference, FragRef 288
syntax fragment, Fragment 287
syntax fragments 155
syntax keyword, Kwd 317
syntax lists 34
syntax note, SynNote 427
syntax notes 156
syntax operator, Oper 384
syntax phrase, SynPh 428
syntax repeat separator, RepSep 414
syntax styles 149
syntax variable, Var 446
SyntaxDef (Syntax definition) 430

T
table

column specifications 75
referencing 63

Table 431
table body, TBody 434
table cell

alignement 75
column separators 75
row separators 76
width 75

table cells, combining 423
table entry, Entry 279
table footer, TFoot 436
table group, TGroup 437
table heading, THead 438
table list 100
table of contents

controlling the heading levels in 99

table of contents (continued)
controlling which headings appear in

the 99
hiding headings from 99
partial 24

Table of contents 99
table of contents maximum heading

level 303
table of contents, TOC 443
table row alignment 417
table row separators 417
table row, Row 417
table rows, too deep restriction 72
Table Tag Attributes 72
table text, scaling up or down 205
tables 67

appearance 72
captions 69
column widths 69
complex example 79
complex header 80
concepts 67
controlling inside lines 72
controlling the frame 72
controlling width 71
defining rows and entrys 76
DWIDTH (display width),

BookManager 71
examples 77
notes 80
sideways 73
simple example 77
simple headers 78
simple, creating 67
spanning rows and columns 79
splitting 71
unformatted text 76
width, column, page, or textline 71

tables accessible, Making your 76
tables of contents, Bookmarks for

PDF 87
tables, TList list of 441
Tag Attributes, Table 72
tags

INDEX 123
tags and elements 4
Tags and Implied Elements, Omitted 11
target=″_blank″ 318
target=″_self″ 318
target=″_top″ 318
TBody (table body) 434
telephone number, Phone 395
term 44
Term 434
term heading, TermHd 435
term lists 32
term-width

definition lists 33
parameter lists 35

term, Defn 268
term, IdxTerm, index 311
TermHd (term heading) 435
terms, IBMIDDoc 4
tertiary index entry, I3 316
text alternative, TextAlt 436
text conditions, Using the Props attribute

to set 195

482 ID Workbench: IBMIDDoc User’s Guide and Reference

text data, literal 54
text entities 179
text for deletion, marking 111
text for examples, automatically

scaling 205
text with line boundaries, Lines 333
text, changed 109
text, MsgText message 368
text, translation considerations for

conditional 196
text, turning on or off 195
TextAlt (text alternative) 436
textline width tables 71
TFoot (table footer) 436
TGroup (table group) 437
THead (table heading) 438
Then (procedure action to take) 439
things bigger or smaller, making

some 205
tips, indexing 116
Title 440
title citations 142
title citations, simple 45
title information, TitleBlk 440
title page, cover 98
title page, draft 98
title specification, GendTitle, default 290
title, DocTitle, document 276
title, document 88
title, STitle shortened 425
TitleBlk (title information) 440
titles, controlling generated chapter, part,

and appendix 86
TList (list of tables) 441
TM (Trademark) 442
TOC (table of contents) 443
toc attribute 231, 232, 242, 262, 295, 311,

321, 324, 339, 391, 396, 398, 423
tracking information, RevDefs

revision 416
Trademark, TM 442
trademarks 50
translation considerations for conditional

text 196
true or false, setting the properties

to 197
turning change bars on and off 416
two-column layout 83
typing information 343

U
UL (unordered list) 444

ULDEF tag for 445
UL element, using 29
ULDef (Unordered list definition) 445
underlined 43
unformatted tables 76
unordered list, UL 444

definition 445
unordered lists 29
using division (D) elements 20
using parts to organize divisions 24
using the body element 20
Using the Props attribute to set text

conditions 195

V
values, property 195
vanilla conditions 195
Var (syntax variable) 446
VAR element 153
variable syntax element 153
variable, MV message 369
variable, PV parameter 409
variable, Var syntax 446
Version (product version number) 447
version number, Version product 447
VNet (IBM VNet mail address) 447
VNet mail address, VNet 447
VolId (volume identifier) 448
volume identifier, VolId 448
volumes, multiple 86, 303

W
Warning (warning notice) 448
warning notice, Warning 448
warning notices 48
web page reader 76
web page, linking to 132
web pages, linking to 95
WebPage 449
what’s new xi
where printed, PrtLoc, country 408
where to place index entries 117
where to put index entries 119
widths

table column 69

X
XHTML

helping online reviewers see your
index entries 124

indexing metadata 124
style sheets, using document classes

with 51
XHTML document, linking to 132
Xmp (example) 449

XmpDEF tag for 450
XmpDef (Example definition) 450
xph 44
XPh (example phrase) 451
xpp:(justify=yes) 88
XREF

referring to something
conditionally 196

XRef (cross reference) 451
Xref element 61
xSeries branding 305
Xyvision override

keeping list items together 38
LEN nopage 166

Xyvision overrides
Line Justification for DBCS

Languages 88
PDF bookmarks 304

Z
zip code, PostalCode postal or 397
zSeries branding 305

Index 483

484 ID Workbench: IBMIDDoc User’s Guide and Reference

Readers’ Comments — We’d Like to Hear from You

ID Workbench
IBMIDDoc User’s Guide and Reference
Release 3.6

Publication No. SH21-0783-10

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SH21-0783-10

SH21-0783-10

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
ATTN: Dept 542
3605 HWY 52 N
Rochester, MN
55901-9986

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed in U.S.A.

SH21-0783-10

	Contents
	About This Book
	Who Should Read This Book
	What You Should Already Know
	How This Book is Organized

	Summary of Changes
	Part 1. Introduction to IBMIDDoc
	Chapter 1. Introduction to IBMIDDoc
	What is IBMIDDoc?
	IBMIDDoc Documents
	IBMIDDoc Terms and Concepts
	Documents and Markup
	Elements and Tags
	Containment
	Entities
	Marked sections
	Processing instructions
	Object Libraries
	Attributes
	Property and Class Definition
	Separation of Content and Style

	IBMIDDoc Markup Considerations and Rules
	Ending an Element
	Omitted Tags and Implied Elements
	Markup Rules
	Phrase-Like and Paragraph-Like Elements
	Element Groupings in IBMIDDoc

	IBMIDDoc Input Codepages

	Part 2. Using IBMIDDoc Markup
	Chapter 2. Using basic IBMIDDoc elements to create a document
	IBMIDDoc Document Structure
	Creating an IBMIDDoc Document
	Creating the body of your document
	Creating divisions (D element)
	Creating paragraphs (P element)
	Deciding which elements to use
	Creating a heading hierarchy
	Division prologs
	Division introductions
	Partial table of contents

	Using parts to organize your chapters
	Starting page number control
	Chapter number control
	Changing column layouts
	Creating an information architecture
	Architected online information and Information Centers (vs books)

	Chapter 3. All kinds of lists
	Unordered lists
	Simple lists
	Ordered lists
	Checkoff ordered lists
	Customer setup lists
	Continuing ordered lists

	Definition lists
	Parameter lists
	Compacting lists
	Scaling list dingbats
	Grouping list items
	Separating or bridging list items
	Message and code lists
	Overriding the message list subheadings

	Chapter 4. Highlighting, Citing, Noting, and Quoting
	Highlighting
	Simple title citations
	Notes
	Note lists
	Footnotes
	Quotes and excerpts
	Labeled boxes
	The perils of processing: Attention, caution, and danger
	Annotations
	Qualifying information
	Trademarks
	Using document classes with XHTML style sheets

	Chapter 5. Examples, figures, artwork, and multimedia
	Just plain lines
	Examples of computer output
	Literal text data
	Including artwork in documents
	Creating graphic links

	Figures
	Figure captions and descriptions
	Multipart figures

	Character graphics
	Screens
	Math formulas

	Chapter 6. Cross-referencing
	Referencing a figure
	Referencing a table
	Referencing a list item
	Referencing anything at all
	Controlling the form of cross references

	Chapter 7. Creating IBMIDDoc Tables
	IBMIDDoc Table Markup Concepts
	Creating simple tables
	Specifying table column widths
	Table captions and descriptions
	Page, column, and line-wide tables
	Splitting tables between pages
	Affecting how a table appears: Rules, Separators, Shading
	Defining the Column Specifications
	Defining Rows and Entrys
	Making your tables accessible

	A Few Simple Table Examples
	A Simple Table
	A Simple Table with More Options
	A Simple Table with a Table Header and IBMIDDoc Elements
	A Complex Table with Row and Column Spans
	A Complex Table Header
	Adding footnotes to a table

	Chapter 8. The document structure of an IBMIDDoc document
	About the IBMIDDoc tag
	Getting in style, the document style, that is
	Setting the IBM copyright
	Setting the security classification
	Setting page numbering to sequential or folio-by-chapter
	Creating multiple volumes for a book
	Controlling generated chapter, part, and appendix titles
	Specifying the language of the document
	Bookmarks for PDF tables of contents
	Licensed and restricted materials
	Line justification for DBCS languages

	About the prolog
	Document title
	Document number
	Author and Address
	Date
	Improving the searching of PDF books
	Other prolog elements
	Adding to the front or back cover (CoverDef)
	Using CopyRDefs
	Using IBMProdInfo
	Using Property Definitions (PropDefs)
	PropDefs and Common Property Values
	Limiting the Scope of PropDef Definitions
	Using PropDefs for Conditional Processing

	Using LDescs and Nameloc
	Using GLDefs
	Using BibEntryDefs

	Front matter (FrontM)
	Notices and Edition notices
	Other notices

	Table of contents
	List of figures
	List of tables
	The preface
	Summary of changes
	Special sections
	IBM Safety text

	About back matter (BackM)
	Using appendix
	Using glossary
	Using bibiography (Bibliog)
	Using part number index (PNIndex)
	Using Index
	Using reader's comment form (RCF)

	Chapter 9. Using definition tags
	Summarizing the initial setting override hierarchy

	Chapter 10. Revision Elements and Marked Notes
	Using Revisions
	Defining Revisions in the RevDefs Element
	Indicating Revisions in the Document Markup
	Marking text for deletion

	Creating Collections of Marked Notes
	Using the Mark Element
	Defining Marked Actions and Classes
	Using the MkNote Element
	Generating a Collection with MarkList Element
	A Marked Notes Markup Example

	Chapter 11. Indexing
	Structuring a basic index
	Basic index tagging
	Placement of index tags
	Position method
	Cross referencing index entries

	Where to put index entries
	Defining index entries (central indexing)
	Creating index entries by cross-indexing
	Defining See and See-also references
	Controlling the Index Sorting
	Generating the index
	Helping online reviewers see your index entries
	Creating a master index

	Chapter 12. All about linking
	Linking 101
	Creating links within a document
	Linking to another document
	Citation link to an IBMIDDoc document
	Linking to an XHTML, HTML, or web document
	Linking to items in another IBMIDDoc document
	Making a graphic a link
	Linking to an IPF document

	Chapter 13. Glossaries
	Defining Terms
	Separating letter groups in a glossary
	Defining Classes for Terms

	Chapter 14. Bibliographies and citations
	Identifying books and documents
	Using title citations
	Citations
	Generating a bibliography
	Defining library entries
	Linking BibEntry elements and other documents
	An example of using BibEntry and BibEntryDefs

	Chapter 15. Programming Syntax Diagrams
	Defining the syntax diagram
	The Syntax element
	The Group element
	The KWD (keyword) element
	The VAR (variable) element
	The OPER (operator) element
	The SEP (separator) element
	The Delim (delimiter) element
	The RepSep (repeat separator) element
	The FRAGMENT and FRAGREF (fragment reference) element

	Syntax Notes
	Syntax Phrases
	Examples of Syntax Definitions and Markup
	Example 1: A simple syntax definition
	Example 2: A simple syntax definition that repeats
	Example 3: A more complex syntax definition
	Example 4: A variation on Example 3
	Example 5: A syntax definition showing a fragment and significant blanks
	Example 6: A syntax definition with automatic fragmenting

	Chapter 16. Developing Programming Language Reference Materials
	The Structure of a Language Element Reference Section
	Describing Your Reference Section
	Describing the language element
	Example of a Simple Language Element Reference Section
	DISHDEF defining a dish
	EVALUATE evaluate nutrition, cost, or preparation time

	Chapter 17. Defining Modular Information
	Examples of Using Modular Information

	Chapter 18. File, text, and character entities and reusing information
	File and text entities
	Special characters
	Reusing elements from an object library
	Reusing attributes in the CONLOC reference
	Cross-referencing items that use CONLOC

	Chapter 19. Conditionally including information
	Property-Based Retrieval
	Using the Props attribute to set text conditions
	Setting the properties to true or false
	Specifying boolean properties
	Retrieval alternatives

	Using Marked Sections
	Controlling SGML Delimiter Recognition

	Chapter 20. Property and Class Definitions
	Defining Element Properties
	Defining Element Properties Directly
	Defining Element Properties Using Inheritance

	Defining Element Classes

	Chapter 21. Making some things bigger or smaller
	Scaling text up or down
	Automatically scaling text for examples and such
	Making things page-wide

	Chapter 22. Creating maintenance analysis procedures
	Using ProcEntry for Entry Requirements
	Using ProcStep and ProcCmnd to Describe Each Step
	Using DecisionPnt for Outcome-Dependent Action Descriptions
	Using RefKeys to Refer to Labels in a Graphic
	Using ProcExit to Complete a Procedure or Sub-Procedure
	Procedure Markup Examples
	Starting the Procedure
	Describing the Entry Point for the Procedure
	Entering the Procedure Steps
	Exiting the Procedure

	Controlling Procedure Output Styles

	Chapter 23. Creating parts catalog lists
	Markup source
	Creating the heading for a component list
	Developing the component list
	Including comments in the component list
	Cross-referencing part assemblies and component lists
	Keeping track of assemblies and parts
	Getting an assembly list
	Getting a part number index

	Part 3. IBMIDDoc Markup Reference
	Chapter 24. Reference Explanation
	Element and Attribute Descriptions
	How to Read the Syntax Diagrams
	Common Element Attributes (large set)
	Common Element Attributes (small set)

	Chapter 25. IBMIDDoc Elements
	Abbrev (abbreviations)
	Abstract (abstract)
	Address (address)
	Annot (annotation)
	AnnotBody (annotation body)
	APL (APL data)
	Appendix
	Approvers (document approvers)
	AreaDef (defines graphic hot spot area)
	AsmList (list of parts assemblies)
	Attention (safety notice)
	Author
	Authors
	BackCover (back cover)
	BackM (back matter)
	BibEntry (bibliographic entry)
	BibEntryDefs (contains bibliographic entries)
	Bibliog (bibliography)
	BibList (bibliography entry list)
	Bin (binary data)
	Body (document body)
	BOFNum (bill of forms number)
	Bridge (bridge between concepts)
	Cap (caption)
	Caution (caution notice)
	CGraphic (character graphic)
	Char (character data)
	CI (component item)
	Cit (document citation)
	ClassDef (element class definition)
	CLE (content list entry)
	Code (message code number)
	ColSpec (column specification)
	CompCmt (component comment)
	CompL (component list)
	Cond (procedure result)
	ContainedDocs (documents in IBMLibEntry and LibEntry)
	CopyR (copyrights)
	CopyRDefs (copyright definitions)
	Corp (enterprise name and address)
	CorpName (corporation name)
	CoverDef (cover definition)
	CritDate (critical date for a document)
	CritDates (set of critical dates)
	D (hierarchical division)
	Danger (danger notice)
	Date
	DBlk (Division block)
	DBody (division body)
	Dec (decimal number)
	DecisionPnt (decision point)
	Defn (definition of a term)
	DefnHd (definition description heading)
	Delim (syntax delimiter)
	Desc (element description)
	DIntro (division introduction)
	DL (definition list)
	DLBlk (definition list block)
	DLDef (Definition list definition)
	DLEntry (definition list entry)
	DocTitle (document title)
	DProlog (division prolog)
	DSum (division summary)
	DVCFObj (DVCF Migration Element)
	EdNotices (edition notices)
	Else (other procedure path to follow)
	Entry (table entry)
	ExternalFileName
	Fig (figure)
	FigDef (Figure definition)
	FigList (list of figures)
	FigSeg (figure segment)
	FileNum (file number)
	Fn (footnote)
	FNList (footnote list)
	Formula (math formula)
	Fragment (syntax fragment)
	FragRef (syntax fragment reference)
	FrontCover
	FrontM (front matter)
	GendTitle (default title specification)
	GL (glossary list)
	GLBlk (glossary list block)
	GLDef (Glossary list definition)
	GlDefs (glossary definitions)
	GlEntry (glossary list entry)
	Glossary
	Group
	Hex (hexadecimal)
	IBMBibEntry (IBM bibliographic entry)
	IBMBOFNum (bill of forms number)
	IBMDocNum (IBM document number)
	IBMFeatNum (IBM feature number)
	IBMIDDoc (IBM-specific product documentation)
	IBMLibEntry (IBM document library definition)
	IBMMail (IBMMail e-mail address)
	IBMPartNum (IBM part number)
	IBMPgmNum (IBM program number)
	IBMProdInfo (IBM product information)
	IBMSafety (IBM safety notices)
	IdxDefs (central index entries)
	IdxTerm (index term)
	Index
	Internet (internet e-mail address)
	IRef (index entry reference)
	ISBN (document ISBN number)
	I1 (primary index entry)
	I2 (secondary index entry)
	I3 (tertiary index entry)
	Kwd (syntax keyword)
	L (explicit link)
	LDescs (link descriptions)
	LE (language element)
	LeDesc (language element description)
	LEDI (language element description item)
	Legend
	LEN (language element name)
	LERS (language element reference section)
	LERSDef (LERS property definition)
	LI (list item)
	LibEntry (document library definition)
	LIBlk (list item block)
	Library
	Lines (text with line boundaries)
	Litdata (literal data)
	LQ (excerpt quotation)
	Maintainer (reader comment)
	Mark (marked note definition)
	MarkList (marked note list)
	MasterIndex (master index)
	MasterIndexInfo (master index information)
	MasterIndexObj (master index object)
	MasterIndexPrefix (master index prefix)
	MD (marked deletion)
	MetaData (information architecture)
	MkAction (marked note action definition)
	MkClass (marked note class definition)
	MkDesc (mark description)
	MkNote (marked note)
	MMObj (multi-media object; artwork)
	MMObjLink (multi-media object link)
	Mod (information module)
	ModDesc (modular content description)
	ModInfo (modular information)
	ModInfoDef (modular information property definition)
	ModItemDef (item class definitions)
	ModItem (module description item)
	ModLvl (modification level)
	ModName (modular information element name)
	Msg (message or code description)
	MsgItem (message description item)
	MsgItemDef (definition of message description items)
	MsgLDef (Message list definition)
	MsgList (list of message or code descriptions)
	MsgNum (message identifier)
	MsgText (message text)
	MV (message variable)
	Name (person's name)
	NameLoc (named location)
	NItem (notice item)
	NMList (named list of IDs or entities)
	Note
	NoteBody (note body)
	NoteList (ordered note list)
	Notices (contains notices)
	Notloc (notation-specific location)
	Num (number)
	ObjLib (object library)
	ObjLibBody (object library body)
	ObjRef (object reference)
	Oct (octal number)
	OL (ordered list)
	OLDef (Ordered list definition)
	Oper (syntax operator)
	OrderNum (order number)
	OrigIBMDocNum (original IBM document number)
	Owners
	P (paragraph)
	Parm (parameter list entry)
	ParmBlk (parameter list block)
	ParmL (parameter list)
	Part (major document part)
	PartAsm (part assembly)
	PartAsmSeg (part assembly segment)
	PBlk (paragraph block)
	Person (person's name and address)
	Ph (Phrase)
	Phone (telephone number)
	PK (programming keyword)
	PNIndex (part number index)
	PostalCode (postal or zip code)
	Preface
	Proc (procedure)
	ProcCmnd (procedure command)
	ProcEntry (procedure entry point)
	ProcExit (procedure exit point)
	ProcIntro (procedure introduction)
	ProcStep (procedure step)
	ProcSumm (procedure summary)
	ProcSummItem (procedure summary item)
	ProdInfo (product information)
	ProdName (product name)
	Prolog (document metainformation)
	PropDef (property set definition)
	PropDefs (property definitions)
	PropDesc (property description)
	PropGroup (property group)
	PrtLoc (country where printed)
	PublicID (public identifier)
	Publisher (document publisher)
	PV (parameter variable)
	Q (quotation phrase)
	Qualif (qualification)
	QualifDefs (qualification definitions)
	RCF (reader comment form)
	RefKey (reference key)
	Release (product release identifier)
	RepSep (syntax repeat separator)
	RetKey (retrieval key)
	Rev (revision)
	RevDefs (revision tracking information)
	Row (table row)
	Safety (safety notices)
	Screen (display screen)
	ScreenDef (Screen definition)
	Sem (semantic meaning)
	Sep (syntactic separator)
	SOA (summary of amendments)
	SpanSpec (span specification)
	SpecDProlog (special section division prolog)
	StepNotes (step notes)
	StepRef (procedure step reference)
	STitle (shortened title)
	SubTitle (descriptive subtitle)
	SynBlk (syntax block)
	SynNote (syntax note)
	SynPh (syntax phrase)
	Syntax (syntax diagram)
	SyntaxDef (Syntax definition)
	Table
	TBody (table body)
	Term
	TermHd (term heading)
	TextAlt (text alternative)
	TFoot (table footer)
	TGroup (table group)
	THead (table heading)
	Then (procedure action to take)
	Title
	TitleBlk (title information)
	TList (list of tables)
	TM (Trademark)
	TOC (table of contents)
	UL (unordered list)
	ULDef (Unordered list definition)
	Var (syntax variable)
	Version (product version number)
	VNet (IBM VNet mail address)
	Volid (volume identifier)
	Warning (warning notice)
	WebPage
	Xmp (example)
	XmpDef (Example definition)
	XPh (example phrase)
	XRef (cross reference)

	Part 4. Appendixes
	Appendix A. IBMIDDoc Supported Notations
	Appendix B. Proposed IBM Standard for Formal Public Identifiers
	Owner Identifier
	Public Text Class and Public Text Description
	Public Text Language

	Appendix C. Notices
	Trademarks

	Part Number Index
	Index
	Readers’ Comments — We'd Like to Hear from You

